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Abstract. In this paper we present an efficient general simulation strategy for
computations designed for fully operatioredP machines oh ideal processors,

on n-processor dynamic-fault-promspP machines. The fault occurrences are fail-
stop and fully dynamic, i.e., they are allowed to happen on-line at any point of the
computation, subject to the constraint that the total number of faulty processors
may never exceed a known fraction. The computational paradigm can be exploited
for robust computations over virtual parallel settings with a volatile underlying
infrastructure, such asNETWORK OF WORKSTATIONS(wWhere workstations may be
taken out of the virtual parallel machine by their owner).

Our simulation strategy is Las Vegas (i.e., it may never fail, due to backtrack-
ing operations to robustly stored instances of the computation, in case of locally
unrecoverable situations). It adopts an adaptive balancing scheme of the workload
among the currently live processors of g machine.

Our strategy is efficient in the sense that, compared with an optimal off-line
adversarial computation under the same sequence of fault occurrences, it achieves

* This work was partially supported by the ESPRIT LTR ALCOM-IT (Contract No. 20244) and GEPP-
COM (Contract No. 9072).
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an(’)((log n-loglog n)2) multiplicative factor times the optimal work (namely, this
measure is in the sense of the “competitive ratio” of on-line analysis). In addition,
our scheme is modular, integrated, and considers many implementation points.

We comment that, to our knowledge, no previous work on robust parallel com-
putations has considered fully dynamic faults in H model, or in general dis-
tributed memory systems. Furthermore, this is the first time an efficient Las Vegas
simulation in this area is achieved.

1. Introduction

The issue of fault tolerance in the framework of Parallel and Distributed Computing
tries to capture phenomena where some nodes (or communication links) of a target
decentralized machine corrupt during the execution of a parallel algorithm. The issue
has become very intriguing in recent years, due to the demand for execution of parallel
algorithms over arbitrary sets of machines that work as a whole. In addition, the ne-
cessity of exploiting off-the-shelf computational power has lead to the consideration of
arbitrary environments of Decentralized Computing that may vary with time, according
to the availability of their building blocks. Thus, it would be very interesting to devise
techniques that use an environment which is prone to failures, for the emulation of a sim-
ilar environment which is guaranteed to be fault-free during the execution of a parallel
algorithm. Fault tolerance in the context of Decentralized Computing can be provided
at various levels of such an unstable computing environment:

e At the machine leve] where the underlying environment is actually a fixed net-
work of processing elements that tries to overcome the corruption of a specific
node (or edge). The works of this kind are usually based on two major techniques.
Thefirstis the technique of embedding an ideal parallel machine into a fixed, fault-
tolerant underlying network of processing elements which can be fault-tolerant
with only constant slowdown (e.g., in [29] it is shown thatramode butterfly
or shuffle-exchange network can emulate a fault-free network of the same type
and size, with only constant slowdown). The second technique for providing fault
tolerance at machine level, is the technigue of redundant computations. Albeit it
seems that redundancy in parallel computations is rather a waste of computational
power, this technique is as powerful as randomization in some cases, especially
when we have to deal with static faults (see in Section 1.1 the categorization of
fault occurrences).

e At the cost model level where the abstract machine model that is considered
by the programmer, is itself fault-tolerant. In particular, the cost model tries to
exploit the underlying realistic machine in such a way that the overall execution of
the input algorithm will not be affected by the corruption of arbitrary processing
elements at runtime. The major difference between this and the previous category
of fault tolerance is that, in the latter category, the augmented cost models may

1 In what follows we call the area of Parallel and Distributed Compubegentralized Computing
This terminology is also used in [24]).
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become the middle-tier technologies between the actual (arbitrary) environments
that provide parallel computing capabilities, and the programming environments
that need to consider general-purpose parallel architectures in order to implement
parallel algorithms transferable from parallel machine to parallel machine. Most
works of this kind focus on theram cost model, which used to be the most
popular model of Parallel Computations until the early nineties (e.g., [22], [23],
[26], [25], [7], [8]). Recently some new works on fault-tolerant versions of more
realistic cost models thaRAM (such a®sP) have arisen, which seem to provide
general solutions for fault-tolerant versions of these realistic cost models (this
work, along with [27], is in this flavor).

e At the programming environment level, in which the programming environ-
ment itself takes over the responsibility of providing fault-tolerant primitives to
the designers of parallel algorithms (e.g., synchronization operations, end-to-end
guaranteed communication, robustness of the storage scheme, agreement proto-
cols among the live processors, etc.). Some of these works are [16], [12], [11],
and [15].

1.1. Categorization of Faults

The major distinction of the fault-tolerance problems is based on the kind of fault occur-
rences they consider. In the area of Parallel Computing, the prevailing model of faults is
thefail-stop model, introduced by Kanellakis and Shvartsman [23], according to which
whenever a processor dies it is excluded from the remaining simulation process. In [22]
the processing elements are allowed to restart at arbitrary times (this is the so-called
restartable fail-stop model). Of course, in that case serious problems with the coor-
dination of work might arise, which are usually dealt with by definite synchronization
operations, or timestamping techniques.

Similarly, in the area of Distributed Computing we may have to cope with a large
range of faults, fronerashfaults (which are equivalent to the fail-stop modektoission
faults, or evemmalicious or byzantine faults (where the faulty processors join forces to
affect the rest of the simulation process). In most cases the crash faults case is considered,
while the malicious faults case has to do mainly with issues such as virus attacks in
decentralized computing environments, secure storage, etc.

Additionally the faults may be classified atatic (i.e., known at the beginning of
the simulation process) atynamic (i.e., they may occur at arbitrary points during the
simulation process). Both these cases are quite interesting. More specifically, the static
case reflects the adaptation of a certain cost model or parallel computing environment,
over an unknown (but fixed from that point on) working environment. On the other hand,
the problem of tolerating dynamic processor faults in pragmatic settings, can be seen as
a{Safe Storage & Checkpoint & (dynamic) Scheduling problem. The challenge lies
in proposing an efficient strategy that will achieve an almost work-preserving, robust
execution of the input algorithm and will also assure a balanced split of the workload
among the operational processors. This strategy will also have to exploit a robust storage
scheme that will tolerate arbitrary processor failures and will also provide a (periodic)
checkpoint procedure to commit work of the simulation process at runtime. Typical
examples of this approach are [11] and the present work.
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1.2. Related Work

As already mentioned, the issue of fault-tolerant computations in decentralized comput-
ing environments covers a wide range, frermaMm machines to arbitrary decentralized
computing environments. In the following sections we present a synopsis of the most
important articles in which fault tolerance has been dealt with in the literature of Decen-
tralized Computing.

1.2.1. Fault Tolerance orPRAM Machines There have been many works in the area

of fault tolerance on therAM cost model, especially in early nineties [25], [26], [22],
[23], [9]. In these works the fail-stop model is adopted. The reason was thakrthe
model considers that the input algorithms are executed in a lock-step fashion, and
the processing elements are totally synchronized by a global clock. Thus, there is no
chance of delayed action of a processing element that might completely mislead the
whole computation. On the other hand, the malicious (or byzantine) faults necessitate
the coordination of work among the live processors via the robust implementation of
agreement protocols, which are unnecessary irPtiren case due to the completely
synchronous operation of the processing elements and the (robust) Shared Memory fea-
ture.

In [26] a general strategy for simulating arbitratRCw PRAM Steps over a setting
that allows dynamic processor faults is provided, by solving a core problem for this
cost model, theCertified Write All problem. Note that the existence of simu-
lations of arbitraryPRIORITY CRCW PRAMSteps (which is the strongeskAM variant)
by at mostO(logn) EREW PRAM steps, implies corresponding results for the weak-
est variant of this cost model as well. In [25] the same problem is dealt with over
the restartable fail-stop model, by using a combination of tentative computations (i.e.,
computations that are most likely to be correct) and definite computations (guaran-
teed computations against any sequence of fault occurrences). This approach achieves
constant amortized slowdown perRcw PRAM step for many reasonable fault distri-
butions. This is done by having the processors tentatively simulate the fault-free ex-
ecution of the input algorithm, while a definite auditing procedure monitors the sim-
ulation process at specific points. In [23] and [22] some strategies are provided for
dealing with thewrite All  problem in the fail-stop, nonrestartaptestartable cases,
where the faults may occur dynamically during the execution of an iopatv PRAM
algorithm.

The reader is referred to the monograph of Kanellakis and Shvartsman [4] for an
overview of the most important simulation strategies that deal with the issue of fault
tolerance orPRAM machines and an excellent classification of the instances of fault
tolerance orPRAM machines in the fail-stop model.

1.2.2. Fault Tolerance on Arbitrary Machines In the case of arbitrary computing envi-
ronments, that consist of processing elements communicating via an underlying network
infrastructure, there are several crucial parameters other than the computational power
provided by the machine that affect the performance of fault-tolerant strategies. Such pa-
rameters are for example the latency of the communication infrastructure, the bandwidth
per processor, and the synchronization cost, that are not accounted forrntheost
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model. Thus, proprietary solutions for providing fault tolerance in such settings should
be provided, or more appropriate cost models should be chosen, that are closer to the
actual overhead of a simulation strategy.

In [12] the case of dynamic processor faults is considered over an arbitrary message-
passing underlying computing environment of synchronous machines. In this setting, an
optimal strategy is provided for executing a set of independent tasks. In this work it
is stated that the core of any simulation strategy over a synchronous message-passing
environment is a BECKPOINT routine of the remaining live processors, along with a
BALANCED ALLOCATION strategy. In [16] another primitive operation of distributed com-
puting is considered, namely, therBANTINE AGREEMENT. In this work a BrZANTINE
AGREEMENT protocol is provided that is robust against crash failures and has optimal
message complexity. Then itis used as a primitive operation for the provision of a family
of early stopping agreement with improved message complexity and a new solution to
the GHECKPOINTING procedure that was provided in [12].

Another work that deals with matters of synchronization over computing environ-
ments of limited asynchrony is [17], where a general strategy for simulating a completely
synchronous network of processing elements (suchpas@ machine) by a network of
limited asynchrony is provided. Despite the fact that this work considers a totally reliable
underlying network, it is interesting that it uses the notion of tentative computations and
definite auditing (or checkpointing) procedures for safe progress of the simulation pro-
cess, which is a strategy that was exploited in many works of fault tolerance, including
the current work.

Although such proprietary approaches achieve great efficiency (and in some cases
optimality) in the general case of an arbitrary synchronous message-passing computing
environment, they cannot exploit the feature of bulk synchrony provided by some new
cost models (e.g8SR QsM, CGM) that seem to prevail in the area of Parallel Computation
in the last few years. It should also be noted that bulk synchrony (or limited asynchrony)
is inherent in the parallel algorithms themselves in many cases, and this gives rise to
the provision of bulk synchronous, fault-tolerant environments, that focus their power
on features other than the continuous synchronization and agreement protocols, such as
Load Balancing and Robust Storage Schemes.

