
International Jl. on E-Learning (2011) 10 (1), 27-42.

Integrating an Automatic Judge into an
Open Source LMS

Katerina Georgouli
Technological Educational Institute of Athens, Greece

kgeor@teiath.gr

Pedro Guerreiro
Universidade do Algarve, Portugal

pjguerreiro@ualg.pt

This paper presents the successful integration of the evalua-
tion engine of Mooshak into the open source learning man-
agement system Claroline. Mooshak is an open source online
automatic judge that has been used for international and na-
tional programming competitions. Although it was originally
designed for programming competitions, Mooshak has also
been serving as an on-line system for competitive e-learning
in a number of programming courses. In order to investigate
how it could be integrated into more effective e-learning, thus
solving in parallel managerial and communication problems,
we incorporated its automatic evaluation engine into Claro-
line’s Assignments tool. The enhanced Assignments tool
allows remote evaluation of students’ source code submis-
sions in the same e-learning environment where the remain-
ing educational sources and users’ data exist. This integrated
tool saves time spent by tutors evaluating code and enhances
learning in the framework of a well elaborated instructional
approach based on automatic judgment of students’ program-
ming assignments. Although the integration raised many in-
teresting technical issues, in this paper we concentrate on the
usage of the tool, rather than on its internals.

Keywords: automatic judge, e-learning, learning management
systems,

28 Georgouli and Guerreiro

Introduction

E-learning is a medium of instruction adopted by most higher educa-
tion institutions for supporting their blended learning and distance learn-
ing courses. With e-learning, classical pedagogies are integrated with fresh
ideas based on the achievements of Information and Communications Tech-
nologies (ICT), and this allows new successful educational strategies to
flourish.

In modern e-learning environments, on-line tools have an important in-
fluence on the design of blended learning scenarios that include mixtures of
different teaching strategies. Namely, new interactive communication tools
efficiently support cooperative learning; educational computer online games
and judges support competitive learning; and online self-assessment ques-
tionnaires and computer adaptive testing (CAT) systems support individual-
istic learning (Economides & Roupas 2007). In this framework, the Learn-
ing Management Systems (LMS) become progressively more functional,
offering to instructors the tools they need for implementing their preferred
pedagogies. Indeed, LMS tools can be made to work together in order to
accomplish cooperative, competitive and individualistic educational activi-
ties under well elaborated educational scenarios. A lot of research has been
focused on studying the effectiveness of ICT support to education, and espe-
cially on understanding how LMS tools can contribute to successful blended
learning scenarios, that are capable of endorsing different learning e-ped-
agogies. Johnson and Johnson (1994) suggest that an effective classroom
must have the right mix of cooperative learning and competitive learning,
along with individualistic learning. Accordingly, instructors combine coop-
erative and competitive learning approaches to review teaching techniques
employed in their classrooms, adopting motivationally balanced teaching
approaches (Anderson J., 2006; Bonk et al., 2003; Kolb & Kolb 2005b;
Georgouli et al., 2008).

In higher education institutions, a considerable number of attempts have
been made to construct applications for automatic marking, both for com-
puter programs written by students of computer science courses and for
other forms of assignments. The most common technique for grading text-
intensive tests is by matching words and phrases. Most sophisticated auto-
matic essay grading systems, capable of intelligent performance are based
on natural language processing (NLP) or artificial neural networks (ANN)
(Vallenti et al, 2003).

Systems that automatically assess programming assignments have been
designed and used for over forty years. The first generation of those sys-
tems was source-code oriented, the second generation was tool-oriented and
the current generation is web-based, and appears in the form of independent

29Integrating an Automatic Judge into an Open Source LMS

applications or as modules to other hypermedia educational applications
(Douce et al., 2005).

