
DOI: 10.1007/s002240010009

Theory Comput. Systems33, 427–464 (2000) Theory of
Computing

Systems
© 2000 Springer-Verlag

New York Inc.

Robust Parallel Computations through Randomization∗

S. C. Kontogiannis,1,2 G. E. Pantziou,2,3 P. G. Spirakis,1,2 and M. Yung4

1Computer Engineering and Informatics Department,
Patras University,
GR-26500 Rion, Patras, Greece

2Computer Technology Institute,
Riga Feraioy 61, GR-26221 Patras, Greece
{kontag,pantziou,spirakis}@cti.gr

3Computer Science Department,
Technological Educational Institute of Athens,
GR-12210 Athens, Greece

4Certco, 55 Broad Street, 22nd suite,
New York, NY 10004, USA
moti@cs.columbia.edu; moti@certco.com.

Abstract. In this paper we present an efficient general simulation strategy for
computations designed for fully operationalBSP machines ofn ideal processors,
on n-processor dynamic-fault-proneBSPmachines. The fault occurrences are fail-
stop and fully dynamic, i.e., they are allowed to happen on-line at any point of the
computation, subject to the constraint that the total number of faulty processors
may never exceed a known fraction. The computational paradigm can be exploited
for robust computations over virtual parallel settings with a volatile underlying
infrastructure, such as aNETWORK OF WORKSTATIONS(where workstations may be
taken out of the virtual parallel machine by their owner).

Our simulation strategy is Las Vegas (i.e., it may never fail, due to backtrack-
ing operations to robustly stored instances of the computation, in case of locally
unrecoverable situations). It adopts an adaptive balancing scheme of the workload
among the currently live processors of theBSPmachine.

Our strategy is efficient in the sense that, compared with an optimal off-line
adversarial computation under the same sequence of fault occurrences, it achieves

∗ This work was partially supported by the ESPRIT LTR ALCOM-IT (Contract No. 20244) and GEPP-
COM (Contract No. 9072).

This copy belongs to 'agrawal'

428 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

anO
(
(logn · log logn)2

)
multiplicative factor times the optimal work (namely, this

measure is in the sense of the “competitive ratio” of on-line analysis). In addition,
our scheme is modular, integrated, and considers many implementation points.

We comment that, to our knowledge, no previous work on robust parallel com-
putations has considered fully dynamic faults in theBSPmodel, or in general dis-
tributed memory systems. Furthermore, this is the first time an efficient Las Vegas
simulation in this area is achieved.

1. Introduction

The issue of fault tolerance in the framework of Parallel and Distributed Computing1

tries to capture phenomena where some nodes (or communication links) of a target
decentralized machine corrupt during the execution of a parallel algorithm. The issue
has become very intriguing in recent years, due to the demand for execution of parallel
algorithms over arbitrary sets of machines that work as a whole. In addition, the ne-
cessity of exploiting off-the-shelf computational power has lead to the consideration of
arbitrary environments of Decentralized Computing that may vary with time, according
to the availability of their building blocks. Thus, it would be very interesting to devise
techniques that use an environment which is prone to failures, for the emulation of a sim-
ilar environment which is guaranteed to be fault-free during the execution of a parallel
algorithm. Fault tolerance in the context of Decentralized Computing can be provided
at various levels of such an unstable computing environment:

• At the machine level, where the underlying environment is actually a fixed net-
work of processing elements that tries to overcome the corruption of a specific
node (or edge). The works of this kind are usually based on two major techniques.
The first is the technique of embedding an ideal parallel machine into a fixed, fault-
tolerant underlying network of processing elements which can be fault-tolerant
with only constant slowdown (e.g., in [29] it is shown that ann-node butterfly
or shuffle-exchange network can emulate a fault-free network of the same type
and size, with only constant slowdown). The second technique for providing fault
tolerance at machine level, is the technique of redundant computations. Albeit it
seems that redundancy in parallel computations is rather a waste of computational
power, this technique is as powerful as randomization in some cases, especially
when we have to deal with static faults (see in Section 1.1 the categorization of
fault occurrences).
• At the cost model level, where the abstract machine model that is considered

by the programmer, is itself fault-tolerant. In particular, the cost model tries to
exploit the underlying realistic machine in such a way that the overall execution of
the input algorithm will not be affected by the corruption of arbitrary processing
elements at runtime. The major difference between this and the previous category
of fault tolerance is that, in the latter category, the augmented cost models may

1 In what follows we call the area of Parallel and Distributed ComputingDecentralized Computing.
This terminology is also used in [24]).