1.2.3. Fault Tolerance oOrINETWORKS OF WORKSTATIONS TheNETWORKS OF WORK
STATIONS [11], [3] platform tries to satisfy the demand for the construction of parallel
systems using off-the-shelf workstations that deliver and in many cases even surpass
the power and reliability of many large-scale machines. It actually represents an in-
herently asynchronous (or bulk-synchronous) environment for the execution of parallel
algorithms. It seems that a cost model suclpas or BsPwould be very easily appli-

cable to this parallel setting, because it consists of processing elements communicating
via a specific communication infrastructure, and operates in an asynchronous or bulk-
synchronous mode. In the work of [11] tieTWORK OF WORKSTATIONSIS modeled

as a completely asynchronous multiprocessor, shared-memory system, augmented with
a fault-tolerant mechanism that treats even the slow workstations as failed ones. The
architecture of this system is centralized, in the sense that there are specialized proces-
sors that perform specific operations (i.e., there is one task manager that schedules the
pending work, some processors that deposit the necessary information, and some work-
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ers that actually execute the tasks that are assigned to them). Nevertheless, as stated in
the present work, an optimal fault-tolerant strategy should minimize job migration and
should be integrated into the parallel system itself. This work actually tries to exploit the
techniques that have appeared in the literature for providing fault tolerancermar
combined with robust storage schemes based on information dispersal techniques (see
[32]). Of course fault-tolerant strategies on more relevant cost models will be much more
realistic.

1.2.4. Fault Tolerance orBsp Machines TheBsP cost model focuses mainly on the
{computation & communication & bulk synchrongost during the execution of an
algorithm, rather than on the continuous synchronization procedure of a completely
asynchronous setting, as inthe cases of [16] and [12]. Thus new strategies are necessitated
that exploit this special characteristic of bulk synchrony and will provide fault tolerance
onBsPmachines.

In [27] the issue of fault tolerance ovesP machines has been addressed. Simula-
tions for two different cases were considered. In the static case, the faulty or unavailable
processors are already known at the beginning of the computation and no processor
changes its status afterwards. On the other hand, in the (semi)dynamic case, each pro-
cessor may fail or become unavailable with a fixed probability during the computation
and remains so until the end of the computation; however, some critical periods during
the computation where no processor was allowed to fail, could not be avoided. In this
work, some Monte Carlo constructions based on embedding of the idaahachine
on the operational subset of the reas machine (for the static case) and of work re-
dundancy (for the semidynamic case) assure efficient executi@seafgorithms over
fault-proneBspmachines.

1.3. Our Contribution

In this paper we generalize the work of [27] and consider fault-tol@smtomputations

under fully dynamic processor faults without assuming any fault-free petibidsnely,

the faults may happen on-line at any point of the computation. To tackle the problem, the
issue of the fault tolerance @sris modeled as an independent-jobs scheduling problem,
on adynamically changing computing environment. To be more specific, consider having
an algorithmthatis designed for anideal, fault-inegrocessoespmachine. Each virtual
superstep of this algorithm may be thought of as a setioflependent computational
threads that impose some communication demands (i.e., the implementatiom-of an
relation among these threads), and correspond to the work to be done by each virtual
processor during the current virtual superstep. Our task is to assign this amount of work on
a dynamically changing set of live (or simply available, or not stalled) processors, in such
a way that, as long as there are at l¢ast a)n live processorsg(is an input parameter

of the realistic setting that will be used), this amount of work will be successfully
executed. The goal is to choose an efficient strategy that will achieve an almost work-
preserving, robust execution of tBepalgorithm, and will also assure a balanced split

of the workload among the operational processors. We propose a modular and efficient

2 A preliminary version of the current work was presented in SPAA 98 [28].
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simulation scheme which, compared with an optimal off-line adversarial computation
under the same sequence of fault occurrences, achie\féé(mg n-loglog n)2)—factor
times the optimal work.

The proposed scheme is Las Vegas, i.e., it always completes the computation suc-
cessfully. This is so, due to aABKTRACKING process, which retrieves robustly stored
instances of the simulation process in case an interruption to the flow of the computation
has occurred, due to locally unrecoverable situations.

The proposed strategy combines abDARTIVE LOAD BALANCING scheme with a
MIXED STORAGE scheme (based on Rabirfformation Dispersal Algorithnfi32]) and
a CHECKPOINTING procedure (that exploits a BSBREEMENT Protocol for periodic
synchronization among the still live processing elements).

In what follows we present the RobuStSP simulation strategy for handling pro-
cessor failures on thespcost model. This strategy has to face fully dynamic processor
faults and a more complex approach is adopted, that combines a balancing scheme, a
storage scheme, and a checkpointing procedure. In Section 2 we give a brief description
of theBspcost model, and we introduce tBparse Occupancy problem, that will be
used in our analysis. In Section 3 we present the major routines used by RBR#Bstnd
we present our mixed storage scheme that assures the robustness of the whole process.
In Section 4 we present the adaptive balancing scheme that has been adopted by our
simulation strategy.

2. Preliminaries

2.1. TheBspCost Model

TheBulk Synchronous Parallel(BsP) model was introduced by Valiant [34] as a bridg-
ing model that tries to close the gap between the domains of decentralized architectures
and parallel algorithms.

The applicability of thessp cost model lies in the fact that, apart from the cost
of the parallelism that is accounted for by the traditioremM cost model, it also
considers the communication and synchronization limitations that are imposed by the
realistic decentralized architectures. Yet, it does not limit the interoperability of the
model among different decentralized computing environments, by abstracting away
from the designers detailed architectural features such as the topology of the process-
ing elements, or the synchronization procedures. Thus, the objective of this model is
to allow the design of parallel algorithms that can be efficiently executed on a vari-
ety of decentralized architectures, at a predictable cost, with respect to some archi-
tectural parameters that reflect the capabilities of the underlying decentralized ma-
chine.

A BsP algorithm A consists of a sequence sfiperstepsthat are separated by
Bulk Synchronization operations (SYNC in short). Each superstep consistslaf-a
cal Computation phase and £ommunication Phase (LC-phase and Comm-phase,
respectively). During the LC-phase of a superstep each processor performs a sequence
of operations on data held in its local memory, while the Comm-phase takes over the
transmission of the outgoing messages of each processing element to their destinations,
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via the underlying communication infrastructure. At the end of the superstep a SYNC
operation indicates the end of the current supersteps®machine consists of the
following components:

e Acollection ofnidenticalprocessoymemory elementsavhich are distinguished
by their uniquddentification numbers.

e A communication infrastructure takes over the point-to-point communication
process. This infrastructure is characterized by the bandwidid the latency
parametet which are explained in the next paragraph).

e A barrier synchronization mechanismamong then processing elements.

The two parameters of the decentralized architecture (apart from the nanobero-
cessing elements) that are taken into accouns$iyare thebandwidth g, i.e., the
(per-processor) ratio of the total throughput of the whole system in terms of local com-
putation operations, to the throughput of the underlying communication network in terms
of words of information delivered, and th&ency L, which is the minimum time in-
terval between two consecutive SYNC operatidus, the running time of a single
superstep on thesp cost model is characterized by the parameteig andL, and is
given by the following formula:

Tsuperstep= max{L , Tie + TComm}v (1)

whereT, ¢ is the maximum (among the processing elements) cost for local computations,
and Tcomm IS the maximum time needed for transmitting all the outgoing messages to
their destinations. If we consider that during the Comm-phase each processor sends and
receives at mogi one-word messages (i.e., birelation has to be implemented during

the Comm-phase), théftomm = g - h, according to McColl [30]. In that case, we have

Tsuperstep: max{L ) TLC +0- h}- (2)

Remark. In some cases the underlying machine charges the implementation of an
h-relation asg - maxh, ho} for somehg that depends on the machine. This is due to a
fixed communication initialization cost, which is irrelevant to the size oftthielation

to be implemented by the network infrastructure.

Finally, the following fact will be used in our time estimations in what follows (for
a justification of this fact, the reader is referred to [18] and [4]):

Fact2.1. There exists @sp algorithm that broadcasts a k-word message to N pro-
cessorsthat requires time at mosP(log N - max{L, gk/logN}). Moreover if L <
gk/log N, then the algorithm needs tint@(gk).

2.2. The Sparse Occupancy Problem

In this subsection we present some b&stis&Bins  problems that will be useful in
the analysis of our simulation strategy in Section 3.

3 Observe that. is a lower bound on the duration of a single superstep.
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Assume we have a numberdfindependent sources that throw balls independently
and uniformly at random into identical bins. We study the case of each source throwing
m < n balls into then bins. We call this family of problems the family &parse
Occupancy problems.

Lemma 2.1. Consider having a single source that throws4nn balls into the n bins
The probability of each bin being occupied by at most one ball tends ta unity

Proof. Consider a specific bin (e.d3;) and let

pi = P[B1 has exactly balls],
P = P[B1 has at least balls],
P, = P[3 bin with at least balls],

= P[B:has at mosit balls],

P
P = P[Every bin contains at mostballs]

We seekP; = 1 — P,. Observe thaP, < Y, P2 =n- prandp, = 1 — pr. However,

. N _(4 1 m+ n L 1 m—1 1
Pr=Po+ P = n 1 n n
1\t 1 2m—1
:2(1—ﬁ> .(1_%)~2eXp(_ - )
Hence,P, and P, are now given by
. 2m-1 2m-1
p2_1—2exp<— on ) 52-(1—exp<— on )) and
P,<2n-(1-—ex 2m—1
2= P 2n '

Finally, we haveP; > 1 —2n - (1—exp(-2m—-1)/2n)) — 1, form « n and
n — oo. O

Remark. The use of this analysis instead of using one of the classical probabilistic
techniques for the Occupancy Problem (e.g., in [31] and [21] where a martingale is used
to provide some tight bounds) is that these tools are based on Azuma'’s inequality, which
is not such a strong tool to capture so small discrepancies from the expected value, as
in our vase. For example, in [21] the bounds hold fior>> n in the proof with the
martingales, while fom & n there is another proof of (less tight) bounds, based on
Markov’s inequality.

Lemma 2.2. Assume we have(A) = O(n) sources that throw m balls each indepen-
dently and uniformly at randortu.a.r. in shor into the n binswhere m« n. Then
the probability of there existing a bin whose number of balls diverges tdogn is
polynomially small
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Proof. Let M(n) = A(n) - m denote the total number of balls thrown into théins
by the A(n) sources. Let alsi; j be the indicator variable of thgth ball going into bin
i, while B = Zj'\":({‘) Xi j is the total number of balls that go into thi#@ bin. Note that,
Vi e[n], {Xi; : ] € M(n)}isasetofindependent, identically distributed (i.i.d. in short)
random variables, whil€B;, . . ., B,} arenegatively associatedandom variables (for
the definition of the negative association property of a set of random variables, see [14]).
Note also thaE[B;] = > "" E[X; ;] = 1/n- A(n) -m= A(n)/n-m.