Most grading tasks in higher education courses can be partially auto-
mated using LMS systems, without much effort, but in computers science
courses, due to the nature of programming assignments, a further step to-
wards automated evaluation of user submitted programs seems to be only
natural (Cheang et al, 2003; English & Siviter, 2000). The idea of automati-
cally evaluating students’ programs is commonly followed in international
and national programming contests, mainly for saving grading time, and for
ensuring impartial and immediate program evaluation. Relevant examples
of programming competitions are the International Olympiad in Informat-
ics (IOI)1 for secondary school students, the ACM International Collegiate
Programming Contest (ICPC)2 , a prestigious contest for teams of university
students, the Google CODE JAM3 a contest having a prize money for the
top 100 finalists, the Internet Problem Solving Contest (IPSC)4, the IEEEX-
treme 24 Hour Online Competition5, etc. Automated judges have been used
in programming competitions for around 10 years now. At first, they were
prototype applications, not ready for widespread use. These days, a few of
them are freely available, for example, PC2 6, PKU JudgeOnline7, DOM-
Judge8 and Mooshak9. They can be downloaded and installed by all those
interested, namely by educators who want to enhance their programming
teaching by implementing cooperative and competitive educational strate-
gies.

On the other hand, a considerable number of web-based judges, most of
them developed by universities, are available, together with databases of
programming problems. Users of these systems select problems from the
data base, solve them and then submit their solutions in order to have them
immediately checked for correctness in an automatic way. Among the best
known systems in this category are the UVA On-line Judge10, which is an
on-line programming trainer, with great pedagogic character, Sphere Online
Judge11, offered also in Polish, Portuguese and Vietnamese, and the Zheji-
ang University Online Judge12, one of the earliest and largest online judge
systems in China.
1	 http://www.ioinformatics.org
2	 http://icpc.baylor.edu
3	 http://code.google.com/intl/el/codejam.
4	 http://ipsc.ksp.sk
5	 http://www.ieee.org/xtreme
6	 http://www.ecs.csus.edu/pc2/
7	 http://acm.pku.edu.cn/JudgeOnline/
8	 http://domjudge.sourceforge.net/
9	 http://mooshak.dcc.fc.up.pt/
10	 http://icpcres.ecs.baylor.edu/onlinejudge
11	 http://www.spoj.pl/
12	 http://acm.zju.edu.cn/onlinejudge

30 Georgouli and Guerreiro

Nowadays, there are several paradigms of application of online judges
and contest systems in higher education. This approach has two main ben-
efits: it decreases the strain of the staff responsible for grading and it offers
greater consistency, since all submitted assignments are marked using the
same test cases and criteria (Koosowski et al., 2008; Reguers et al, 2008;
Boticki et al, 2008; Cheang et al., 2003)..

In this paper, we present the approach we took for enhancing our pro-
gramming courses using the automatic judge Mooshak, and which lead to
the successful integration of the evaluation engine of Mooshak into the open
source LMS Claroline13. In the section that follows this introduction, we
present our experience using Mooshak as a stand-alone on-line application
to support programming courses. Then, we discuss the issues related to the
use of Mooshak as a new functionality of the Claroline e-learning platform.
A more technical section follows for those who are interested on technical
issues, where we describe the changes we had to make to the open source
code of Claroline, and the technical problems we faced and solved for
achieving our goal. After that, a paragraph on related work contextualizes
our findings. Finally, we present our conclusions and our ideas for future
work.

Using an Automatic Judge for the Enhancement of
Programming Courses

Evaluation of student assignments, in any discipline, can be tedious. If
done by hand, evaluation of students programs in a programming course is
particularly uninteresting and time consuming. First, the students must hand
in their source code, by e-mail, for instance. The teaching assistant who is
doing the grading must sort the emails, extract the attached programs and
file them carefully. Then, he or she must compile the submission, and run
some tests. If the program is made up of several files, things become a bit
harder. If libraries are used, they must be linked. Of course, scripts can be
used to automate this, but they do not work if the students do not follow the
rules. If the script does not run as expected, one could simply throw out the
submission. However, the teaching assistant is a human being and has feel-
ings: he or she will in most cases try to fix that “small detail” that derailed
the script. Likewise, if the program does not compile or one the tests fails
“by little”, the assistant’s tender heart will make him or her peak into the
code, to find the cause, fix it and give another try. All this takes time and
is a dull job. On the other hand, the main reason for evaluating student as-
signments is not grading students; it is giving them feedback on their learn-
ing effort and on the progress. The feedback must be timely, otherwise it