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 429

become the middle-tier technologies between the actual (arbitrary) environments
that provide parallel computing capabilities, and the programming environments
that need to consider general-purpose parallel architectures in order to implement
parallel algorithms transferable from parallel machine to parallel machine. Most
works of this kind focus on thePRAM cost model, which used to be the most
popular model of Parallel Computations until the early nineties (e.g., [22], [23],
[26], [25], [7], [8]). Recently some new works on fault-tolerant versions of more
realistic cost models thanPRAM (such asBSP) have arisen, which seem to provide
general solutions for fault-tolerant versions of these realistic cost models (this
work, along with [27], is in this flavor).
• At the programming environment level, in which the programming environ-

ment itself takes over the responsibility of providing fault-tolerant primitives to
the designers of parallel algorithms (e.g., synchronization operations, end-to-end
guaranteed communication, robustness of the storage scheme, agreement proto-
cols among the live processors, etc.). Some of these works are [16], [12], [11],
and [15].

1.1. Categorization of Faults

The major distinction of the fault-tolerance problems is based on the kind of fault occur-
rences they consider. In the area of Parallel Computing, the prevailing model of faults is
thefail-stop model, introduced by Kanellakis and Shvartsman [23], according to which
whenever a processor dies it is excluded from the remaining simulation process. In [22]
the processing elements are allowed to restart at arbitrary times (this is the so-called
restartable fail-stop model). Of course, in that case serious problems with the coor-
dination of work might arise, which are usually dealt with by definite synchronization
operations, or timestamping techniques.

Similarly, in the area of Distributed Computing we may have to cope with a large
range of faults, fromcrashfaults (which are equivalent to the fail-stop model) toomission
faults, or evenmaliciousor byzantine faults (where the faulty processors join forces to
affect the rest of the simulation process). In most cases the crash faults case is considered,
while the malicious faults case has to do mainly with issues such as virus attacks in
decentralized computing environments, secure storage, etc.

Additionally the faults may be classified asstatic (i.e., known at the beginning of
the simulation process) ordynamic (i.e., they may occur at arbitrary points during the
simulation process). Both these cases are quite interesting. More specifically, the static
case reflects the adaptation of a certain cost model or parallel computing environment,
over an unknown (but fixed from that point on) working environment. On the other hand,
the problem of tolerating dynamic processor faults in pragmatic settings, can be seen as
a {Safe Storage & Checkpoint & (dynamic) Scheduling} problem. The challenge lies
in proposing an efficient strategy that will achieve an almost work-preserving, robust
execution of the input algorithm and will also assure a balanced split of the workload
among the operational processors. This strategy will also have to exploit a robust storage
scheme that will tolerate arbitrary processor failures and will also provide a (periodic)
checkpoint procedure to commit work of the simulation process at runtime. Typical
examples of this approach are [11] and the present work.

This copy belongs to 'agrawal'

430 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

1.2. Related Work

As already mentioned, the issue of fault-tolerant computations in decentralized comput-
ing environments covers a wide range, fromPRAM machines to arbitrary decentralized
computing environments. In the following sections we present a synopsis of the most
important articles in which fault tolerance has been dealt with in the literature of Decen-
tralized Computing.

1.2.1. Fault Tolerance onPRAM Machines. There have been many works in the area
of fault tolerance on thePRAM cost model, especially in early nineties [25], [26], [22],
[23], [9]. In these works the fail-stop model is adopted. The reason was that thePRAM

model considers that the input algorithms are executed in a lock-step fashion, and
the processing elements are totally synchronized by a global clock. Thus, there is no
chance of delayed action of a processing element that might completely mislead the
whole computation. On the other hand, the malicious (or byzantine) faults necessitate
the coordination of work among the live processors via the robust implementation of
agreement protocols, which are unnecessary in thePRAM case due to the completely
synchronous operation of the processing elements and the (robust) Shared Memory fea-
ture.