Fix a bini € [n]. Then, sinceB; is the sum ofM(n) i.i.d. random variables with
success probability /h, by applying Chernoff Bounds we get the following, for all
0<é1,8 <1

1. 52 _1)2
P[B; > kilogn] < exp(—w> = exp(—kln(log—nl)> ,

3 3A(N)-m
E[Bi] - 62
P[Bi < kzlogn] < exp| s
= exp(— A -m —kzlogn(kzanlogn — 2)),
2n
where
5y = n(k; logn — 1) = m> n(kologn — 1)
A(N) -m A(n)
and
Sp= 1 konlogn konlogn

“amem ™ Tam

From these last inequalities we can clearly deduce that

N2
P[3i € [n], B >k logn] < 3 exp(—kln(log—nl)>

et 3AN) -m
kindogn — 12\
Sn‘eXp(W =n, 3)
P[3i €[n], Bl < kylogn] < Z exp(— A -m_ ko logn(ky logn — 2))

= 2n

<n, (4)
where
_ki-n(logn—1)2 A(n)-m  kologn

= -1 d =
3Inn-A(n)-m and ke 2ninn Inn

3 -(konlogn —1)—1. O
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3. A Paradigm for Robust Computations in Dynamically Changing
Environments: Robust-BSP

In this section we present the major techniques that are exploited by RBE@sin
order to provide a safe computational framework #sp algorithms over arbitrarily
changing computing environments.

3.1. The Dynamic Simulation Model

Suppose that we are givearalgorithm.4, which is designed to run over a hypothet-

ical, fault-freen-processoBsp machine (theVirtual Machine , YV M). Because of its
BSPnature,4 assigns atomic workloads and imposes some demands for communication
(e.g., the implementation of amrelation) among the virtual processing elements, in
each superstep afM. We denote the atomic workload of a specific virtual processor
Qi, along with the portion of communication on behalf @f for the current virtual
superstep, athread T,. In that case, the execution of each virtual superstep can be
considered as a balanced, multithreaded computation, while the execugibmay be
considered as a sequence of multithreaded computations, distinguished by periodic bar-
rier synchronization (SYNC) operations among the processing elements (see Figure 1).

Suppose also that we are given mprocessomBsP machine which is prone to
processor failures (tHeeal Machine RM). Then the task oR M will be to assure the
progress of the simulation process until the end of the execution of the input algotithm
but also to keep the total work evenly balanced among the remaining live processors and
assure recovery from any sequence of faults at any time. Notice that we do not exploit
any slackness in our setting, which might indicate an “optimal” use of a sub%&iéf
for the improvement of our results. This is because we want to have a realistic measure
of the performance of our simulation process.

Let the (uniquely) assigned workload of a real processing ele®erftR M com-
prise its RIMARY JOB. This means that the major task®fin each virtual superstep will
be to simulate the execution of the threads which correspond to the virtual processors

Thread 1 Thread | Thread 1

Thread 2 Thread 2 Thread 2

Thread 3 Thread 3 000 Thread 3

Threud n Thread n

IOOOIII
IOOOIII
IOOOIII

Thread n

Fig. 1. Representation of aspalgorithm as a multithreaded decentralized computation.
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residing in itsPrimaryJobQueue. Any additional workload that may be taken over by
P, (atits own initiative) during the simulation process, will compriseea @\DARYJOB.
This load is not necessarily uniquely assigned to the specific processor.

Initially we assume that there is a “1-1" correspondence between the processing
elements ok M andV M. This means that any thread of virtual proces3prs initially
considered to be executed by the real proce&sdwhich is its physical destination),
unlessP; dies, in which cas&; will have to migrate to another real processor that
will have to execute its forthcoming threads. The necessary information for executing
a specific thread, is stored by a DCALSTORAGE scheme among the currently live
real processors. This information is stored using as a keyitieal Identification
number (Vid) of the corresponding virtual processor. This storage scheme is based on a
BsPimplementation of the well knownformation Dispersal AlgorithnflDA [32]) and
assures robustness against small bursts of processor failures.

Additionally, a G.OBAL STORAGEScheme has been adopted, for the periodic creation
of some robust replicas of specific instancesii’s status during the simulation
process (we call these securely stored instase#sStates). The SafeStates play the
role of reference points to which our simulation process will backtrack, in case of locally
unrecoverable situations.

We also assume that processors may share a seed from a strong pseudorandom
number generator (i.e., we have “coordinated randomness” among the operational nodes
of RM).

Definition 3.1. A thread is calledassignedif it is included in a live real processor’s
PrimaryJobQueue, otherwise it is calleghending. Additionally, if a real processor has
already completed the simulation of a specific thread (i.e., it has simulatgd-fihase

and itsComm-phaseand has safely stored the new status of the corresponding virtual
processor), then this thread is considered tadmpletedtill the end of the current
virtual superstep. Finally, a thread that corresponds to a virtual proc€ssand is
assigned to a real procesrwith i # j (i.e., P; is not the physical destination ¢f;)

is calledmigrated.

For the reader’s easier understanding of the measured quantities, we adopt the following
terminology:

Ax: the number of currently live processors at the beginning of virtual super-
stepV& (estimation).
Ci/Pi/Ai: the number of completggendingassigned threads at the end &cS
ONDARYJOB J; of V&.
h: the size of thd-relation that has to be implemented amongrtltiereads
duringVS on Y M.
Fx: the number of faults that occur duringg.
[n]: the set{1,...,n}.

For the representation of ti&irrentStatus of the VirtualesPMachine . M), we use the
following data structures, which are robustly stored among the live processRi8hf
using a nontrivial combination of a tentative storage scheme (@@aLSTORAGE) and

a definite one (the GOBALSTORAGE) (the reader is referred to Section 3.5.3, for the
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description of the mixed storage scheme adopted):

VLM;: the contents of the Local Memory used by the virtual processing element
Q;. The size of the/LMs. is an input parameter for our simulation strategy.
A reasonable assumption might be to consider a polylogarithmic size (e.g.,
O(log? n)) for these local memories.
LoU;: a list of still undelivered outgoing messages, on behalf of the threads hosted
by the live processoP,.
PJ;: thePrimaryJobQueue of P, containing the (uniquely assigned) threads that
it executes during eachRMARY JOB.
b: the number of threads chosen to be executed by a live processor during a
SECONDARYJOB.
N,: the size of a local neighborhood of real processors af%CKTRACK oper-
ations have occurred, witkhy = logn andN,_; = 2" - logn.

3.2. Assumptions

Regarding the model of faults, we consider that an oblivious adversary determines a
sequence of processor failures that are randomly distributed all over the whole simulation
of a specific input algorithrp4, and these faults are unrecoverable (i.e., we adopt the
nonrestartable fail-stop model, where the dynamic faults are distributed uniformly during
the whole simulation process).

This fault model tries to capture the behavior of a decentralized setting, such as a
NETWORK OF WORKSTATIONS or an arbitrary distributed computing environment, that
behaves like a dynamically changing parallel machine through a virtual parallel interface
(e.g.,MPI or PvM). This dynamic computing environment initially allocates processors
to the simulation process according to the demands of the input algorithm, and then
reclaims resources (according to the demands of the whole parallel setting) because of
processor unavailability.

Itis also assumed that the amount of processor failures during the simulation process
is upper-bounded by a fracti@ which is an input parameter to our simulation strategy.
Clearly, this bound affects the cost for creatBuajeStates during the simulation process,
to which the strategy will backtrack, when some unexpected behavior of the parallel
setting occurs, without jeopardizing the whole simulation process.

From the above two restrictions (i.e., the random distribution of the faults during the
simulation process and the existence of an overall upper-bound on the fraction of faults),
it becomes apparent that if we divide the simulation time into sufficiently large (e.g.,
polylog(n)) time intervals, there is an upper bounek: r (a) on the fraction of faults that
may occur in each of these intervals and it is easily shown that the concentration around
this bound is very sharp (this is easily understood by a simple application of the well
know Coupon Collector's Problem ). This implies that if a virtual superstéff
needs polylogf) time to be executed, thef < rn.

For the communication part, we suppose thatgbealgorithm A to be executed
imposes regulah-relation implementations (for sonte which is a parameter of the
input algorithm), which means that the corresponding communication graph among the
n threads is am-regular digraph. In case this is not true, some dummy messages could
be used so as to have a regular communication digraph.
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Fig. 2.
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The flowchart of RobusBSP.

3.3. Overview of RobusBSP

RobustBSP considers aspalgorithm.4 with a polynomial number of virtual super-
steps, and divides it intepochsof Kq virtual supersteps (the size of each epoch can be
as large a¥o = ©(n), as will be demonstrated later by the analysis of the corruption
probabilities of our strategy). It then tries to simulate robustly the execution of the next
epoch ofA and create a newafeState at the end of it, so as to have the work done up

to this point committed. In what follows we deal with the simulation of a single epoch
of virtual supersteps and the presentation is done in a top-down fashion, starting from
an overview of RobusBSP (see Figures 2 and 3), and then we describe the major
techniques that we use.

(1]

[3]

[3.1]
[3.2]
[3.3]

4
(5]

(7]

Fig. 3.

For k =1TO Ko PARDO
Perform a RIMARY JoB for V&.
IF (NOT_FINISHED) THEN PARDO vy times:
IF CHECKPOINT== OK
THEN  Perform a new ECONDARYJOB
ELSE Disseminate the new corruption information
during the next BSPBREEMENT
ENDPARDO
IF CHECKPOINT != OK THEN BACKTRACK
to the lastSafeState
ELSE IF k = Ko THEN Perform a GOBAL STORAGEAND setk := 1
ENDFOR

The RobustBSP simulation strategy.
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The purpose of RobudtSP is initially to let the live processors QR M try to
execute the current virtual superstéfi as if there were no more processor failures
and the workload were evenly distributed among them (this is done during the rou-
tine RRIMARY JOB). In caseV& is not yet completed, the overall strategy executes
SECONDARYJOBS, so that the work oV is finished and the pending workload is
evenly distributed among the remaining live processors. As will be shown in what fol-
lows, a double logarithmic number oESONDARYJOBS is enough for our strategy to
work.

Remark. The PrimaryJobQueues of the remaining live processors at the end of the
previous virtual superstef)y S_1) comprise a partition of the set of virtual processors
into disjoint and almost evenly balanced sets of threads to be executed. Thus, provided
that no more processor failures occur during tRefArY JoB of VS and the workload is
already evenly balanced among the live processofs/bf, this part would be sufficient

for the completion of the work 0§ S. Notice that no work replication is imposed at this
part of our strategy.

