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ABSTRACT

Motivation: One of the major factors that complicate the task of

microarray image analysis is that microarray images are distorted by

various types of noise. In this study a robust framework is proposed,

designed to take into account the effect of noise in microarray

images in order to assist the demanding task of microarray image

analysis. The proposed framework, incorporates in the microarray

image processing pipeline a novel combination of spot adjustable

image analysis and processing techniques and consists of the

following stages: (1) gridding for facilitating spot identification,

(2) clustering (unsupervised discrimination between spot and back-

ground pixels) applied to spot image for automatic local noise

assessment, (3) modeling of local image restoration process for

spot image conditioning (adjustable wiener restoration using an

empirically determined degradation function), (4) automatic spot

segmentation employing seeded-region-growing, (5) intensity

extraction and (6) assessment of the reproducibility (real data) and

the validity (simulated data) of the extracted gene expression levels.

Results: Both simulated and real microarray images were employed

in order to assess the performance of the proposed framework

against well-established methods implemented in publicly available

software packages (Scanalyze and SPOT). Regarding simulated

images, the novel combination of techniques, introduced in the

proposed framework, rendered the detection of spot areas and the

extraction of spot intensities more accurate. Furthermore, on real

images the proposed framework proved of better stability across

replicates. Results indicate that the proposed framework improves

spots’ segmentation and, consequently, quantification of gene

expression levels.

Availability: All algorithms were implemented in MatlabTM

(The Mathworks, Inc., Natick, MA, USA) environment. The codes

that implement microarray gridding, adaptive spot restoration

and segmentation/intensity extraction are available upon

request. Supplementary results and the simulated microarray

images used in this study are available for download from:

ftp://users:bioinformatics@mipa.med.upatras.gr

Contact: daskalakis@med.upatras.gr

Supplementary information: Supplementary data are available at

Bioinformatics online.

1 INTRODUCTION

Microarray technology provides a powerful approach for

genomics research, since it assays large-scale gene sequences

and assists gene expression analysis (Alizadeh et al., 1998). This

unique technology allows for molecular biologists and bioin-

formaticians to identify simultaneously thousands of genes

and predict their functionality within a larger system, such as

the human organism (Schena et al., 1995).
In a typical microarray experiment, gene expression patterns

between two samples (i.e. treatment and control samples)

are compared. Initially, the samples are printed on a glass

microscope slide by a robotic arrayer, thus, forming circular

spots of known diameter (Schena, 2000). From each sample,

the RNA (Ribonucleic acid) is extracted and is labeled with

a fluorescent dye [Cy-3(green) for the control and Cy-5 (red)

for the treatment sample]. Following labeling, RNA samples

are mixed, are competitively hybridized at each spot of the

microarray slide, and the slide is scanned, using suitable

wavelengths to capture red and green dyes, resulting in two

images, one for each dye (Jain, 2004). The relative fluorescence

intensity between the two dyes (red/green) in each spot

represents the expression level of the corresponding gene.
In order to extract those relative intensities from micro-

array images (Schena, 2002; Wang and Ghosh, 2001), a series

of image analysis techniques have been proposed namely

griding (Li et al., 2005; Rueda and Vidyadharan, 2006),

spot segmentation (Angulo and Serra, 2003; Barra, 2006;

Demirkaya et al., 2005; Nagarajan, 2003; Rahnenfuhrer, 2005;

Stanley et al., 2002), and intensity extraction (Yang et al.,

2002). Extracted mean intensities correspond to gene expression

levels that are translated into biological conclusions by

molecular biologists using data mining techniques (Eisen

et al., 1998) for clustering genes with similar expression

levels, for identifying differentially expressed genes, etc.