In [26] a general strategy for simulating arbitraryCRCW PRAMsteps over a setting
that allows dynamic processor faults is provided, by solving a core problem for this
cost model, theCertified Write All problem. Note that the existence of simu-
lations of arbitraryPRIORITY CRCW PRAMsteps (which is the strongestPRAM variant)
by at mostO(logn) EREW PRAM steps, implies corresponding results for the weak-
est variant of this cost model as well. In [25] the same problem is dealt with over
the restartable fail-stop model, by using a combination of tentative computations (i.e.,
computations that are most likely to be correct) and definite computations (guaran-
teed computations against any sequence of fault occurrences). This approach achieves
constant amortized slowdown perCRCW PRAM step for many reasonable fault distri-
butions. This is done by having the processors tentatively simulate the fault-free ex-
ecution of the input algorithm, while a definite auditing procedure monitors the sim-
ulation process at specific points. In [23] and [22] some strategies are provided for
dealing with theWrite All problem in the fail-stop, nonrestartable/restartable cases,
where the faults may occur dynamically during the execution of an inputCRCW PRAM

algorithm.
The reader is referred to the monograph of Kanellakis and Shvartsman [4] for an

overview of the most important simulation strategies that deal with the issue of fault
tolerance onPRAM machines and an excellent classification of the instances of fault
tolerance onPRAM machines in the fail-stop model.

1.2.2. Fault Tolerance on Arbitrary Machines. In the case of arbitrary computing envi-
ronments, that consist of processing elements communicating via an underlying network
infrastructure, there are several crucial parameters other than the computational power
provided by the machine that affect the performance of fault-tolerant strategies. Such pa-
rameters are for example the latency of the communication infrastructure, the bandwidth
per processor, and the synchronization cost, that are not accounted for in thePRAM cost

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 431

model. Thus, proprietary solutions for providing fault tolerance in such settings should
be provided, or more appropriate cost models should be chosen, that are closer to the
actual overhead of a simulation strategy.

In [12] the case of dynamic processor faults is considered over an arbitrary message-
passing underlying computing environment of synchronous machines. In this setting, an
optimal strategy is provided for executing a set of independent tasks. In this work it
is stated that the core of any simulation strategy over a synchronous message-passing
environment is a CHECKPOINT routine of the remaining live processors, along with a
BALANCED ALLOCATION strategy. In [16] another primitive operation of distributed com-
puting is considered, namely, the BYZANTINE AGREEMENT. In this work a BYZANTINE

AGREEMENT protocol is provided that is robust against crash failures and has optimal
message complexity. Then it is used as a primitive operation for the provision of a family
of early stopping agreement with improved message complexity and a new solution to
the CHECKPOINTINGprocedure that was provided in [12].

Another work that deals with matters of synchronization over computing environ-
ments of limited asynchrony is [17], where a general strategy for simulating a completely
synchronous network of processing elements (such as aPRAM machine) by a network of
limited asynchrony is provided. Despite the fact that this work considers a totally reliable
underlying network, it is interesting that it uses the notion of tentative computations and
definite auditing (or checkpointing) procedures for safe progress of the simulation pro-
cess, which is a strategy that was exploited in many works of fault tolerance, including
the current work.

Although such proprietary approaches achieve great efficiency (and in some cases
optimality) in the general case of an arbitrary synchronous message-passing computing
environment, they cannot exploit the feature of bulk synchrony provided by some new
cost models (e.g.,BSP, QSM, CGM) that seem to prevail in the area of Parallel Computation
in the last few years. It should also be noted that bulk synchrony (or limited asynchrony)
is inherent in the parallel algorithms themselves in many cases, and this gives rise to
the provision of bulk synchronous, fault-tolerant environments, that focus their power
on features other than the continuous synchronization and agreement protocols, such as
Load Balancing and Robust Storage Schemes.