To assure the robustness of our simulation against processor failures, we deploy a
fast storage scheme (see Section 3.5.3), according to whichuthentStatus of VM is
stored during each superstep in some properly constructed neighborhoods of real pro-
cessors, the size of which depends on the fault occurrences (up to the specific point
of the simulation process). A ®BAL STORAGE scheme is also deployed for creating
a SafeState at the end of each epoch: that is a robust storage of a specific instance of
VY M’s CurrentStatus So as to be able to reconstruct it at any time, if a neighborhood
of processors has been corrupted. TlechL STORAGE procedure is based on an im-
plementation of the well knowinformation Dispersal AlgorithnfIDA [32]), while the
GLOBAL STORAGE procedure creates the necessary replicasoafAl STORAGES SO that
up to arbitrarya - n processor failures can be overcome.

In the case of a new corruption of th@tALSTORAGE having been discovered by
a processor, the dissemination of this exceptional information will occur the next time
an agreement protocol for coordination of work among the remaining live processors
is performed. This is done at the beginning of the next job (eitheximARY JoB or a
SECONDARYJOB). At the end of the current epoch, @a&<TRACK routine is performed
by all live processors to the lasafeState, in case a locally unrecoverable error has
occurred, otherwise a neBafeState is created and the work of the current epoch is then
completed.

Remark. A possible new processor failure that will not let the corruption information
be disseminated to all the live processors, or a failure of theB&. STORAGE may

cause no problem at all. This is because the problematic situation will be discovered
during the next superstep, and a neacBTRACK procedure will fix this abnormality.
Additionally, as will be demonstrated in Section 3.5.2, each time a neeKBRACK
occurs, the probability of having a new corruption decreases the significantly because
of the redistribution of faults in the new, double-sized neighborhoods of processors and
thus there is no chance of an infinite loop in the same epoch.
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In our simulation strategy, anBAPTIVE LOAD BALANCING scheme (ALB in short) is
adopted. Ittries to distribute the workloadiaM evenly among the currently operational
processors oRM. The purpose of ALB is to make theRRIARY JOB routine work as
close to optimal as possible, in the case when the parallel setting is at a stable state
(i.e., when no more processors dies for a while). This is a consequence of the “almost
even workloads among the operational processors” property, achieved by our balancing
scheme. This is actually an on-line load-balancing technique based onideas such as work
stealing [6] and dynamic contest among the live processors for the assignment of new
work. In Section 4, ALB is shown to have a very good performance with respect to our
simulation model.

The “FINISHED?” condition of the RobusBSP strategy can be implemented by
the network infrastructure that will have to add the number of completed threads in
the PrimaryJobQueues of the live processors, and will signify the end @& if n
is reached by this sum. This added intelligence of the network infrastructure is ne-
cessitated by the fact that apart from the periodic synchronization operation among
the virtual processors is also necessary, that will signify the end of the virtual super-
steps in the ideal machin& {M). Another approach could be the use of a tentative
estimation for this Boolean condition, by having the processors apply a GSRA
MENT protocol to decide whether the simulation \6& has been completed or not.

Of course, a solution like this would require an assured load-balancing property (i.e.,
very tight upper and lower bounds on thgmaryJobQueues) for the failure probabil-

ity to be extremely small. On the other hand, some checkpointing procedures such as
those proposed in [16] and [12] could be adapted to provide this virtual SYNC opera-
tion that would assure the integrity ®M. Recall that a possible failure at this point
would not be catastrophic since it would be discovered anyway during the next virtual
superstep.

As for the “BACKTRACK?” condition at the end of the current virtual superstep, if
a new corruption of the @CAL STORAGE has been discovered by a processor, the dis-
semination of this exceptional information will occur the next time a BSREEMENT
protocol is executed by the remaining live processor&@#t. This is done at the be-
ginning of the next job (either aRRMARY JOB or a SECONDARYJOB). At the end of the
current superstep, @BKTRACK routine is performed by all the live processors to the last
SafeState in case a locally unrecoverable error has occurred. Otherwise, the simulation
process proceeds with a new virtual superstep or with the creation of Safe@tate
and the work of the current epoch is then completed.

3.4. TheBSPAGREEMENTProtocol a Basic Technique

The purpose of an agreement protocol is to be able to have all live processors of the
BSPmachine agree in a unique value. In our B&RAEMENT protocol (see Figure 4),

each live processor computeslaitial Value and subsequently an agreement rule (e.g.,
majority, median, etc.), which is given as an input parameter to this protocol, is employed
in order to have all live processors agree on a unique value. For example, suppose that
we have to make a unique estimation of the number of currently live processors or
choose a unique random seed for the later choice of a hash function, common to all live
processors.
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[1] Initial Values: Each processor estimates independently an initial value.

[2] PARDO x times:

[2.1] BSPAgreement:Each processor sends lognessages to random
target processors.

[2.2] For each live processddewEstimation= AgreementRulsamples

Fig. 4. The BSPASREEMENTprotocol.

At the beginning, each live processor acquires its dmitial Value (e.g., RAN-
DOMSAMPLING is applied by each live processor to get an estimation of the number
of live processors ifRM or a random seed is chosen independently by each live
processor). Subsequently, some rounds of agreement attempts are performed in or-
der for all live processors eventually to end up with the same value or with values
that are very close to each other. In a single round, each live processor estimates a
new value according to the agreement rule that is applied on a new random sample of
values.

Remark. The agreement rule depends on the nature of the problem to be solved.
For example, a “median” agreement rule for the choice of a uniqgue random seed would
destroy the randomness of a common seed, while a “majority” rule would work, provided
that thelnitial Values are truly randomly and uniformly chosen. On the other hand, if
the problem is the estimation of the number of currently live proces#aisthen a
“weighted median” among the newly sampled values seems more reasonable than a
“majority” rule that would have no sense in this case.

Case studyestimation of currently live processorsin this subsection we demonstrate
how we use the BSRAREEMENT protocol to have the remaining live processors acquire
consistent estimations of their numberfM, i.e., with their variance converging to
zero.

The Initial Values of step [1] (see Figure 4) are determined by an application of
RANDOMSAMPLING independently by each live processor: each live processor throws in-
dependently and uniformly at random (u.al?{log n) polling messages (which are sent
to distinct targets with overwhelming probability according to$iparse Occupancy
problem, see Section 2.2). Then each polled live processor responds to the polling by
sending a message to the corresponding requester.

In step [2] a sequence of rounds is performed among the live processors, so that
they eventually agree in tight estimations of the number of live processors
in RM.

Lemma 3.1. The requested number of rounds of B8PAGREEMENT protocol, until
all processors have agreddith polynomially small deviation probabilitypn a unique
value is O(logn/logN), whereN is the size of the neighborhood of tReNDOMSAM -
PLING applications
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Proof. We proceed in our analysis by following the BSFB#EEMENT routine step by
step:

Stepl. Each live processdP; samplesN real processors frorfR M. Consider one
indicator variableX; ; for theith sample ofP;, which is

X = {1 if theith sample of?, corresponds to a live processor

R otherwise

RANDOMSAMPLING is actually the implementation of tw@ (N)-relations, one dur-
ing which each live processor polsprocessors chosen u.a.r. frdRa (with replace-
ment), and one for getting the answers by the live polled processors. If at the beginning
of V& the number of live processors £ and RANDOMSAMPLING is performed at the
beginning ofVS,, then the probability of each sample hitting a live processor will be
upper-bounded bgy = Ac/N. ThusP[X; j = 1] < pa,andP[X; ; = 0] > 1—p,.Since
RANDOMSAMPLING is a relatively fast routine (with respect to the fact that the faults are
considered to be uniformly distributed along the simulation procggshay be consid-
ered to be a very good approximation of the actual ratio of live process@4inat the
end of RNDOMSAMPLING. Thus, these indicator variables are clearly i.i.d. (random sam-
ples with replacement from the same sample space) with success probability very close
to pa, which implies thal£[ X; ;] = pa and Var[X; j] = pa- (1—pa), Vi € [N, j € [n].
Hence,P;’s first estimation of the ratio of live processorsRiM is given by the follow-
ing relation: RJ-(O) = 1/N- ZiN:l Xi j. The expected value and the variance of this new
random variable are

E[R®] = p. and VarR?]

1 N
= W . (ZVar[Xi,j] -2 ZCOV(XLJ’ kaj)
i=1

i>k

_ Pa-(1—pa)
-
Step2. Each live processoP; randomly selects processors fraRiM until it gets
N live answers (this implies that each live processor will have to sgid — a) -
N polling messages to randomly chosen targets, and will accept thé\fasswers).
The new estimation oP; if Rj(l) = 1/N- ZiN:l Ri?) (P, has accepted the answers of
P.is Piss - .., Pay)- For this new estimation we have

1 N
]E[ RJ(]-)] — pa and Var[Rj(l)] — @ . <Z Var[R;\iL)] — 2 . ZCOV( R)(\(l))9 R;»E) )
i=1

i>k

SinceR?, P, ..., R are variables randomly chosen (with replacement) from the
same sample space, they are independent from each other, and this implies (ﬁé‘fCov
Rfk))) =0,Vj, k € [N]. Hence, we have that

1

N
Var[Rj(l)] =g ZVar[R;?)] = M. (5)
i=1

\'Z
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Step3. Repeat step 2 times. After these repetitions we have

Pa- (1 — pa)

B[R*Y]=pa and VarR*™"]= ="

Each processoP,; that is live estimates the number of live processor®int at the
beginning of the Virtual Superstéf§ asAjx =n - Rj(”l), where

n“pa(l—pa) _ 1
Nx+2 — ANKt2°

E[Ai]=n-pa and VarA ] =n?.Var[R*™Y] =

In order to have small deviations among the live processors’ estimations, the following
must hold:

2
im — =
n—oo 4NX+2

logn
0 = x_o(m), (6)

considering thaN = logn. For example, iix = clogn/logN — 2, then Var; ]
n—¢*t2/4, and by applying Chebysev’s inequality we h&®@Ajx — pa-nl > 1]
n—2c+4/16.

OlIA i

Lemma 3.2. The time cost oBSPAGREEMENT S Tgspagreemen= O(logn/loglogn -
max{L, g-logn}).