13	 http://www.claroline.org

31Integrating an Automatic Judge into an Open Source LMS

becomes less useful. But this is almost impossible, if evaluation is done by
hand and there are many students and many assignments. Traditionally, the
easy way out is to cut on the number of assignments and make the students
work in teams (of 2, 3, sometimes more). Actually, working in teams can
then be justified as helping students build up their teamwork skills, which,
of course, is just a very bad excuse in introductory programming courses.

The solution for this state of affairs is automated judges. For realising
our competitive and cooperative pedagogical approach in introductory pro-
gramming courses we have used Mooshak (Leal & Silva, 2003), a stand-
alone, open source automatic judge system which was originally intended
for contests, but it is increasingly being used in programming courses to
give instant feedback on practical classes, to receive and validate assign-
ments submissions, to pre-evaluate and mark assignments, etc. (Guerreiro
& Georgouli, 2008).

We have been using Mooshak for more than six years now, as a pedagog-
ical tool, and it has proven to be invaluable. Now, the students submit their
programs to the judge, and have immediate feedback. The students have
to be more rigorous in their programming, because Mooshak is a robot and
will not try to make up for small mistakes, as the teaching assistant would
have. Mooshak handles automatically all the administrative task formerly
done by the assistant: filing the submission, compiling the source files, run-
ning the executable against a set of secret test cases, and reporting back the
result. If all tests pass, i.e., if the output of each test is equal to the expected
output, the submission is accepted. Otherwise, an indication on the nature
of the error is presented: wrong answer; time limit exceeded; compile time
error; etc.

With Mooshak, the amount of programming done by the students in-
creased several times, and also the courses themselves became more joy-
ful, and also more popular, more transparent and more spoken of. Further-
more, students became more diligent programmers, because automatically
enforced deadlines are more difficult to circumvent, and more rigorous pro-
grammers, because of the greater effort required perfecting the programs so
that they pass all the secret tests held by Mooshak.

The first contact of students with Mooshak tends to be turbulent. Usu-
ally students react angrily when Mooshak refuses to accept their solutions,
which they could swear were bulletproof. Moreover, at the beginning of
the semester, good students are striving for visibility in the class. It must
be very disappointing to have your programs rejected and not being able to
hide it.

Mooshak was designed for programming contests, with imperative lan-
guages, such as Pascal, C, C++ and Java. Still it can be used with function-
al languages, such as Haskell and Common Lisp, and logic programming

32 Georgouli and Guerreiro

languages, such as Prolog. In all cases, the number of evaluated programs
is much larger than what could be achieved using a teaching assistant. In
the latest edition of our Programming Fundamentals course, there were 69
problems and exercises in the judge. Not all students submitted everything,
and not all had all their submissions accepted, of course, but they all did get
a lengthy exposure to the automatic judge.

In this Programming Fundamentals course, Mooshak was one of the
pedagogical tools used. The other was the LMS that supports the rest of
the educational activities, and runs independently from Mooshak. This did
cause some overhead, because these two systems were set up with different
usernames and passwords. Furthermore, partial grades obtained in Mooshak
were separated from partial grades obtained in other assignments that were
done in the LMS. Also, discussion about the problems and the exercises
was carried out in the forums at the LMS, not within Mooshak. Ideally, we
would prefer a single, integrated environment: it would be less cumbersome
for students and much more useful for teachers, if all the pedagogical infor-
mation of each student could be handled together, in one place.