(Chen and Liu, 2005).*To whom correspondence should be addressed.
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One of the major factors that complicate the task of image
analysis and data mining is that microarray images are con-
taminated by various types of noise (biological and experi-

mental). Improper treatment of noise may result in erroneous
biological conclusions (Nykter et al., 2006). Biological noise
is intrinsic, it includes the stochastic internal noise of the cell

and error sources related to sample preparation (Blake et al.,
2003), and it induces image blurring (Nykter et al., 2006).
Experimental noise can be subdivided into source noise and

detector noise. Source noise is generated during the fabrication
and target labeling, whereas detector noise is generated during
the amplification and digitization stages. These types of noise

produce microarray images, which are corrupted by irregula-
rities in the shape, size and position of the spots, and are
dominated by spatially inhomogeneous noise (Balagurunathan

et al., 2004).
One of the most undesirable effects of noise is that it causes

inaccurate spots’ segmentation (i.e. the boundaries of spots
are erroneously estimated). The latter, as a direct effect, evokes

wrong estimation of the relative mean spots’ intensities and
reduces the reproducibility and validity of the gene expression
levels, derived from microarray images. Noise complicates all

microarray image processing tasks (gridding, segmentation,
intensity extraction), but mostly segmentation. For noiseless
images, spot segmentation would have been a trivial task even

by using simple segmentation methods, but this is not the
case. It has been shown that different segmentation methods,
while accurate in simulated microarray images, lead to a

different number of differentially expressed genes when applied
to identical real microarray images (Ahmed et al., 2004). The
question then arises: which segmentation method is the most

accurate and why different methods lead to different differen-
tially expressed genes? The answer is not straightforward.
The segmentation method, as an individual process, may give

accurate spot boundary detection (this can only be objectively
assessed using simulated data) but its combination with
preceding gridding and subsequent data analysis does not

necessarily guarantee that the end result—the gene expression
quantification—will be more accurate. It turns out that
different differentially expressed genes are obtained even by

changing the gridding or the data analysis technique. Thus, it is
not only important to assess the performance of each analysis
stage independently, as it has been done in most previous

studies (Yang et al., 2002) (i.e. whether gridding or spot
boundary detection is accurate or not) but also the performance
of all processing steps as a whole in terms of reproducibility and

validity in computing gene expression levels.
From the above, it is evident that noise reduction is an

essential process, which has to be incorporated into the

microarray image analysis pipeline. One possible solution
proposed in previous studies (Lukac and Smolka, 2003;
Lukac et al., 2005; Mastriani and Giraldez, 2006; Wang

et al., 2003) for addressing microarray image noise is image
enhancement. Results of these studies have indicated a superior
quality of the enhanced images, without however examining

whether enhancement leads to more accurate spot segmentation
or reduces the variability of the extracted gene expression levels.
What is missing here is a complete framework of microarray

image processing steps that will properly model and address

the effects of noise in such a way that it will not only increase
the accuracy of spot segmentation but also the reproducibility

and validity of gene expression levels.
This article presents a robust framework for microarray

image analysis, which is designed to take into account the effect

of local spot-image noise in microarray images for improving

spot segmentation and subsequently gene quantification.

The proposed framework incorporates in the microarray
image analysis pipeline a novel combination of image proces-

sing and analysis techniques originating from the comprehen-

sive quantitative investigation of the impact of noise on spot

segmentation and intensity extraction. In details, the proposed
framework consists of the following stages: (1) gridding for

facilitating spot identification, (2) clustering (unsupervised

discrimination between spot and background pixels) applied

to spot image for automatic local noise assessment, (3)
modeling of local image restoration process for spot image

conditioning (adjustable wiener restoration using an empirically

determined degradation function), (4) automatic spot segmen-

tation employing seeded-region-growing, (5) intensity extrac-

tion and (6) assessment of the reproducibility (real data) and
the validity (simulated data) of the extracted gene expression

levels.
The proposed method was comparatively evaluated

against well-established publicly available software packages,

Scanalyze (fixed circle) and SPOT (seeded region growing)

(Eisen, 1999; Yang et al., 2002) and a recent study (Baek et al.,

2007). Comparisons with available software were performed
on both simulated and real microarray images in terms of valid

and reproducible extraction of gene expression levels, which

is the case of concern in microarray image processing task.

2 METHOD

Gene quantification is affected by various image degradation

processes that reduce microarray image quality, resulting

in erroneous delineation of the spots’ boundaries. The image

degradation process (Gonzalez and Woods, 1992) may be
formulated in the spatial domain as shown in Equation (1):

gðx,yÞ ¼ fðx,yÞ � hðx,yÞ þ nðx,yÞ ð1Þ

where, g(x, y) is the degraded microarray image, f (x, y) is the

original image, h(x, y) is the degradation process, n(x, y) is

image noise, considered additive and the symbol ‘*’ indicates
convolution.