Proof. Each RNDOMSAMPLING demands the implementation of &flogn)-relation

(each live processor sendXlogn) messages, while it may receive more tt@aglog n)
messages with polynomially small probability—an immediate application of Lemma 2.2)

in afirst superstep, and anotl@¢log n)-relation (each polled live processor replies only

to its own requesters) in a second superstep. Thus@og n)-relations have to be
implemented for RNDOMSAMPLING that cost timed(max{L, g - logn}). Additionally,

the number of rounds that are necessary for the live processors to acquire consistent
estimations of\, has been proved to li&(logn/log logn) (considering thall = logn),

while the cost of each round is dominated by the costaBOMSAMPLING. O

3.5. The Major Techniques Exploited by Robi&i?

In this section we present the major techniques that are used by the R&®Bstim-
ulation strategy. These techniques have to do with the simulation process itself (Sec-
tion 3.5.1), the periodic synchronization of the remaining live processors (Section 3.5.2),
and the mixed storage scheme (Section 3.5.3).

3.5.1. Primary and Secondary Jobs

Primary job  Suppose that the current virtual superstep that has to be execi\tgd is
As mentioned above, the task oRIMARY JoB (Figure 5) is to let all live processors
behave as if everything were fine and no new processor failures will occur déing
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[1] BSPAGREEMENT. Find an estimation of the currently live processakg,
[2] IF |PJ| >c-n/A

THEN Discard some of the assigned threads at random, |B&®i| < c1 - /Ax.
[3] LC-phase: Execute all the LC-phases of the thread®ih.

[4] Comm-phase:Send the outgoing messages to their physical destinations.
5] Register the undelivered messages to the List of Undelivered mestagiks,
[6] SDoU: Deliver as many as possible of the messagélds indirectly.

[7] Store theVLMs of all the completed threads usingtALSTORAGE

Fig. 5. The RRIMARY JoB procedure.

In this phase, each live procesd@rexecutes its own (unique) chunk of threads, held

in PJ,. Before starting the execution of the threads heldi, P, upper-bounds the
workload that it will execute (based on an estimatfgof the currently live processors).

Let ux = c1n/Ax denote the maximum workload of eaBhimaryJobQueue after the
discarding operation. Consequently, each live processor executes its own portion of
work, sends the outgoing messages to their physical destinations, and tries (employing
the SpU routine) to forward indirectly the messages heading for migrated threads.
Finally, it stores the/LM of each completed thread using thedALSTORAGE scheme.

Lemma 3.3. The cost oPRIMARY JOB that is executed at the beginning of the virtual
superstep ViSis given by

TPrimJob= O(Mk . max{h : |Og n, |094 n, TLC + TComm})~ (7)

Proof. For the time analysis of #'MARY JOB we notice the following: step [1] is an
application of the BSPBREEMENT protocol, so that all the live processors acquire the
same estimation of the number of live processdyg, The time cost for this step is
O(logn/loglogn - maxL, g - logn}), as shown in Section 3.4 presenting the BSP-
AGREEMENT protocol. Step [2] is trivial, while steps [3] and [4] are the same as if the
input algorithm.A ran directly onV. M, and impose no multiplicative overhead to the
simulation process. Step [5] is also trivial, while step [6] ca8t$ - uk - logn) (for
this time estimation, see the time analysis of theoBDprocedure in Lemma 3.8).
Finally, the LOCALSTORAGE procedure in step [7] costs at most2- [VLM| - (N, +
max{L, g}) according to the discussion about the safe storage ofthentStatus
(see Section 3.5.3). Considering thdtM| = O(log?n) andN, < log? n with high
probability (see Section 3.5.2 forBKTRACK occurrences), we get the stated cost for the
PRIMARY JOB. O

Remark. Recall thatN, is a parameter that only depends on the total nunobef
BACKTRACK operations having occurred until the end of the current epoch.

Secondary job As previously mentioned, the goal of eacBC®NDARYJOB J; is to
complete the outstanding work ®fS, and redistribute it among the live processors as
evenly as possible (see Figure 6). The new work assignment is done as follows: Each
of the A live processing elements chooses= g(n) - n/ A¢ threads to cover (that is,



Robust Parallel Computations through Randomization 447

[1] BSPAGREEMENT. Check for new IODCALSTORAGE corruptions.

[2] Each live processoP, creates a bucke$; of b randomly chosen threads.

[3] I NFORMATIONGATHERING: For all the threads ii5;, get the corresponding
VLMs from the appropriate neighborhoods.

[4] LC-phase: Execute the LC-phases of the thread#in

[5] Comm-phase:Send all the outgoing messages to their physical destinations.

[6] Register the undelivered messaget od); .

[7 SDoU: Send as many of the undelivered messages as possible, indirectly.

[8] Store theVLMs of the just completed threads usingdALSTORAGE.

Fig. 6. The SECONDARYJOB procedure.

to execute, if not yet completed) either at random or derived by previous unsuccessful
communication attempts with pending threads. For the purposes of the following analysis
we consider all these choices independent and random, although it is our strong belief
that the “biased” choices would make the processing elements focus exactly on the
remaining unsatisfied threads.

Completeness of a secondary .joln this subsection we study the probability of the
SECONDARYJOB J; leaving pending threads (and thus not being able to complete the
work of V&) when it finishes. For this we need the following technical lemma.

Lemma 3.4. The number of individual processors that cover a spe¢fending
thread during jis at least g log n with probabilityl —n=%, Vc; > 0,and ¢, depending
on G.

Proof. Thislemmais an application of Lemma 2.2 with= k; andm = g(n)-n/Ax =
n(kylogn — 1)/ Ay. O

We now focus our attention on finding the probability of a specific thread being pending
at the end of théth SECONDARYJOB, J;.

Lemma 3.5. Vcs > 0, P[P; > cs] < n~MiniGslogl-a)/rl.ca+1 /¢

Proof. For this fact to hold for thread,, all live processors that cov@k, must die
during J,. However, these processors are randomly chosen amgngocessors, at
most Fx < rn of which will die during the whole current virtual superstep. Hence,
the probability of a specific random choice being a newly dead processor is at most
Fk/Ax <r/(1—a). As aconsequence, the probabilitylaf being pending at the end of

J; is bounded by the product of the probabilityf having been covered by a specific
number of (randomly chosen) processors, times the probability of all these processors
dying during the current virtual superstep. By conditioning on the number of processors
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that coverT,,, we have that

czlogn
P[Tmis pending atthe end gf] < (1 —n™%). (m) +n%.1

< 2.n" min{cz Iog(l—a)/r,CA}‘

Usingn indicator variables

{1, if T, becomes pending during,
Zn = .
0, otherwise

and settingZ = Y1, Zp, it is clear that the number of pending threads at the end
of J isP, = Z andE[P,] = E[Z] = Y j_; E[Zm] < 2. n~Mminicalog(@-a)/n.ca+1 By
applying the Markov inequality on this expectation we get the desired result. O

As has been shown up to this point, the probability of having even just one pending
thread at the end of aEBONDARYJOB is polynomially small.

Lemma 3.6. The time cost of eacBECONDARYJOB during the virtual superstep \¥S
is given by

TSecJob= O(b ' max{h ' |Og n, IOg4 n, TLC + TComm})~ (8)

Proof.  Step [1] in $CONDARYJOB takes®(log? n) according to the analysis of the
BSPAGREEMENT protocol (see Section 3.4). Step [2] is a trivial task that is performed
locally by each live processor. Step [3] costgN, - [VLM|+2- [VLM|-maxXL, g}) time
steps for retrieving the necessary information fortihbreads residing in the buckets of
the live processors during the curreBc®NDARYJOB. Considering thatl, < O(log?n),
and|VLM| = O(log? n), this is equal tad(b - (log* n + logn - maxL, g})). Steps [4]
and [5] cost at modt - T\ c andb - Tcomm, respectively, for each live processor. Step [6]
is a trivial local operation, while step [7] costih - b - logn), according to the analysis
of the SDOU procedure (see Lemma 3.8). Finally, thedaLSTORAGE procedure in step
[8] costs at most 2b - [VLM| - (N, +maxL, g}) = O(b - log*n). Thus, the overall cost
of each $CONDARYJOB is given by (8). O

Secure delivery of undelivered messages the SpU procedure the primary objective
is the safe delivery of messages heading for migrated threads that have been kept in the
LoUs of the live processors up to this point. Additionally, in the case cf@BIDARYJOB
having preceded, this is also the rescheduling procedure for the pending threads.

The basic idea of this procedure (see Figure 7) is the use of muiltipiboxes
for each thread until all threads have been served by at least one live mailbox. That
is, usingv random permutations ofi[, (ITy, Iy, ..., IT,), we proceed in rounds of
indirect communication attempts, where in roundach live processd®, tries to send
any message fofm, held inLoU;, successfully to the mailboRn; m). Consequently
(in the same round), each mailbox sends the incoming messages of the corresponding
thread to a (possibly one chosen among many) requestgraxfcording to the following
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[1] PARDO v times:

[2] BSPRandomChoiceEach live processor chooses a common random seed.
[3] Choose a new permutatidi; according to the random seed and send

all the messages to their corresponding mailboxes.
[4] ThreadRequest:Each processor claims the incoming messages for

its own newly executed threads from the proper mailboxes
(e.9.,Tm from Pr; @m)).

[5] ThreadAssighment: Each live mailbox acceptnLY one of the requests
and sends the incoming messages of the thread that it serves to it.
[6] ThreadCommittment: Each live processdr that receives the mailbox

of a threadT,, adds it toPJ; and marks it as newly completed.
[7] ENDPARDO.

Fig. 7. The SDbU procedure.

rescheduling rule In the case of multiple contesting processors for a specific thread,
the mailbox sends it to one of the contestants (and thus assigns the corresponding virtual
processor to it) depending on the contestants’ current workloadlg bk the identical
permutation of ji] and letIy, 15, ..., I1, be the required permutations so that each of
thenthreads is served by at least one live processor (to be its mailbox). For the following
proof we need some definitions from the Theory of Negative Dependence of Random
Variables (see [14] and [13]):

Definition 3.2. Letn be a positive integer.

1. Therandom variabled, ..., J, are said to have thgermutation distribution
on [n] if they take values inri] and for any permutation : [n] — [n], P[J; =
o),...,h=0o(m]=1/n

2. Letxy, ..., X, be arbitrary real numbers. The random variabdgs. . ., X, are
said to have germutation distribution on {Xq, ..., X,} if there is a set of
random variables, ..., J, with the permutation distribution om] and X; =
X3, Vi € [n].

Definition 3.3. The random variableX = {X4, ..., X,} arenegatively associated
if for every index setl C [n], Cov[f(Xi,i € 1),9(Xj, ] € [n] — D] < O, for all
nondecreasing functions: R''' — R andg: RIM- — R,

The following proposition concerning sets of negatively associated random variables is
proved in [13] and will be used in what follows:

Proposition 3.1. If X = (Xq, ..., Xp)andY = (Yy, ..., Yn) aretwo sets of negatively

associated random variables and are mutually independket the augmented vector
X, Y) = X = (Xq,..., Xn, Y1,..., Yy is also a vector of negatively associated
random variables
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Lemma 3.7. If the numberv of required rounds of communication attempts during
SDoU is ((cs + 1)/ log(1/a)) - logn, then the failure probability i€°[SDoU fails] <
n=%, vce > 0.