Since Mooshak was designed for competitions, it has some competitive
features that are really not necessary in a pedagogical environment. For
example, sets of problems are organized as contests, and those who submit
first show up in the first places in the rankings. This has no importance for
the purpose of the course. Yet, although we did not stress the competitive
aspect of the assignments, many students thrived in it. We observed that
many of them enjoyed being on the first places on the ranking and made an
effort to solve the problems as soon as possible. As anecdotal evidence on
this, at one occasion, we made a mistake when setting up a new contest in
Mooshak which caused the ranking to disappear. We immediately received
complaints from the students that “without the ranking, it was no fun”.

We have been recording the feedback from students, using surveys, at the
end of classes, before the exams. Feedback is generally positive. In the lat-
est edition, of our introductory course, with Haskell, we had 115 responses,
from more than 90% of the students taking the course. For most questions
we used the 5-point agree-disagree scale. Table 1 summarizes the responses
to the questions relevant to the present discussion.

In the questions, “platform” means the automatic judge, Mooshak, plus
the learning management system that we were using.

We observe that the students are not very assertive, except when giving
advice to teachers, as in the forth question. Still, for all questions, more
than half of the students either “strongly agree” or “agree”. Even in the
third question, whose replies reveal that many students are not comfortable
with Mooshak, only less than 20% of the students consider that Mooshak is
not an effective learning tool.

Integrating an Automatic Judge into an Open Source LMS 33

Table 1
Results of survey, abridged

 Strongly
agree Agree Neu-

tral
Dis-
agree

Strongly
disagree

Don’t
know

Programming assignments are
more interesting because they
are supported by Mooshak

26% 50% 17% 6% 1% 1%

Assessment by the platform is
generally fair 15% 62% 18% 4% 1% 1%

With Mooshak we learn more
than without Mooshak 20% 35% 25% 11% 7% 2%

Other teachers should be
encouraged to use a similar
platform

61% 25% 7% 3% 2% 2%

Integrating Mooshak into Claroline LMS

Mooshak is a software system that acts as a full contest manager as well
as an automatic judge for programming contests. It innovates in many as-
pects: it has a scalable architecture that can be used from small single serv-
er contests to complex multi-site contests with simultaneous public online
contests and redundancy; it has a robust data management system favouring
simple procedures for storing, replicating, backing up data and failure re-
covery using persistent objects; it has automatic judging capabilities to as-
sist human judges in the evaluation of programs; it has built-in safety mea-
sures to prevent users from interfering with the normal progress of contests.
Mooshak is an open system implemented on the Linux operating system us-
ing the Apache HTTP server and the Tcl scripting language.

On the other hand, Claroline is an open source e-learning and e-working
platform written in PHP language, which allows teachers to build effective
online courses and to manage learning and collaborative activities on the
Web. Each course space provides a list of tools enabling the teacher to pub-
lish documents, administer public and private forums, prepare online exer-
cises, publish announcements, set up assignments to be handed in online,
view the statistics of user activity, etc. The Claroline platform has been
used at the Department of Informatics of the Technological Educational In-
stitute (TEI) of Athens since 2003. It has been constantly customised and
enhanced and the resulting LMS, called cs e-Class, constitutes an indispens-
able part of all educational processes in the department, and is very well ac-
cepted by both students and teachers.

Based on the experiences reported in the previous section, we recognized
the advantage of linking Mooshak with cs e-Class in a way that registered
students logged in a cs e-Class course could have access to Mooshak and