In the case of microarray images, the degradation process
h(x, y) may be considered approximately constant across the

image and it reflects the end result of the degradations, caused

by the cell-population effect hCFP(x, y) (Lähdesmäki et al.,

2003) and the image acquisition apparatus hApparatus(x, y), as

shown in (2):

hðx,yÞ ¼ hCPFðx,yÞ � hApparatusðx,yÞ ð2Þ

Regarding the noise term of equation (1), it includes both

biological errors and measurements errors, which can be

presented in the compact form of Equation (3) (Nykter et al.,

2006):

nðx,yÞ ¼ mðx,yÞ þ lðx,yÞ ð3Þ
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where m(x, y) is a non-linear function depending on the

gene expression level of each spot of the microarray image and

l(x, y) is a signal independent error term. Thus, n(x, y) may be

considered to depend on the local properties of the microarray

image and, in particular, of the spot-image. As a consequence, a

solution to Equation (1) with respect to f(x, y) should be given

locally by processing each individual spot-image independently,

i.e. in a spot-image adjustable manner. Such a measure would

produce a restored version of each spot-image that would

facilitate accurate spot boundary determination and, thus,

improved gene quantification.
Accordingly, a microarray griding procedure to identify and

isolate individual spot-images must be initially applied on the

microarray images. Such a procedure would produce a series of

rectangular spot-images, each one consisting of a spot-region

and a background-region (see Section 2.1).

Although, exact estimation of noise at each spot-image point

may not be possible, estimation of the general noise statistics

may be obtained from the spot-image’s background-region, by

means of the region’s variance �2. Thus, the Fuzzy C-Means

(Bezdek, 1981) unsupervised classification (clustering) method

was employed to roughly separate the two regions (see Section

2.2). The background-region was used to assess noise (�2)
while the spot-region provided an initial estimation of the

spot’s position and centroid for use as starting point by the

seeded region growing (SRG) segmentation algorithm (see

Section 2.4).

Assessment of spot-image noise may now provide an

approximate estimate f̂ ðx; yÞ of spot-image f(x, y) in Equation

(1) (now considered to represent the degradation model of each

spot-image) by Wiener restoration (Gonzalez and Woods,

1992) (see Section 2.3).

Restored spot-images f̂ ðx; yÞ were finally segmented using the

SRG algorithm (Hojjatoleslami and Kittler, 1998) (see Section

2.4).
The spot-region’s boundary, thus determined, was referred to

the corresponding spot-image in the original microarray image

and the spot-region’s intensity was evaluated as the mean value

of all pixels contained within the boundary. This was necessary,

since intensities in the processed spot-images were altered by

the restoration process.

2.1 Microarray image gridding

Since typical microarray images contain thousands of spots, the

gridding method must be characterized by accuracy, automa-

tion and simplicity (Blekas et al., 2005). In a recent study

(Rueda and Vidyadharan, 2006), a highly accurate and simple

gridding procedure has been proposed, which takes no

assumptions of microarray slide details (i.e. number of spots,

spots’ size, etc.) and requires only the boundaries of each sub-

grid to be specified. A similar gridding procedure was employed

by the proposed method for locating spot-images. Ideally, spots

are located at certain positions on the rectangular grid.

By summing up the intensities across the pixels in each row

and each column of the grid (line profiles), each spot center was

represented by a peak-valley pattern, where peaks corre-

sponded to spot centers and valleys to spot sites edges.

Smoothing the line profiles by the Lowess filter (Cleveland,

1979), it ensured minimization of irregularities, introduced by

the printing procedure, and, therefore, success of the gridding

procedure. The bandwidth used for the smoothing process

approximately equals the width of a typical spot. Spot sites,

in terms of width and height, were finally estimated from

the peak-valley distance in each line profile. Mathematical

formulation of the aforementioned procedure is provided in

Section S1.A of the Supplementary Material.