1.2.3. Fault Tolerance onNETWORKS OF WORKSTATIONS. TheNETWORKS OF WORK-
STATIONS [11], [3] platform tries to satisfy the demand for the construction of parallel
systems using off-the-shelf workstations that deliver and in many cases even surpass
the power and reliability of many large-scale machines. It actually represents an in-
herently asynchronous (or bulk-synchronous) environment for the execution of parallel
algorithms. It seems that a cost model such asQSM or BSPwould be very easily appli-
cable to this parallel setting, because it consists of processing elements communicating
via a specific communication infrastructure, and operates in an asynchronous or bulk-
synchronous mode. In the work of [11] theNETWORK OF WORKSTATIONSis modeled
as a completely asynchronous multiprocessor, shared-memory system, augmented with
a fault-tolerant mechanism that treats even the slow workstations as failed ones. The
architecture of this system is centralized, in the sense that there are specialized proces-
sors that perform specific operations (i.e., there is one task manager that schedules the
pending work, some processors that deposit the necessary information, and some work-

This copy belongs to 'agrawal'

432 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

ers that actually execute the tasks that are assigned to them). Nevertheless, as stated in
the present work, an optimal fault-tolerant strategy should minimize job migration and
should be integrated into the parallel system itself. This work actually tries to exploit the
techniques that have appeared in the literature for providing fault tolerance overPRAM,
combined with robust storage schemes based on information dispersal techniques (see
[32]). Of course fault-tolerant strategies on more relevant cost models will be much more
realistic.

1.2.4. Fault Tolerance onBSP Machines. TheBSP cost model focuses mainly on the
{computation & communication & bulk synchrony} cost during the execution of an
algorithm, rather than on the continuous synchronization procedure of a completely
asynchronous setting, as in the cases of [16] and [12]. Thus new strategies are necessitated
that exploit this special characteristic of bulk synchrony and will provide fault tolerance
on BSPmachines.

In [27] the issue of fault tolerance overBSPmachines has been addressed. Simula-
tions for two different cases were considered. In the static case, the faulty or unavailable
processors are already known at the beginning of the computation and no processor
changes its status afterwards. On the other hand, in the (semi)dynamic case, each pro-
cessor may fail or become unavailable with a fixed probability during the computation
and remains so until the end of the computation; however, some critical periods during
the computation where no processor was allowed to fail, could not be avoided. In this
work, some Monte Carlo constructions based on embedding of the virtualBSPmachine
on the operational subset of the realBSP machine (for the static case) and of work re-
dundancy (for the semidynamic case) assure efficient executions ofBSPalgorithms over
fault-proneBSPmachines.

1.3. Our Contribution

In this paper we generalize the work of [27] and consider fault-tolerantBSPcomputations
under fully dynamic processor faults without assuming any fault-free periods.2 Namely,
the faults may happen on-line at any point of the computation. To tackle the problem, the
issue of the fault tolerance onBSPis modeled as an independent-jobs scheduling problem,
on a dynamically changing computing environment. To be more specific, consider having
an algorithm that is designed for an ideal, fault-freen-processorBSPmachine. Each virtual
superstep of this algorithm may be thought of as a set ofn independent computational
threads that impose some communication demands (i.e., the implementation of anh-
relation among these threads), and correspond to the work to be done by each virtual
processor during the current virtual superstep. Our task is to assign this amount of work on
a dynamically changing set of live (or simply available, or not stalled) processors, in such
a way that, as long as there are at least(1− a)n live processors (a is an input parameter
of the realistic setting that will be used), this amount of work will be successfully
executed. The goal is to choose an efficient strategy that will achieve an almost work-
preserving, robust execution of theBSPalgorithm, and will also assure a balanced split
of the workload among the operational processors. We propose a modular and efficient

2 A preliminary version of the current work was presented in SPAA 98 [28].

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 433

simulation scheme which, compared with an optimal off-line adversarial computation
under the same sequence of fault occurrences, achieves anO

(
(logn · log logn)2

)
-factor

times the optimal work.
The proposed scheme is Las Vegas, i.e., it always completes the computation suc-

cessfully. This is so, due to a BACKTRACKING process, which retrieves robustly stored
instances of the simulation process in case an interruption to the flow of the computation
has occurred, due to locally unrecoverable situations.

The proposed strategy combines an ADAPTIVE LOAD BALANCING scheme with a
MIXED STORAGEscheme (based on Rabin’sInformation Dispersal Algorithm[32]) and
a CHECKPOINTING procedure (that exploits a BSPAGREEMENT Protocol for periodic
synchronization among the still live processing elements).