34 Georgouli and Guerreiro

take part to existent contests, and then the evaluation results should get back
to students’ statistics in cs e-Class. After a closer look into Mooshak’s struc-
ture, we decided that there were technical obstacles that we could not rea-
sonably circumvent. Because Mooshak is a complete application for man-
aging programming contests, it has its own authentication system. In order
for the integration of Mooshak and Claroline to work, we had two choices:
either to bypass Mooshak’s authentication system or to connect it with the
one that comes with cs e-Class. Both of these solutions had to be reject-
ed. Indeed, for the first technique to work we would have to make massive
changes in Mooshak’s source code, which would require an effort incom-
mensurate with the intended purpose. The second technique would be easi-
er to implement, but it would significantly increase the load on the network,
and we could not afford that. We also considered using an LDAP server,
since both Mooshak and Claroline support it, but our institution did not have
LDAP server that was available at the time. One other difficulty we faced
was that the two systems handle very differently the users and their roles: in
order to connect these features from one system to the other, we would have
changed Mooshak significantly, on this part, and we wanted to refrain from
that. At this point, we came up with the idea of isolating Mooshak’s evalu-
ation engine from the rest of Mooshak system. This seemed less difficult to
pull off, since we would not be invasive and only the necessary code from
Mooshak would run during assignments’ evaluation, leaving out the mod-
ules concerning those competitive features of the Mooshak’s system that are
not necessary in our pedagogical environment. This solution also facilitates
maintenance, when newer versions of the evaluation engine become avail-
able.

Isolating the Evaluation Engine

Isolating the evaluation engine within Mooshak took place in several
stages. We started by trying to understand the structure of Mooshak’s source
code. We installed Mooshak in an experimental environment and tried to
walk through its source code, reverse engineering its features. For example,
we would create contests and submit programs in order to understand which
procedures were being called. The next task was to create a script file that
would call Mooshak’s source code procedures using specific arguments, for
example a user id and a file path. Final decision was selecting the tool in
the LMS into which the evaluation engine should be integrated. We origi-
nally had three possibilities: the Assignments tool, the Exercises tool or the
Exams tool. The Assignments tool enables instructors to create and manage
students’ assignments. The Exercise tool allows you to create online self-
assessment exercises composed of a list of questions from different types.

35Integrating an Automatic Judge into an Open Source LMS

The Exams tool is a homemade tool for cs e-Class that was created from
Exercises tool adding free text type questions and enhancing its functional-
ity in order to make it suitable for in-class examinations.

In this respect, the most promising tool was the Assignments tool for the
following reasons: a) the Exams tool is a newly constructed tool and it has
not been fully tested and adopted by instructors; b) the Exercises tool is not
a convenient environment for handling the reports from the judges; c) the
Assignments tool is more flexible since the students can easily work from
distance as well as in class in collaboration with their peers; d) enhancing a
standard tool of the original LMS is an endeavor that can be helpful to the
rest of the Claroline community.

In order to create an assignment, the teacher must access this tool and
enter the parameters needed: assignment’s title and description, starting and
ending submission dates, submission rights, etc. When a new assignment
is published, students are called to upload their work in the assignments
area within the predefined time period. The instructor has to evaluate the
submitted essays by selecting the appropriate grade and typing in his or her
comments. Students have access only to their own submissions and marks,
although they can see who from the rest of the class has already sent a sub-
mission.

Adaptation of Claroline Source Code

For entering automatic judge facilities in the existing Assignments tool,
we designed a new interface similar to the one already existing for assign-
ments design, with extra fields where instructors must declare the assign-
ment’s programming language and enter the test cases containing input data
and the expected output data (see Figure 1).

The corresponding environment where students can view the grading has
been changed too. For each submission, the automatic judge’s report has
replaced the instructor’s mark and feedback. Moreover, instructors can still
upload their own evaluations at the end of the submission period. Also, for
boosting competition learning, we decided that evaluation marks should be
visible to all class members, something that doesn’t happen in the standard
Assignments tool.

36 Georgouli and Guerreiro

Figure 1. The assignments environment for test cases design.

37Integrating an Automatic Judge into an Open Source LMS

In addition, changes in Claroline’s code were made for managing the
programming languages supported by the automatic judge. We created a
simple interface which enables the system administrator to create, to pro-
cess and to delete programming languages. The list of available program-
ming languages is displayed to teachers when creating an Auto Judge As-
signment.