2.2 Clustering for local noise and spot position

estimation

The Fuzzy C-Means unsupervised classification (clustering)

algorithm searches iteratively for cluster centers (centroids) that

minimize the dissimilarity function (Bezdek, 1981):

J ¼
XM
i¼1

Ji ¼
XM
i¼1

XN
j¼1

ui,j
mdi,j

2ðxj,ciÞ ð4Þ

where: xj,j¼ 1, 2, . . . ,N, are the pixels of the spot-image, ci,

i¼ 1,2, . . . ,M, are the cluster centers, di,j is the Euclidean

distance between centroid ci and data point xj, and uij is the

element of a fuzzy membership function matrix U¼ [uij] with

values 0� uij� 1 and m is a weighting exponent (m¼ 2). The

output of the iterative procedure is two clusters containing

the pixels belonging to spot-region and background-region

(see Section S1.B of the Supplementary Material).

2.3 Spot image restoration

Considering the discrete fourier transform (DFT), of Equation

(1) we obtain Equation (5):

Gðu; vÞ ¼ Fðu; vÞ �Hðu; vÞ þNðu; vÞ ð5Þ

where G(u, v), F(u, v), H(u, v), and N(u, v) are the DFTs of

g(x, y), f(x, y), h(x, y), and n(x, y) respectively and u, v are

spatial frequencies.
An estimation F̂ðx; yÞ of the original image F(u, v) may be

provided by the Wiener restoration algorithm (Gonzalez and

Woods, 1992):

F̂ðu,vÞ ¼
Hðu,vÞ
�� ��2
Hðu,vÞ
�� ��2þK

" #
Gðu,vÞ

Hðu,vÞ
ð6Þ

where K is a constant that can be approximated by K¼ 2� �2

(Gonzalez and Woods, 1992) where �2 is the spot’s back-

ground-region variance.
Regarding the degradation function, the authors of a

previous study (Nykter et al., 2006) have proposed a 9-point

kernel {10E� 8, 10E� 4, 0.152, 0.312, 0.362, 0.162, 0.12,

10E� 4, 10E� 8} in the spatial domain. We found that

the spectral response of that kernel could be adequately

represented (0.0025 in terms of root mean square error)

by the spectral response of a low-pass Butterworth filter,

shown in (7):

FhLPðvÞ ¼
1

1þ 0:414 v=fcoð Þ
2n

ð7Þ
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where n is the degree of the filter, v is the spatial frequency,

fco the cut-off frequency.
Subsequently, the 2D H(u, v) was modeled as in (8)

(Gonzalez and Woods, 1992):

Hðu,vÞ ¼ Fh
LP

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2 þ v2

p
Þ ð8Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

u2 þ v2
p

<¼ N ð9Þ

where, N is the maximum dimension of the spot-image (which

was zero-padded in the case of non-square spot-image).
The restored spot-image was transferred into the spatial

domain by the 2D Inverse DFT (2d-IDFT) of (5) as:

f̂ðx,yÞ ¼ 2d� IDFTðF̂ðu,vÞÞ ð10Þ

2.4 Spot image segmentation and intensity extraction

Restored spot-images were segmented using the SRG algorithm

(Hojjatoleslami and Kittler, 1998). SRG initially segmented

each spot-image into spot-regions of pixels starting from the

spot’s center, as determined by the Fuzzy C-Means rough

segmentation. Pixel regions were iteratively augmented by

assigning neighboring pixels that satisfied a homogeneity

criterion: the neighboring pixels should be (1) of higher

intensity than local noise, as it was calculated during the

rough Fuzzy C-Means segmentation stage and (2) of intensity

close to the mean intensity of the so far seeded region. This

iterative procedure of growing pixel regions within each spot-

image continued until all pixels of the spot-image were assigned

to either the spot-region or its background. Mathematical

description is provided in Section S1.C of the Supplementary

Material.

3 PERFORMANCE EVALUATION

Since performance evaluation of microarray segmentation

is not a straightforward task to consider (Lehmussola et al.,

2006), we used as test images a set of customized synthetic

microarray images (with no artifacts), produced by a micro-

array simulator (Martin and Horton, 2004). In each synthetic/

simulated image, pixels were pre-assigned as spot or

background.