In what follows we present the Robust-BSP simulation strategy for handling pro-
cessor failures on theBSPcost model. This strategy has to face fully dynamic processor
faults and a more complex approach is adopted, that combines a balancing scheme, a
storage scheme, and a checkpointing procedure. In Section 2 we give a brief description
of theBSPcost model, and we introduce theSparse Occupancy problem, that will be
used in our analysis. In Section 3 we present the major routines used by Robust-BSP and
we present our mixed storage scheme that assures the robustness of the whole process.
In Section 4 we present the adaptive balancing scheme that has been adopted by our
simulation strategy.

2. Preliminaries

2.1. TheBSPCost Model

TheBulk Synchronous Parallel(BSP) model was introduced by Valiant [34] as a bridg-
ing model that tries to close the gap between the domains of decentralized architectures
and parallel algorithms.

The applicability of theBSP cost model lies in the fact that, apart from the cost
of the parallelism that is accounted for by the traditionalPRAM cost model, it also
considers the communication and synchronization limitations that are imposed by the
realistic decentralized architectures. Yet, it does not limit the interoperability of the
model among different decentralized computing environments, by abstracting away
from the designers detailed architectural features such as the topology of the process-
ing elements, or the synchronization procedures. Thus, the objective of this model is
to allow the design of parallel algorithms that can be efficiently executed on a vari-
ety of decentralized architectures, at a predictable cost, with respect to some archi-
tectural parameters that reflect the capabilities of the underlying decentralized ma-
chine.

A BSP algorithmA consists of a sequence ofsuperstepsthat are separated by
Bulk Synchronization operations (SYNC in short). Each superstep consists of aLo-
cal Computation phase and aCommunication Phase (LC-phase and Comm-phase,
respectively). During the LC-phase of a superstep each processor performs a sequence
of operations on data held in its local memory, while the Comm-phase takes over the
transmission of the outgoing messages of each processing element to their destinations,

This copy belongs to 'agrawal'

434 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

via the underlying communication infrastructure. At the end of the superstep a SYNC
operation indicates the end of the current superstep. ABSP machine consists of the
following components:

• A collection ofn identicalprocessor/memory elementswhich are distinguished
by their uniqueidentification numbers.
• A communication infrastructure takes over the point-to-point communication

process. This infrastructure is characterized by the bandwidthg and the latency
parameterL which are explained in the next paragraph).
• A barrier synchronization mechanismamong then processing elements.

The two parameters of the decentralized architecture (apart from the numbern of pro-
cessing elements) that are taken into account byBSP are thebandwidth g, i.e., the
(per-processor) ratio of the total throughput of the whole system in terms of local com-
putation operations, to the throughput of the underlying communication network in terms
of words of information delivered, and thelatency L, which is the minimum time in-
terval between two consecutive SYNC operations.3 Thus, the running time of a single
superstep on theBSPcost model is characterized by the parametersn, g, andL, and is
given by the following formula:

Tsuperstep= max{L , TLC + TComm}, (1)

whereTLC is the maximum (among the processing elements) cost for local computations,
andTComm is the maximum time needed for transmitting all the outgoing messages to
their destinations. If we consider that during the Comm-phase each processor sends and
receives at mosth one-word messages (i.e., anh-relation has to be implemented during
the Comm-phase), thenTComm= g · h, according to McColl [30]. In that case, we have

Tsuperstep= max{L , TLC + g · h}. (2)

Remark. In some cases the underlying machine charges the implementation of an
h-relation asg ·max{h, h0} for someh0 that depends on the machine. This is due to a
fixed communication initialization cost, which is irrelevant to the size of theh-relation
to be implemented by the network infrastructure.

Finally, the following fact will be used in our time estimations in what follows (for
a justification of this fact, the reader is referred to [18] and [4]):

Fact 2.1. There exists aBSP algorithm that broadcasts a k-word message to N pro-
cessors, that requires time at mostO(log N ·max{L , gk/log N}). Moreover, if L ≤
gk/log N, then the algorithm needs timeO(gk).

2.2. The Sparse Occupancy Problem

In this subsection we present some basicBalls&Bins problems that will be useful in
the analysis of our simulation strategy in Section 3.

3 Observe thatL is a lower bound on the duration of a single superstep.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 435

Assume we have a number ofM independent sources that throw balls independently
and uniformly at random inton identical bins. We study the case of each source throwing
m ¿ n balls into then bins. We call this family of problems the family ofSparse
Occupancy problems.