Proof. Consider the following - n indicator variables:

. . 1, if P iy is live,
iebl Tell Xu={g g
For any fixed , the vectorX; = (X 1, Xi2, ..., Xi.n) has the permutation distribution

on
Status = {Statusl), Status2), ..., Statugn)},

whereStatugj ) indicates the status of machinpeThus, for any fixed < [v], the vector

X; follows the negative association property. Additionally, the veXtet (Xq, Xo, ...,

X,) consists of mutually independent components (since they correspond to randomly
and independently chosen permutations), and ¥a¢so has the negative association
property.

Consider now the functiong; = >7;_, X j. Since these variables are actually
nondecreasing functions on disjoint sets of negatively associated random variables (r.v.'s
in short), the vecto?Z = (Z4, ..., Z,) also follows the negative association property.
Now we can proceed with the failure probability of the @Droutine to serve all the
assigned or pending threads successfully:

Pﬁmummzmaem:azmgimnﬁmL
j=1

P[Z; = 0] = P[Xij <0,Vi € [v]] =P[X;j >0,Vi e [v]].
Since(Xyj, ..., X,,j) are negatively associated, the same goes for the vector of
complementary random variabl€X j, ..., X, j). Thus we have

P[Xij>1Vi € [v]] < [T P[Xij > 1]
ielv] = P[Z;=0]<a".
Viel], jeln, P[X;=1]=P[X ;<0]<a

)
The total failure probability of SBU is bounded byP[SDoU fails] < n-a” = n™%,
wheren-a’ =n"% = v = ((cs + 1)/log(1/a)) - logn O

Lemma 3.8. The time cost 08DoU is Tgpyy = O(logn - maxl, gbh, gukh}).

Proof. For the time analysis of SIJ we have: Step [1] implie®(logn) rounds,
according to Lemma 3.7. For Step [2] we consider that there&&andom Number
Generator that provides at start-up all live processorsaM with a string of random
seeds. Then each processor can fix the new permutation of step [3] using the next seed
of this “shared” string of random seeds. Steps [4] and [5] are actually implementations
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of (h - max{b, uk})-relations for the requests of the inboxes of the threads covered by a
specific processor, and the assignments of the pending threads to one of the contestants.
Step [6] is a trivial local operation. O

The failure probability of a virtual superstep In this section we study the failure
probability of a single virtual supersteps, and specify the number &, of the virtual
supersteps that comprise an epoch.

Lemma 3.9. The failure probability of a Virtual Superstep ¥® complete its work is
n©/-leglogm ‘considering that y= log logn SECONDARYJoBS are executedf necessary

Proof. Avirtual superstepy& fails if all the y SECONDARYJOBSthat it performs have at
least one pending thread when they finish, or the corresponding executions0ff&D

to serve an assigned thread. In this section we neglect the corruption probability of some
neighborhood of real processors (which implies a failure of SOEALSTORAGES
because this failure probability is separately studied for the whole epoch in Section 3.5.2
that deals with BCKTRACK occurrences. Thus, we consider tnNe®RMATIONGATH-

ERING and LOCALSTORAGE routines to be safe. In that casé$ will fail if, for all

its SECONDARYJOBS, there is either a failure to cover all the threads or a failure for
some (pending or assigned) threads to be served by a live mailbox during tié¢ SD
procedure. The probability of SR leaving an assigned or pending thread with no op-
erational mailbox has already been estimated afifJS®oU fails] < n~%, while the
probability that a specific B2 ONDARYJOB fails to cover at least an assigned or pending
thread iSP[S J fails] < 2. n~minlealog(@-a)/n.ca+l Thys, the failure probability for each
SECONDARYJOB to finish the work ofVS is polynomially small and the total failure
probability forV& is

P[V& fails] = n=9€Y), (10)

wherey is the number of ScCONDARYJOBSt0 be executed and= min{cg, C3 - log((1 —
a)/r)—1,¢c4—1}. O

Remark. Having a subpolynomially small failure probability for each of the virtual
supersteps that comprise an epoch, it is now apparent that an epoch can Egntain
®(n) virtual supersteps and still have subpolynomially small failure probability.

3.5.2. Checkpointing and Backtracking The GHECKPOINTprocedure is actually a vir-

tual process that is done by any processor during the simulation of the input algorithm.
More specifically, GECKPOINT signifies the failure of somedCALSTORAGE Or INFOR-

MATION GATHERING procedure call discovered by a live processor, either because of an
update failure of the QCALSTORAGE routine or because of an unsuccessful attempt to
retrive a specifio/LM. The discovery of a problematic situation is disseminated to the
rest of the live processors the next time that a BSREEMENTprotocol is executed as an
exception code to the specific live processor’s value. Observe that a new processor failure
may not cause any trouble at all because the problematic situation will be discovered by
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O(logn) live processors that will try to cover the corresponding pending thread (due to
the new death) during the next SONDARYJOB.

When such an interruption to the flow of the simulation process is done aithie-B
TRACK operation simply makes the live processors set their program counters to the
last SafeState, set a new valudN, = 2 - N,_; (u is the number of BCKTRACKS
having occurred up to now), consider a new, random hash function for thé\gize-
equipartition of the real processing elements intdl, neighborhoods of real proces-
sors (see the description of theotALSTORAGE scheme in Section 3.5.3) and con-
tinue with the simulation process after having retrieveddheentStatus from the last
SafeState.

For an epoche to be successfully simulatedy consecutive virtual supersteps
must be executed with noABKTRACK interference. The epoch will end up with the
creation of a newsafeState. In what follows we study the corruption probability of
some neighborhood of processors because of the fault occurrences up to now and
the number of BCKTRACKS that may occur during an epoch dfqy virtual
supersteps.

Remark. The choice of a new (pseudo)random hash function for the construction of
the new neighborhoods of processors is done in order to redistribute the faults occurred
up to this point evenly among the new neighborhoods, and protect the simulation from
a malicious behavior of an adversary that would try to focus his power on a single
neighborhood of processors.

Backtrack occurrences during an epochn this subsection we bound the number of
corruptions that may occur in a single epoch of virtual supersteps. First we estimate the
corruption probability at a specific instance of the simulation process, and consequently
we calculate the total number of corruptions.

Lemma 3.10. The probability® (D, N) that a randomly chosen si2¢equipartition
corrupts because of D processor failures is given by

0. it D<N+1,
OD.N =1 . oW -
(D.Ny=1 n.2W2 ~exp[— <N+1)(Hn _ HD)] ,  otherwise
JAN- (N+2) 2

where H, and Hy are the corresponding harmonic numbers

Proof. Each group of the equipartition to be constructed may be thought of as a bin that
will receive exactlyN balls, some of which are expected to be black (dead processors)
and the remainder will be red (live ones). The amount of black balls &d the red ones

is A= n—D. All possible ways of creating a si2¢equipartition ofn indistinguishable

balls aren! /(N)™N. We count all possibly corrupted equipartitions by Bielack balls,

in a constructive fashion. More specifically, we first choose one of the bins at random.
Then we choos&/2 + 1 from the D black balls and throw them in the chosen bin.
Consequently, we choos&?2 — 1 from the remainingh — N/2 — 1 balls and throw them
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into the chosen bin. Finally, we let the remainimg- N balls be equipartitioned into the
n/N— 1 bins in all possible ways. In numbers, all possible corrupted equipartitions are

n D n—N/2-1\ (—N)!
N \N2+1)\ N2-1 ) (NyUNT

Hence, the requested corruption probability (provided that N/2 + 1) is given by
D n—N2-1)y (h—N! (NHVN
\N24+1) 0 N2—-1 )T ()N

D n—N2-1\ (n\"
“\N24+1)°\ N2-1 )N
n-DI'-(n—N/2-21!-N-(n—N)!
-(N2+ D! - (D=N/2—1! - (NJ2—D!-(n—N)! -n!
n-N 0 N+ 2
— = w1050

A=D+1

n-N N
TNt 22 ex'”[‘ (E + 1) +(Ho = HD>] : (11)

Zls zZI>

®(D, N

P

By applying Stirling’s formula, one can show that the claimed result holds. In the case
that D < N/2 + 1, there is no chance of having a corrupted neighborhood of real
processors. O

The following lemma states that it is most unlikely to have more than loglog
BACKTRACK occurrences during the whole simulation process (this also implies that the
size of the neighborhoods will be at m@tlog? n) with subpolynomially small failure
probability):

Lemma 3.11. The probability of a neighborhood corruption aftérg logn BACK-
TRACK is O(n~1°9" . Jog~3 ).

Proof. Assume that we hawve processors and we choose a random equipartition of
them inton/N, neighborhoods of sizH, (u indicates the number of BKTRACK oc-
currences, up to now). Suppose also tBaprocessors have already died (and have
caused thas BACKTRACKS) and A = n — D remain live. We say that an equipar-
tition corrupts if there exists a neighborhood that has at lebgt2 + 1 dead
processors.

The corruption probability of sizé, equipartition , = 29 - logn) is given by
@ (D, Ny), which is always at most equal tb(an, N,). Some calculation will help to
see that this is a very good bound for the failure probability, which actually implies
that at most log log backtrack operations may occur during the simulation of the input
algorithm, with very high probability. More specifically, considering thiagt— Han =
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In(1/a) + ®(1) = In(1/a) + w1, we have

. oNy+1/2
B(D.N,) < blan Ny) < —2 -exp[— (ﬁ + 1) (In (1)+wl>]

VARG (N +2) 2 a
< 1 . oNu+1/2+logn—N,-(log(1/a)/2+w1/(2In 2))—(log(1/a)+w1/ In2)
T VNG (N +2)
2¢2 v
<—"——=0(n%.(2"logn)—%?), (12)
VNG - (Ny +2) ( )

where

log(l
wzzl\h+%+logn—l\h-<w+ 1 >

2 2In2
1 w1 _ U
(Iog (a) + n 2) = 0O(=2"-logn). O

3.5.3. Safe Storage af M'’s CurrentStatus.  In this subsection we study the robustness

of our simulation strategy against the (at mest) processor failures that are imposed by
the parallel setting. Recall that our parallel setting Bsamachine which is essentially

a message passing model. Thus, for overcoming arbitrary processor failures, one has to
sustain some information replication which depends on the input paraan@ésall that

ais an upper bound on the fraction of processor failures that may occur overall during the
simulation process). Since the recovery from a situation waengaults have occurred
necessitates the existence of an (at ledst)l — a))-fold replication of thevLMs that
comprise theCurrentStatus of V.M, one might consider that the best that can be done
is to use the IDA algorithm which achieves space optimality, given the total fraction of
faults,a. Yet, this is a very expensive procedure to run in each virtual superstep, since
IDA would require at leas(n?) time (according to the time estimations of thep
implementation of IDA in Section 3.5.3) to create&SafeState from which up toa - n

faults may be overcome. Additionally, such a storage scheme would force a total cost of
the simulation process that would not be scalable with the number of fault occurrences
and thus our strategy would be efficient if as many as possible errors actually occurred
during the execution dspalgorithm.