3.1 Simulated experiments

Initially, a pair of microarray grayscale TIFF images,

representing the red and green channels of a two-color

experiment, containing 200 different spots was produced by

the microarray image simulator. In this pair of images, spots’

background was initial set to be zero. Therefore, spots’

boundaries were known a priori. Based on this gold standard

pair of images (reference images), a series of customized test

images were further produced. Initially, blurring introduced

from biological noise was modeled by convolving the image in

the frequency domain with a first order low-pass Butterworth

filter using cut off frequencies in the range of 0.1�N to 0.9�N

(nine pairs of images) where N is the dimension of the image

(non-square images were zero-padded). Furthermore, on the

blurred images, experimental noise, modeled as additive, signal

dependent, random noise for four different noise percentage

levels (10, 30, 50 and 70%), was introduced (36 pairs of

images). Resulting images (overall 45 different images of 200

spots each) contained spots of various shapes and sizes, aiming

at complicating the spots’ segmentation and consequently the

intensities extraction procedure. Data are available for down-

loading from: ftp://users:bioinformatics@mipa.med.upatras.gr.

For assessing the pixel-based segmentation accuracy of the

proposed method, we selected two traditional measures namely

the discrepancy which was based on the number of mis-

segmented pixels and the discrepancy which was based on the

position of mis-segmented pixels (Zhang, 1996). These methods

provided information not only for the number of erroneously

segmented pixels but also for their spatial location in order to

ensure that different segmented images provided the same

discrepancy measure values.

The discrepancy that was based on the number of mis-

segmented pixels was assessed using the probability of error

(PE), defined as (Lee et al., 1990):

PE ¼ PðOÞ � PðBjOÞ þ PðBÞ � PðOjBÞ ð11Þ

where P(B|O) is the probability of error in classifying objects as

background, P(O|B) is the probability of error in classifying

background as objects, P(O) and P(B) are a priori probabilities

of objects and background in images. For our case spot is

considered to be the object that must be discriminated from

the background.
The discrepancy that was based on the position of mis-

segmented pixels was defined as (Yasnoff et al., 1977):

D ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
i¼1 d

2ðiÞ

q
A

ð12Þ

where N is the number of mis-segmented pixels, d(i) the

Euclidean distance between the ith mis-segmented pixel and the

nearest pixel of its true class and A is the number of pixels in

the image.
Although, pixel-based segmentation performance is the best

way to objectively characterize segmentation schemes, publicly

available software packages that were used in this study do

not provide such information, i.e. boundaries of spots’ and

background regions. So, in order to present comparable results

and ensure their validity we had to further calculate the

pairwise differences between the extracted spots’ intensities

(for each one of the 45 evaluated images) and the original

synthetic image spots’ intensities using the mean absolute error

(MAE) (Lehmussola et al., 2006).

3.2 Real experiments

Microarrays used in this study comprised a publicly available

dataset of seven images obtained from the database of the

MicroArray Genome Imaging & Clustering Tool (MAGIC)

website (Heyer). Each image contained 6400 spots investigating

the diauxic shift of Saccharomyces cerevisiae. Images included

spots of various shapes as well as artifacts (scratches and dust).

The particular dataset was selected because the authors

(DeRisi et al., 1997) used a common reference messenger
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RNA pool (green, Cy-3) to control for biological variability
(Churchill, 2002).

Thus, exploiting the benefits of the replicated common
reference channel (Cy-3), we quantitatively assessed the

performance of the proposed method in terms of extracted
genes expression reproducibility using the coefficient of

variation metric (CV) [Equation (13)], since each spot in the

common reference channel should have the same intensity
throughout the replicated experiments.

CV ¼
�

�
ð13Þ

where � is the SD and � is the mean value for each spot
evaluated for all the replications (seven replications totally). CV

allows for the comparison of variability estimates regardless of

the magnitude of the measurement (Reed et al., 2002).
Additionally, in order to quantify the efficiency and robustness

of the proposed method, we calculated the pairwise MAE

between the replicates (altogether 21 pairwise MAE values) for
the common reference channel.

Extracted intensities, for the same series of microarray
images, were comparatively evaluated against the intensities

obtained from both commercial software used in the current

study (Scanalyze and SPOT) and the recent study of Baek et al.
(Baek et al., 2007). All extracted intensities were normalized

using global normalization (Schuchhardt et al., 2000).

4 RESULTS

The degradation function H(u, v) in Equation (6) was optimally

designed with respect to simulated data segmentation accuracy,

by a first degree (n¼ 1) low-pass Butterworth filter using
fco¼ 0.6�N, with N being the spot-image dimension, and it

was modeled according to Equations (7–9). The other para-

meter in equation (6) that needed to be specified was K¼ 2� �2,
an estimate of the spot-image’s background noise. That was

computed as the SD of the spot-image’s background region.