Integration of the Two Systems

For the two systems to be integrated, we had to make changes in Claro-
line’s Assignment tool source code, in order to add a new variation of as-
signments, the auto judge assignment. With this feature, the instructor can
create a programming assignment by inserting the compilation parameters
and the test data that the automatic judge needs in order to work correctly.
In addition, changes in Claroline’s code were made for managing the pro-
gramming languages supported by the automatic judge. We created a simple
interface which enables the system administrator to create, to process and to
delete programming languages. The list of available programming languag-
es is displayed to teachers when creating an Auto Judge Assignment.

The original idea for the integration was to use the PHP command exec14
to call the script we used to run the automatic judge functions. However,
we discovered that this command, as any other file of executable type, was
forbidden by the central server’s administration for security reasons. There-
fore, we decided to use a secondary server in which we had more privileges
and were allowed to use the command exec, and run arbitrary source pro-
grams. In this server we installed the automatic judge’s evaluation engine
as well as the compilers and interpreters of the programming languages used
at our programming courses.

The communication between the two servers is established using the PHP
command curl. This command allowed us to transmit data between the two
servers. For example, for the creation of an auto judge assignment, we use
curl to send to the judge’s server the information about the test cases and the
programming language required for each particular assignment. Also, the
files that students submit are uploaded to the secondary server, where auto
judge is installed, via the command curl. The judge’s server sends back to
the main server information about the evaluation of the submitted source
code. For successful data exchanging the enhancement of curl php code was
needed in several points.

14	 http://gr.php.net/function.exec

38 Georgouli and Guerreiro

Student

Teacher

Assignments
Environment

Claroline’s
Evaluation
Engine

Mooshak’s

Judge
server

Central
server

Curl command

Figure 3. The Integration of Mooshak’s evaluation engine with Claroline
LMS.

In order to establish the communication bridge between the two servers,
we created two PHP files, one in each server. The one in the main server is
responsible for the compilation of data and their transmission to the judge’s
server and it also accepts and handles the information that the judge’s server
sends back. The file on the secondary server is responsible for retrieving the
data that the main server sends, and forwarding them to the automatic judge.

Related Work

A lot of modern online judges and contest systems have been used in
higher education the recent years. SPOJ system (Kosewski et al., 2008) has
been used for conducting algorithmic programming courses at Gdansk Uni-
versity of Technology. Most courses were accompanied by regular lectures,
and some also by classroom exercises like in our case. SPOJ is an in inde-
pendent platform for programming assignments alleviating much work from
the teaching staff and providing a fair and educational programming course
for the students. SPOJ system’s creators plan to extend its functionality
both in the layer of the online judge and web-based E-learning platform.

AHyCo (Adaptive Hymermedia Courseware) learning management sys-
tem (Boticki et al., 2008) supports a data model for knowledge assessment
where new questions for checking the student’s programming abilities are

39Integrating an Automatic Judge into an Open Source LMS

introduced. Questions in this model have corresponding answers in the
form of a source program. Evaluation is done automatically through the
module of automatic evaluation of programming assignments.

The automated programming assignment grader Online Judge has proved
to be a useful tool for three significantly different programming courses at
the National University of Singapore (Cheang et al., 2003).

The EduJudge project15 aims to develop an innovative system based on
ICT that can be incorporated into the learning processes in the mathematical
and programming field and is addressed to higher education students and
and also to secondary education students. The main goal of the EduJudge
project is to give a greater pedagogic character to the UVA Online Judge
(online-judge.uva.es), which is an online programming trainer and to adapt
it to an effective educational environment for higher and secondary educa-
tion (Regueras et al., 2008). For this reason, the project team promises to
integrate the online judge into the open source e-learning platform Moodle
and the QUESTOURnament system which is implemented as a module of
Moodle. They claim that integration of Online Judge into Moodle/QUES-
TOURnament seems to be the solution for some of the required pedagogical
functionalities for the current system. QUESTOURNnament explores the
idea of a variable scoring system, whereby students replying earlier might
get more points than students replying later, and the number of points may
be a function of the number of wrong answers, as this measures the diffi-
culty of the assignment. This is an interesting idea, but not fully applica-
ble to higher education students, who are encouraged to manage their time,
and work mostly outside the classroom. As we write this article we are not
aware of any results concerning the integration of UVA Online Judge into
Moodle and the QUESTOURnament system.