The salient point of our storage scheme (see Figure 8) is the use of a local, volatile
storage routine (CALSTORAGEfor the tentative storage ®fM'’s CurrentStatus in com-
bination with a global routine (GBAL STORAGE) that robustly stores periodic instances
of theCurrentStatus at the end of each epoch. This way, the cost of this expensive opera-
tion of creating a ne\8afeState is amortized over th& o virtual supersteps that comprise
a single epoch. The more volatil®tALSTORAGE scheme during each virtual superstep
makes the execution much faster, while being able to tolerate small bursts of processor
failures in each neighborhood of real processors. Each time a neighborhood corruption
occurs, the size of the neighborhoods participatingdcAL STORAGE is doubled and a
new hash function for the determination of the neighborhoods is employed. Addition-
ally, an INFORMATIONGATHERING procedure takes over the responsibility of retrieving
the requested information, either from the proper neighborhoods of real processors or
from the lastSafeState in the case when aA8KTRACK operation has preceded.
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| Global Storage ’

Fig. 8. The mixed storage scheme.

Local storage The LOCALSTORAGE routine is used to save tha.M of each newly
completed thready, (at the end of the current (either Primary or Secondary) Job) to a
proper (with respect to theid of T,,) sizeN, neighborhood, so that amy, /2 of them

will be able to reconstruct in the future.

In particular, we consider that timereal processors are partitioned ima\, neigh-
borhoods of sizé\, according to a randomly chosen hash functtén[n] — [n/N,].
Then each neighborhood takes over the responsibility of storingltkis of the virtual
processors that have their physical destinations in this neighborhood. So, if a live pro-
cessorP, uses IOCALSTORAGE to save a newly completed threadsM (e.g.,VLM;),
then it will apply the FLEDISPERSAL part if IDA on VLM; with m = N,/2 (see Sec-
tion 3.5.3), and will save thid, created files to the neighborhood of processors indicated
by H(j).

Supposing that a real proces$grhasNC; newly completed threads during jdb,
and considering the fact that log< N, < @(log? n) with high possibility (recall the
justification of this factin Section 3.5.2), the time overheadPpfor the LOCALSTORAGE
will be

TLocalStorage= 2-|VLM| - NG - (N+ maxXL, g}). (13)

The space overhead for each real proce&sdreing a member of a specific neigh-
borhood, will be the sum of the sizes of the dispersal files forvhids of the corre-
spondingN, virtual processors which are locally stored in the specific neighborhood,
thatis,N, - | 7| = Ny - [VLM|/(Ny/2) = 2- |VLM|, where|VLM| is the size of each of the
virtual local memories. This implies a two-fold space overhead on each live processor
for implementation of the QCALSTORAGE scheme on each processor, which is optimal
for tolerating up td\, /2 processor failures in each neighborhood.

Global storage The purpose of the ®BAL STORAGE scheme (Figure 9) is to create
SafeState periodically, that is, to store periodic instance¥@#’s CurrentStatus securely

for the simulation process to backtrack to, in case some (locally) unrecoverable errors
have occurred. This routine is actually the one that necessitates the existence of the input
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[1] FORk=1TO A DO

[1.1] IF PN, +j is live,

[1.2] THEN P sends to it its own part of theocalStorage

[1.3] ELSE P} makes at modN,/2 — 1 trials to find a live processor in
the target neighborhood, to send its part of tleeALSTORAGE.

[2] PartDistribution: Each live processor that holds multiple parts of a

LOCALSTORAGE, distributes them to live processors of the same
neighborhood that have no part of thiotALSTORAGE

Fig. 9. The GLOBALSTORAGE scheme.

parameten that expresses an upper bound on the overall fraction of processor failures
during the simulation of the input algorithp.

Supposing that we used IDA for the secure storage aftientStatus of V M to the
whole R M, we would need add(n?) time overhead, according to the time estimations
of the implementation of IDA omspP, which is actually a prohibitive cost in a setting
of parallel computations simulation. There are two reasons for this prohibitive cost in
this approach for the implementation of @AL STORAGE the first is IDA's restriction
for [VLM| > m = (1 — a)n which necessitates the extension of thevis with some
dummy characters, and the second is that we disperse once more the already dispersed
(for the sake of the lastbCALSTORAGE) VLMs. Thus we resort to an alternative scheme
for the GQ.OBAL STORAGE that tries to avoid the unnecessary time (and space, which
is actually communication cost BsP) overhead. The GBAL STORAGE strategy is as
follows: Each of then/N, neighborhoods ifR M creates replicas of the contents of the
nextA (modulon/N,) neighborhoods. Thus, each real processor actually participates in
A + 1replicas of the bcALSTORAGEScheme, and each sidg-neighborhood is capable
of restoring thevLMs of (A + 1) - N, distinct virtual processors. The space overhead
for each real processor, regarding theoBAL STORAGE, is (A + 1) - N, - [VLM|. As for
the time overhead for creating tidenew replicas of the last@CALSTORAGE before the
new Q. OBAL STORAGE, this may be done ith communication supersteps, where each
neighborhood sends the contents of itSCALSTORAGE to a new neighborhood, and
afterwards an “all-to-all” communication in each neighborhood re-assigns the parts of a
specific LOCALSTORAGE to unique live processors.

Lemma 3.12. Given that no more that an faults may occur in overall during the sim-
ulation of an input algorithmd, the necessary number of replicas of tleCALSTORAGE
that will comprise a nevgafeState is no more tharRan/(N, + 2).

Proof. For a specific neighborhood of processors to be globally destroyed, alktHe
replicas should be destroyed by the fault occurrences. This means that &l/2ast
real processors per sixéneighborhood must have already died. Thus, totally, we must
have at leastA + 1) - (N/2 + 1) faults up to now. However, if

2an
N+ 2

then it is impossible for this to happen. O

N
(A+1)-<§+1>>a.n = A> -1, (14)
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Notice that in each round the communication among the neighborhoods is “one-to-
one.” So, if we fixA = 2an/(N, + 2), the time for creating a neafeState with
GLOBAL STORAGE is given by

Ny
TGIobaIStoragef 2-A- |VLM| ' (? - > = O(a' n- |V|—M|)~ (15)

GLOBAL STORAGE is called everyKq virtual supersteps, because it is actually a time-
consuming operation which introduces a heavy cost. This way this heavy costis amortized
among theK virtual supersteps.

Information gathering The INFORMATIONGATHERING procedure is an application of
the HLERETRIEVAL phase of the IDA algorithm from the proper neighborhood of real
processors (with respect to the requested thredts), unless a BCKTRACK has just
preceded, in which case ea¢hM is retrieved from the lassafeState of V.M, which is
robustly stored iR M.

According to the analysis of thellERETRIEVAL phase of IDA, each GCALRE-
TRIEVAL of aVLM costs

TLocaIRetrievaI= Ny - |V|-M| +2- |V|-M| . max{L, g}, (16)

while a Q.0BAL RETRIEVAL operation will actually have to try to retrieve the specifiiv
from one of theA + 1 replicas of the corresponding neighborhood of tbe AL STORAGE
scheme iMRM:

TGIobaIRetrievaIS (A + 1)(Nu . |V|—M| + 2|VLM| : max{L, g})
=0O(a-n- |VLM|). an

The following lemma summarizes the time costs for these routines that comprise
our mixed storage scheme:

Lemma 3.13. Supposing that each live processor is responsible for at mtistads
the time costs for the procedures of our storage scheme are

TLocaIStorage= 2)~|VLM|(N + max{L, g})» (18)
TGIobaIStorage: O(AanNLMD’ (19)
TLocalRetrieval= )\(NU|VLM| + 2|VLM| : max{L, g})» (20)
TGlobalRetrieval= O()LanNLMD- (21)

A Bspimplementation of IDA In this section we demonstrate thePimplementation
of the IDA algorithm (see Figure 10), as well as our routines for storing and retrieving
the CurrentStatus of VM from the live processors 62 M.

Suppose that we have a filE of size |F| and we want to store it safely among
N processing elements, in such a way that engf these processors will be able to
reconstruct¥. IDA is a space-optimal strategy for dispersing and reconstructing the
initial file, which may very easily be adapted to ts& model, since it was designed for
applications to arbitrary distributed environments.
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[1] FileDispersal: ProcessoP, dispersesF and sends the corresponding
parts to the processing elements of the proper Nimeighborhood.
[1.1] P splitsF into N parts (F1, 7>, ..., FN) of size|Fj| = |F|/m, j € [N] each.
[1.2] P sends the\ parts to the processors of the sig@eighborhood.
[2] FileRetrieval: A processoiP, wants to gather the parts of a fife
from a proper (sizéN) neighborhood, and reconstrugt
[2.1] P sends requests to all the parts of the proper neighborhood.
[2.2] Every live processor in the neighborhood sends its own pd?t.to
[2.3] IF R has enough (i.e., more than) parts,THEN it reconstructsF.

Fig. 10. A Bspimplementation of IDA.

For the computational cost of the file dispersal iNfmarts, IDA uses a set dfsizem
vectors, that aren-wise independent, split§ into sizem sequences of characters, and
applies an inner product operation ghwith each of thes@l vectors, so as to produce
theN new files, anym of which be able to reconstrugt. An obvious restriction of IDA
is that|F| = m. If not, F is extended with some dummy characters, up to size of
words. The communication cost for the transmission ofNlparts of F to the proper
neighborhood is actually the cost of a3 N’ transmission of siz¢#; | messages, that
is the same as au- | Fj|-relation.

As for the file retrieval, IDA uses the inverse transformation to convernaimput
files of size| 7 | = | F|/m each, to the fileF. This is easily shown to cost?- | 7| local
operations, while the communication cost of this part isNenelation for the requests,
plus an N — 1" transmission of the input files tB;. This is the same as &N - | Fj|)-
relation. According to the above discussion, the costs of IDA for Dispersal and Retrieval
of the file F on a sizeN neighborhood of @spmachine are the following:

TDispersaﬂLC =N-. |—|«7:|/m-| ' (2m -1, (22)
TDispersa+Comm = |—|}—|/m—| -N-max{L, g}s (23)
TretrievatLc = 2M - |~7: l, (24)
Tretrievatcomm = |—|‘7:|/m1 -N- max{L, g}- (25)

Remark. Theceiling operation expresses the fact th&l > m. In fact this implies
that the transmission of each of the new files toRtprocessors costs at least as much
as the transmission of constant-size messages.