Lemma 2.1. Consider having a single source that throws m¿ n balls into the n bins.
The probability of each bin being occupied by at most one ball tends to unity.

Proof. Consider a specific bin (e.g.,B1) and let

pi ≡ P[B1 has exactlyi balls],
p̌i ≡ P[B1 has at leasti balls], p̂i ≡ P[B1has at mosti balls],
P̌i ≡ P[∃ bin with at leasti balls], P̂i ≡ P[Every bin contains at mosti balls].

We seekP̂1 = 1− P̌2. Observe thaťP2 ≤
∑n

i=1 p̌2 = n · p̌2 and p̌2 = 1− p̂1. However,

p̂1 = p0+ p1 =
(

1− 1

n

)m

+
(

n
1

)
·
(

1− 1

n

)m−1

· 1

n

= 2

(
1− 1

n

)m−1

·
(

1− 1

2n

)
∼ 2 exp

(
−2m− 1

2n

)
.

Hence,p̌2 and P̌2 are now given by

p̌2 = 1− 2 exp

(
−2m− 1

2n

)
≤ 2 ·

(
1− exp

(
−2m− 1

2n

))
and

P̌2 ≤ 2n ·
(

1− exp

(
−2m− 1

2n

))
.

Finally, we haveP̂1 ≥ 1 − 2n · (1− exp(−(2m− 1)/2n)) −→ 1, for m ¿ n and
n→∞.

Remark. The use of this analysis instead of using one of the classical probabilistic
techniques for the Occupancy Problem (e.g., in [31] and [21] where a martingale is used
to provide some tight bounds) is that these tools are based on Azuma’s inequality, which
is not such a strong tool to capture so small discrepancies from the expected value, as
in our vase. For example, in [21] the bounds hold form À n in the proof with the
martingales, while form ≈ n there is another proof of (less tight) bounds, based on
Markov’s inequality.

Lemma 2.2. Assume we have A(n) = O(n) sources that throw m balls each indepen-
dently and uniformly at random(u.a.r. in short) into the n bins, where m¿ n. Then
the probability of there existing a bin whose number of balls diverges fromO logn is
polynomially small.

This copy belongs to 'agrawal'

436 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

Proof. Let M(n) ≡ A(n) ·m denote the total number of balls thrown into then bins
by theA(n) sources. Let alsoXi, j be the indicator variable of thej th ball going into bin
i , while Bi ≡

∑M(n)
j=1 Xi, j is the total number of balls that go into thei th bin. Note that,

∀i ∈ [n], {Xi, j : j ∈ M(n)} is a set of independent, identically distributed (i.i.d. in short)
random variables, while{B1, . . . , Bn} arenegatively associatedrandom variables (for
the definition of the negative association property of a set of random variables, see [14]).
Note also thatE[Bi] =

∑M(n)
j=1 E[Xi, j] = 1/n · A(n) ·m= A(n)/n ·m.

Fix a bin i ∈ [n]. Then, sinceBi is the sum ofM(n) i.i.d. random variables with
success probability 1/n, by applying Chernoff Bounds we get the following, for all
0< δ1, δ2 ≤ 1:

P[Bi > k1 logn] < exp

(
−E[Bi] · δ2

1

3

)
= exp

(
−k1n(logn− 1)2

3A(n) ·m
)
,

P[Bi < k2 logn] < exp

(
−E[Bi] · δ2

2

2

)
= exp

(
− A(n) ·m

2n
−k2 logn(k2n logn− 2)

)
,

where

δ1 ≡ n(k1 logn− 1)

A(n) ·m ⇒ m≥ n(k2 logn− 1)

A(n)

and

δ2 ≡ 1− k2n logn

A(n) ·m ⇒ m>
k2n logn

A(n)
.

From these last inequalities we can clearly deduce that

P[∃i ∈ [n], Bi >k1 logn] <
∑
j∈[n]

exp

(
−k1n(logn− 1)2

3A(n) ·m
)

≤ n · exp

(
k1n(logn− 1)2

3A(n) ·m
)
= n−k3, (3)

P[∃i ∈ [n], Bi < k2 logn] <
∑
j∈[n]

exp

(
− A(n) ·m

2n
− k2 logn(k2 logn− 2)

)
≤ n−k4, (4)

where

k3= k1·n(logn−1)2

3 ln n·A(n) ·m − 1 and k4= A(n)·m
2n ln n

+ k2 logn

ln n
· (k2n logn− 1)−1.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 437

3. A Paradigm for Robust Computations in Dynamically Changing
Environments: Robust-BSP

In this section we present the major techniques that are exploited by Robust-BSP in
order to provide a safe computational framework forBSP algorithms over arbitrarily
changing computing environments.