The latter was automatically determined by the Fuzzy C-Means
clustering algorithm.

Regarding the segmentation accuracy of the proposed
method, the mean value of the probability of error segmenta-

tion metric (concerning the 200 segmented spots), for the 45

evaluated images, ranged between 0.055–0.130 and 0.037–0.097
with mean value 0.084 and 0.067 for the red and green channels,

respectively. Additionally, to depict the improvement on the

segmentation procedure stage due to the intermediate step
of image restoration, we compared the results of the proposed

method with an implementation of the same procedure

but without the step of image restoration. Results for the
segmentation metric of the discrepancy, based on misclassified

pixels positions, were 0.022–0.027 and 0.024–0.029 with mean

value 0.022 and 0.024 with and without the restoration step,
respectively.
Following the segmentation procedure, the extracted inten-

sities were compared with the results obtained from both

commercial software used in this study by measuring the
pairwise MAE as explained in Section 3.1. Boxplots of Figure 1

illustrate the MAE values for the series of the customized

simulated images.

Table 1 provides the mean values of the MAE boxplots

(Fig. 1), in terms of intensity, for the evaluated 45 images and

for both channels.
Regarding real microarray images, H(u, v) was empirically

determined with respect to the minimization of CV. H(u, v)
parameters for optimal performance were (n¼ 1, fco ¼ 0.6�N).

Figure 2 illustrates the actual distribution of CV values of

the extracted gene expression levels from the set of seven
1024� 1024 16bit replicated images (Cy-3), as they were

calculated by the proposed method, the Scanalyze, the SPOT

and the Baek’s method, respectively. Accordingly, the calcu-
lated CV values were 0.211 for the proposed method, 0.228

for the SPOT 0.288 for the Scanalyze software and 0.299 for

Baek’s et. al.’s procedure.
Figure 3 shows the calculated pairwise MAE between the

expression ratios of all possible pairs of the common reference

channel for the dataset of the seven replicated real images.
Table 2 provides the mean values of the pairwise MAE

(Fig. 3) as they calculated for the seven replicates of the

common reference channel.

5 DISCUSSION

Microarray technology has transformed the field of genomic
research by allowing the simultaneous profiling of thousands of

genes. The microarray process is based entirely on the accurate

extraction of quantitative information from images. In the
present study, a robust framework for microarray image

analysis was developed, proposing a novel combination of

Fig. 1. MAE for the simulated data. Obelisks are MAE values

characterized as outliers.

Table 1. Mean values (in terms of intensity) of the MAE boxplots

of Figure 1

Proposed method Scanalyze SPOT

Red channel 1110.8 1779.1 3908.1

Green channel 1169.9 1877.5 5370.2
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image processing and analysis techniques. The proposed

framework was derived following the quantitative investigation

of the impact of noise on spot segmentation and intensity

extraction and consists of the following stages: (1) grid creation

for facilitating spot identification (gridding), (2) noise para-

meters assessment for noise modeling (noise estimation),

(3) application of image restoration process for noise reduction

(adaptive wiener restoration using an empirically determined

degradation function), (4) segmentation for spots identification

on the restored images and (5) intensity extraction.

The proposed method was comparatively evaluated against

the well-established methods of Scanalyze (fixed circle) and

SPOT (seeded region growing) (Eisen, 1999; Yang et al., 2002),

employing both simulated and real microarray images, and

against a recent study (Baek et al., 2007).
Regarding pixel-based segmentation accuracy on the simu-

lated images, the proposed methodology achieved high

segmentation results. Even though the image quality of the

evaluated images varied significantly, the accuracy of the

proposed methodology, in terms of mean probability error for

the 200 spots, remained high. The success is mostly due to the

intermediate step of adaptive spot restoration. According to

the results provided by the metric of the mean discrepancy error

based on misclassified pixels position, the intermediate step

of adaptive image restoration facilitated the segmentation

procedure, since segmentation accuracy without this inter-

mediate step was lower. Thus, the initial Fuzzy C-Means

segmentation procedure is of major importance, since it

provides the necessary information to estimate the noise

parameter which, in turn, is used to restore spot-images.
To obtain comparable results with existing software and

considering that available software does not provide informa-

tion about pixel-based segmentation performance, we calcu-

lated the pairwise MAE for the extracted intensities by the

proposed method, the SPOT and the Scanalyze software.