3.6. The Performance of the RobusSP Simulation Strategy

In this section we estimate the amortized cost of a virtual superstep executed by our
Robust-BSP simulation strategy, and give a bound on the competitive ratio of our strategy,
against an optimal off-line strategy, that always lets the operational processors execute
a fully balanced workload. Recall that the optimal workload wouldhpA threads per
operational processor, and thlisor = N/ A« - (TLc + Tcomm)-
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Theorem 3.1. The amortized cost for the simulation of a single virtual superstep is
given by

Tvg, = O ((Iogn -loglogn)? - Topt + polylog(n)) (26)

with probability at leastO(1 — n='°9" . log=3n).

Proof. Assume that during the current epoBhcorruptions of the DCALSTORAGE
occur. Then RobusBSP will have to execute each of th€, supersteps of this epoch
at mostB + 1 times, and it will have to retrieve information from the I8sffeState 5
times. So, the time of a single epochk§ virtual supersteps is upper-bounded by the
following equation:

Tepoch= (B + D Ko(Tprimaon+ IOg IOgn - Tseciod
+B- (uk+b- IOg IOg n - (TGIobaIStorage‘f‘ TGlobalRetrieval

since each live processor will retrieve at mogt-b-log logn threads to execute from the
lastSafeState, each time the current epoch restarts. However, according to Lemma 3.11,
the number of BCKTRACKS in the whole simulation process is no more than loglpg
with probability at leas©(1 — n='°9" . log~3 n).

Notice also that if we suppose thRt + Tcomm = O(g-h) > log* n, thenTprimon=
pk - maxth - logn, (Tic + Teomm} = O((logn)/g - Topt) and Tseciob= b - maxh -
logn, (Tic + Teomm)} = (9((Iog2 n)/g- Topt). Inthat case, the amortized cost of a single
virtual superstep is given by

an-loglogn
Ko
B - (uk + b - loglogn)
+
Ko
= O((logn - loglogn)?) - Topr + O(log®n - (log logn)?),

TVSr< = (B + 1) : TPrimJob+ * 1SecJob

. (TGIobaIStorage+ TGIobaIRetrieva)

where the additive polylogj-term is due to the fact tha, = ®(n), 5 = loglogn,
pk andb = O(logn), and Teiobaistoraget TalobalRetrieval = O(N - l0g? n) (see Lemma
3.13). O

Remark. Since the probability of having more than log lnBACKTRACK occurrences

is O(n~'°9" . log~3 n), the expected (amortized) cost of each virtual superstep converges
to the above value, since the subpolynomially small failure probability dominates over
the cost of some extradBKTRACK occurrences.

4. The Adaptive Load-Balancing Strategy
A major result of this work which is also of independent interest, is the proposes strategy

for balancing the work of the virtual processors among the currently live processors of
RM. Infact, this is an adaptive on-line load-balancing technique, since the sequence of
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fault occurrences is not known a priori to our simulation process and the live processors
should not execute more than a factor times the optimal workload in a stable state.
Starting from a balanced situation (at the |aafeState), we show in this section
how we keep the work of the live processors balanced (in a tentative fashion) for a whole
epoch ofKq virtual supersteps. Recall th&t, can be as large ad(n). Let Zy(i, k)
denote the size dP’s queue after discarding the excessive work (in case of overloaded
real processors), and I€i(i, k) denote its size at the end ¥&. Our ADAPTIVELOAD-
BALANCING scheme (ALB in short), which is inherent in the Robust-BSP simulation
strategy, is the following:

(1) Atthe beginning of each virtual superstéfi, each overloaded real processor
P, cuts off the excessive work (i.e., keeps at nmst/ A threads at random in
PJ;, according to the estimatiofy of the number of live processors M,
and makes the remaining threads pending). This is the Discarding step at the
beginning of each AMARY JOB.

(2) All the pending threads af M (due to either new deaths or discardings) are
rescheduled to still live processors®fM as follows:

(a) Each live processor contests for loglogn randomly chosen threads to
cover, during the log log SECONDARYJOB.

(B) Each mailbox that takes over a threBdduring a round of SBU, assigns
it (if it is pending) to one of the live processors that contests for it, with
probability

P[P, getsT,] = — /20K

Y iec(X/Zo(j, k)’
whereC = {P;,, Py, ...} is the set of processors contesting Tor

Theorem 4.1. Leté > 1 be a constantThen the load of each live processor iR
RM at the end of Vgis Z(i,k) < cin/Ag - ®(loglogn), with probability at least
AL—n5kD > 1 (k+1)n~¢.

Proof Let& > O be a constant. We shall prove the good behavior of ALB using
induction on the epochs of the input algorithn

Initial Step At the beginning of our simulation process, each virtual processor is as-
signedtoits physical destination, and thus, each operational proce®&s®1 imas exactly
one thread in it®rimaryJobQueue.

Inductive Hypothesis Suppose that at the beginning of epoghwe have,Vj €
[n], 23,k —1) < cin/ A1 - @(n), wherew(n) is a constant times log lay

Inductive Step Recallthat @rimaryJobQueue PJ; is overloadedifEin/Aq < Z(i, k—

1) < ¢n/Ac_1 - w(n). The amountP of pending threads duringS will have to be
rescheduled among the remaining operational process®&a.6fIn P we measure only
assignments of threads to processors that remain live until their completions, because
a thread assigned to a processor that dies before achieving its completion has already
been included irP, either as a pending thread because of a new death, or as a discarded
thread at the beginning &S.
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Let fx denote the set of newly dead processors duviig and letD be the number
of discarded threads at the beginning\t. ThenF, = |f| < rn. Clearly,? =
D + Ziefk Zu(i, k) < a-n. Consider now a specific thredg and suppose that the
operational processom3,,, P,,, ..., P, contest for it during a SCONDARYJOB. We
already know thaT, is covered by less thag - logn initially operational processors of
RM with probabilityn—%, for some positive constant andc, depending om;. So we
can proceed with our proof conditioning on the evant* logn.” By the rescheduling
rule we have

1/20(%i, k)

Vi € [logn], P[P, getsT,] < .
1o (1) 2004, K0)

(27)

logn

It is now obvious thatZp(Aj, k) < cin/Ag, Vj € [logn]. So, ijl (1/Z0(Aj, k) >
(A - logn)/cin and thus we have

. cin
v - '
i €[logn], P[Py, getsT,] < Zo(hi, k) - logn - A

(28)
Now, each live processd? will randomly (with replacement) chood®e- log logn =
ci1n/Ax-lognlog lognthreads to cover during th&eS8oNDARYJoBSOf V. Each random
choice has a probability? /n of hitting a pending thread and is independent of the other
choices. Thus the number of pending threads fatvill contest for, is the number

of successes fromh - log logn Bernoulli trials B(g, P/n), whereq = cin/ A - logn -

log logn. For each such thread, the probability®forevailing over the other contestants
(in a specific round of SBU) has already been shown to be

cin 1
Ac-logn  Zy(Ai, k)

P[P getsT;] < = ¢.

Let E; be the number of pending threads tfatcontests for. Ther¥e € (0, 1), Ei €
[A—e)-q-P/n, (1+¢)-q-P/n], with probability at least 1- exp(—e?/2-q - P/n),

by a simple application of Chernoff Bounds on the Bernoulli trials. However, recall that
P <a-n,andsoye € (0, 1), & € [(1—¢)-q-a, (1+¢)-q-a]with probability at least
1—exp(—e2/2-ac,/(1—a) -logn - loglogn) = 1 — n~(¢*cr-aloge)/2(1-a)loglogn) ‘N oy,
giveng;, due to our rescheduling rulB, will actually add at mosE; - ¢ new threads inits
ownPrimaryJobQueue with probability atleast £ n—% asis easily shown by a new appli-
cation of Chernoff Bounds, considering the worst caséfoZ (i, k) = 1, forwhichg is
maximized. So, with total probability at magt—n=%) . (1 — n~(*craloge)/2(1-a)-loglogn)

each operational processBrgets at mosE; - ¢ threads, i.e.,

AZ(i,k)<(1+4+¢e)-a-q-¢ <

Zo(i, k)

with 8 = (1+ g)a(c1/(1 — a))? - loglogn. Hence,Z(i, k) = Zo(i, k) + AZ(i, k) =
Zo(i, k) + B/Z20(i, k), which is maximized at ma£(i,k)} = ma{1+ 8,1+ y -



462 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

loglogn} - cin/Ax and thus it satisfies the inductive hypothesis with probability of
success at least

(1 _ n—%‘)k(l _ n—Og)(l _ n—(szcla-loge)/2(1—a)-log Iogn) > (1 _ n—f)k-‘rl’
e?cialoge

with & < min {Cg, 21_a

log Iogn}, k < Kp. O

Remark. Notice that(1 —n=$)*+1 > 1 — (k 4+ 1) - n—¢, which implies that our robust
system can tolerate computations of polynomial length.

5. Conclusions—Future Work

In this paper we have provided a general purpose simulation strategy for the execution
of parallel algorithms in dynamically changing, decentralized computing environments.
This simulation strategy is efficient in the sense that it imposes a polylogarithmic slow-
down, compared with an execution of the input algorithm in a stable, totally reliable
decentralized environment.

Our approach was based on three major axes: the provision of a robust storage
scheme, the assurance (with high probability) of the even workload distribution among
the live processing elements of the underlying machine, and the definite, epoch-by-epoch
commitment of the work progress during the computation. Clearly, the latter technique
was actually an attempt to compromise the heavy cost of assuring a definition progress
(i.e.,the completion of an epoch) by exploiting some intermediate tentative computations
(i.e., the completion of a virtual superstep). The proposed simulation strategy, Robust-
BSP, is Las Vegas, since HECKPOINT and BACKTRACK operations assure the work
progress of the execution of the input algorithm, as long as there are a{Imest)n
live processors during the whole processi§ an input parameter to our simulation
strategy).

Yet, there remain several interesting open questions that arise through this work,
which are also indicated in many other related articles in the literature, especially in
the framework of load balancing. Such an open question might be the consideration
of a dynamically changing (by means of unreliable nodes or links) network, that is
continuously imposed computational threads, and the convergence of such a system to
a stable state (if it ever converges).

Additionally, it would be very interesting to invent a deterministic simulation strat-
egy that would be at least as efficient as RolBS®P. An intriguing open question is
also a lower bound on the performance of any simulation strategy, that would depend on
the fault occurrences during the execution esgalgorithm.

As for the kind of faults that are considered, in this work we studied the fail-stop
model (restartable at any time, but reused from the first job after their reactivation).
One can also extend our techniques to deal with malicious faults, an issue that is very
challenging especially when dealing with decentralized computations over an insecure
network infrastructure, such as the Internet.
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