According to our research, the automatic marker presented by (Suleman,
2008) is the only system that accomplishes the integration of an automatic
judge with a modern learning management system. Suleiman (2008) reports
on the integration of their experimental automation system for assessing
programming assignments with the open source Sakai16 learning manage-
ment system. The main difference between this approach and ours is that
we have not developed a home-made application for automatic marking. In-
stead, we relied on the evaluation engine of an already existing open-source
automatic judge. Additionally, we tried to use the existing tools on the LMS
for registration of users, for submission of files and assignments, and for
supporting different kind of communication. This was necessary in order
to handle assignments smoothly, and in order to be able to show marks and

15	 http://www.edujudge.eu/project_des.html
16	 http://www.sakaiproject.org/

40 Georgouli and Guerreiro

statistics in an integrated way. Furthermore it enhanced the global security
of the system.

Conclusions

The successful integration of the evaluation engine of the automatic
judge Mooshak into the learning management system Claroline allows us
to seamlessly insert competitive and cooperation aspects into our pedagogi-
cal approach in teaching introductory programming. The integration signifi-
cantly increases the effectiveness of our approach, in relation to the previ-
ous state of affairs, in which both students and instructors had to constantly
move back and forth between the automatic judge and the LMS.

Both Mooshak and Claroline are open source systems, but they have
completely different origins and were developed using different technolo-
gies. Thus, having them work together required careful consideration of the
goals of the project, namely figuring out which subsystem should handle
which part of the new functionality. Also, as the LMS is being used across
the institutions, changes in its source code had to be guaranteed neither to
disrupt the normal operations nor to cause any security risks.

We believe we were able to solve all the technical problems that arose in
this project, and that in the end we built an integrated environment where
students registered in our programming courses can use the LMS to sub-
mit their source code assignments, receiving immediate feedback from the
automatic evaluation engine of Mooshak. The evaluation marks and other
relevant information are transmitted to other educational tools in the LMS,
like the Statistics tool, for creating various reports, and the Marks tool, a
home-made tool for bringing together the marks obtained from different as-
signments.

The enhanced Assignments tool of Claroline has been thoroughly tested
in Artificial Intelligent Course during the last semester to support introduc-
tory instruction on Common Lisp programming language. This has helped
us detect some minor defects in assignments’ design environment, and also
a few bugs, that have been promptly corrected.

The technical issues that were raised by this project and the solutions that
we describe may be useful to other researchers carrying out similar combi-
nations of existing LMSs with automatic judges. Our next challenge is to
integrate Mooshak within Moodle, another popular LMS. A further issue
that we want to explore is how to restore the spirit of competitive program-
ming that is somewhat downgraded when the evaluation engine is hidden
inside the LMS.

A complementary task is to carry out a formal survey to study the imme-
diate impact on our pedagogy that the successful combination of Mooshak

41Integrating an Automatic Judge into an Open Source LMS

with Claroline has caused. Unfortunately, most of our colleagues, working
with programming languages in introductory level, were not so willing to
try to enhance their traditional instructional methods adopting the new e-
learning tool, a phenomenon common in the majority of similar situations.
Moreover, those who were familiar with e-learning tools, mostly young as-
sistants, were enthusiastic with the idea of using this new type of assign-
ments and promised to support our formal survey efforts.

Finally, we are considering other models of program submission that
more closely resemble the “real world”: instead of requiring a single, mono-
lithic, input-output application, as is the common case now, we would ask
for a collection of “services”. In this way, students would have to con-
sider explicitly the sub-problems, writing functions for each of those sub-
problems, which could be evaluated autonomously by the automatic judge.
Therefore, tutors could at least suspect that the programs were structured
in a plausible way, without having to inspect the code by hand. Further-
more, using this model, tutors could set up a number of milestones within
the assignment, translated to submission intervals in the judge, perhaps with
bonuses for early completion and penalties for delays. This would yield a
form of variable scoring, adjusting the competitive nature of the program-
ming assignment to more general software engineering concerns.