Figure 1 shows the MAE boxplots as calculated for 200 spots in

45 customized test microarray images and Table 1 illustrates

the mean values of those boxplots. The goal was to minimize

MAE, since such a result proves the validity of the extracted

intensities. As the results clearly support, the proposed frame-

work outperformed commercial software providing intensities

closer to those of the simulated images.

Regarding real images we had to assess the performance of

the proposed method against the SPOT and Scanalyze software

in terms of providing reproducible gene expression levels, since

the actual spot boundaries (and subsequent spot intensity

levels) on the real images were not available. For this reason,

we selected to evaluate a dataset (DeRisi et al., 1997), which

was designed to control the biological variability and reduce

the experimental variation in a microarray experiment.

Accordingly, for the common reference channel (Cy-3, Green

channel), an adequate degree of replication was provided to

quantitatively assess the reproducibility of the extracted

intensities. Due to the replication, each spot should have the

same intensity throughout the replicated experiments, and

therefore the coefficient of variation between replicated

experiments should be minimal (as close as possible to zero).

Figure 2 shows the PDF of the coefficient of variation for the

Fig. 2. Probability density functions (PDF’s) of the coefficient of

variation for all the spots as calculated from the seven replications of

the common reference channel. Black line corresponds to the results

obtained using the proposed method. Blue, red and green line

correspond to the Scanalyze, SPOT and Baek’s approach, respectively.

Fig. 3. Boxplots illustrating the pairwise MAE between all replicates

(totally 21 MAE values from which the mean value for each spot is

illustrated here). Obelisks are MAE values characterized as outliers.

Table 2. Mean values of the calculated 21 pairwise MAE for the

common reference channel

Proposed

method

Scanalyze SPOT Baek et al.

Common reference

channel (Green)

0.254 0.362 0.262 0.323
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common reference channel for all the images in the dataset
using the proposed method (black line), the SRG method
implemented in SPOT (red line), the fixed circle method used in

Scanalyze (blue line) and gamma-t mixture model (green line)
employed in Baek et al. (Baek et al., 2007). The proposed
method’s PDF is narrow and sharp with a peak-value close

to zero in contrast to Scanalyze’s PDF and Baek’s method,
which is more spread and far from zero. Regarding SPOT’s
PDF curve, while narrow and sharp is further away from zero

as compared with the proposed method’s curve. This may be
seen by comparing the corresponding CV values, 0.211, 0.228,
0.288, 0.299, for the proposed method, SPOT, Scanalyze

and Baek’s method, respectively. Since the plots of Figure 2
represent PDF’s, a highly peaked and narrow curve close
to zero represents a microarray image processing methodology,

which results in more reproducible extracted intensities and,
thus, in more repeatable computation of gene’s expression
levels.

Exploiting the benefits of the provided replication in
real images, we explored the validity of the extracted gene
expression levels by measuring the ‘sameness’ of replicates

using their pairwise MAE (totally 21 pairwise MAE values).
Figure 3 illustrates the boxplots of MAE as they were
calculated for the common reference channel of the seven

replicated microarray images and Table 2 depicts the mean
values of those boxplots. Lower MAE are indicative of higher
segmentation performance and, thus, of more accurate (valid)

extraction of gene expression levels. Again, as shown in
Table 2, the proposed method achieved better results than the

publicly available software and Baek’s method. This may
be due to the employment by our method of the automatic
local restoration step, which incorporated in the procedure

valuable structural information from the spot’s background,
as estimated by the Fuzzy C-Means clustering.
Regarding processing time, the proposed method took

�300 s to extract the intensities from a 1024� 1024, 16bit
cDNA image, containing 6400 microarray spots. This may
seem computationally intensive and time consuming as

compared to commercial software used in the present study,
since the code has not been optimized for speed, as yet. On the
contrary, the proposed method proved to be more robust

and efficient, since it provided more accurate and reproducible
results, which is the case of concern in microarray image
processing tasks.

6 CONCLUSION

The findings of the present study revealed that by applying
local spot-image restoration and by incorporating structural

information from the spot-image, spot-image segmentation
and, consequently, quantification of gene expression is
improved. This is a step that publicly available and commercial

software should take into account.
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