References
Anderson, R.J. (2006). On Cooperative and Competitive Learning in The Management

Classroom, Mountain Plains Journal of Business and Economics, Pedagogy, 7.
Bonk, C. J., Wisher, R. A. & Lee, J. Y. (2003). Moderating learner-centered e-learning:

Problems and solutions, benefits and implications. In T.S. Roberts (Ed.) Online col-
laborative learning: Theory and practice, Hershey, Pennsylvania: Idea Group Pub-
lishing, 54-85.

Boticki, I,. Budiscak, I, & Hoic-Bozic, N, (2008). Module for online assessment in AHyCo
learning management system, Novi Sad Journal of Mathematics, 38 (2), 115-131.

Cheang, B., Kurnia, A., Lim, A., & Oin, W.-C (2003). On automated grading of program-
ming assignments in an academic institution. Computers and Education, 41, 121-
131.

Douce, C., Livingstone, D., & Orwell, J. (2005). Automatic test-based assessment of pro-
gramming: A review. ACM Journal of Educational. Resources in Computing, 5(3)
(Sep. 2005).

Economides, A., & Roupas, C. (2007). Evaluation of computer adaptive testing systems.
International Journal of Web, Web-Based Learning and Teaching Technologies, 2
(1), 70-87.

English, J., & Siviter, P. (2000). Experience with an automatically assessed course. In
Proceedings of the 5th Annual SIGCSE/SIGCUE ITiCSE Conference on Innovation
and Technology in Computer Science Education, 168-171.

Georgouli, K., Skalkidis, I., & Guerreiro, P. (2008). A framework for introducing e-learning
in a traditional course. In: International Journal of Educational Technology & Soci-
ety, 11 (2), 227-240.

Georgouli and Guerreiro42

Guerreiro, P., & Georgouli, K. (2008). Teaching Programming with a Competitive Attitude
to Foster Group Spirit. The Web Information Systems and Technologies (WEBIST)
2008 International conference, Madeira, Portugal, May, 414-421.

Johnson, D. W., & Johnson, R.T. (1998). Learning together and alone:cooperative, com-
petitive, and individualistic learning (fifth edition ed.). Needham Heights, MA: Allyn
& Bacon.

Kolb, D.A., & Kolb, A.Y. (2005b). Learning styles and learning spaces: Enhancing experi-
mental learning in higher education. Academy of Management Learning & Educa-
tion, 4(2), 193-212.

Kosowski, A., Malafiejski, M., & Noinski, T.(2008). In . Leung et al. (Eds.): ICWL 2007,
LNCS 4823, 343–354.

Leal, J. P., Silva, F. (2003). ��Mooshak: a Web-based multi-site programming contest sys-
tem, Software Practice & Experience, 33(6), 567-581.

Regueras, L.M., V erdú, E., de Castro, J.P., Pérez, M.A., & Verdú, M.J. (2008). Design
of a Distributed and Asynchronous System for Remote Evaluation of Students’ Sub-
missions in Competitive E-learning. Presented at the International Conference on
Engineering Education “New Challanges in Engineering Education and Research in
the 21st Century”, Hungury.

Ribeiro, P.,& Guerreiro, P. (2008). Early Introduction of Competitive Programming, Olym-
piads in Informatics, 2, 149-162.

Suleman, H. (2008). Automatic marking with Sakai. In Proceedings of the 2008 Annual
Research Conference of the South African institute of Computer Scientists and in-
formation Technologists on IT Research in Developing Countries: Riding the Wave
of Technology (Wilderness, South Africa, October 06 - 08, 2008). SAICSIT ‘08, vol.
338. ACM, New York, NY, pp 229-236.

Valenti, S, Neri, F., & Cucchiarelli, C. (2003). An Overview of Current Research on Auto-
mated Essay Grading, Journal of Information Technology Education, vol. 2.