3.1. The Dynamic Simulation Model

Suppose that we are given aBSPalgorithmA, which is designed to run over a hypothet-
ical, fault-freen-processorBSP machine (theVirtual Machine , VM). Because of its
BSPnature,A assigns atomic workloads and imposes some demands for communication
(e.g., the implementation of anh-relation) among the virtual processing elements, in
each superstep ofVM. We denote the atomic workload of a specific virtual processor
Qi , along with the portion of communication on behalf ofQi for the current virtual
superstep, asthread Ti . In that case, the execution of each virtual superstep can be
considered as a balanced, multithreaded computation, while the execution ofAmay be
considered as a sequence of multithreaded computations, distinguished by periodic bar-
rier synchronization (SYNC) operations among the processing elements (see Figure 1).

Suppose also that we are given ann-processorBSP machine which is prone to
processor failures (theReal Machine,RM). Then the task ofRMwill be to assure the
progress of the simulation process until the end of the execution of the input algorithmA,
but also to keep the total work evenly balanced among the remaining live processors and
assure recovery from any sequence of faults at any time. Notice that we do not exploit
any slackness in our setting, which might indicate an “optimal” use of a subset ofRM
for the improvement of our results. This is because we want to have a realistic measure
of the performance of our simulation process.

Let the (uniquely) assigned workload of a real processing elementPi ofRM com-
prise its PRIMARYJOB. This means that the major task ofPi in each virtual superstep will
be to simulate the execution of the threads which correspond to the virtual processors

Fig. 1. Representation of aBSPalgorithm as a multithreaded decentralized computation.

This copy belongs to 'agrawal'

438 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

residing in itsPrimaryJobQueue. Any additional workload that may be taken over by
Pi (at its own initiative) during the simulation process, will comprise a SECONDARYJOB.
This load is not necessarily uniquely assigned to the specific processor.

Initially we assume that there is a “1–1” correspondence between the processing
elements ofRM andVM. This means that any thread of virtual processorQi is initially
considered to be executed by the real processorPi (which is its physical destination),
unlessPi dies, in which caseQi will have to migrate to another real processor that
will have to execute its forthcoming threads. The necessary information for executing
a specific threadTm is stored by a LOCALSTORAGE scheme among the currently live
real processors. This information is stored using as a key theVirtual Identification
number (V id) of the corresponding virtual processor. This storage scheme is based on a
BSPimplementation of the well knowInformation Dispersal Algorithm(IDA [32]) and
assures robustness against small bursts of processor failures.

Additionally, a GLOBALSTORAGEscheme has been adopted, for the periodic creation
of some robust replicas of specific instances ofRM’s status during the simulation
process (we call these securely stored instancesSafeStates). TheSafeStates play the
role of reference points to which our simulation process will backtrack, in case of locally
unrecoverable situations.

We also assume that processors may share a seed from a strong pseudorandom
number generator (i.e., we have “coordinated randomness” among the operational nodes
ofRM).

Definition 3.1. A thread is calledassignedif it is included in a live real processor’s
PrimaryJobQueue, otherwise it is calledpending. Additionally, if a real processor has
already completed the simulation of a specific thread (i.e., it has simulated itsLC-phase
and itsComm-phaseand has safely stored the new status of the corresponding virtual
processor), then this thread is considered to becompleted till the end of the current
virtual superstep. Finally, a thread that corresponds to a virtual processorQi and is
assigned to a real processorPj with i 6= j (i.e., Pj is not the physical destination ofQi)
is calledmigrated.

For the reader’s easier understanding of the measured quantities, we adopt the following
terminology:

Ak: the number of currently live processors at the beginning of virtual super-
stepVSk (estimation).

Ci /Pi /Ai : the number of completed/pending/assigned threads at the end of SEC-
ONDARYJOB Ji of VSk.

h: the size of theh-relation that has to be implemented among then threads
duringVSk onVM.

Fk: the number of faults that occur duringVSk.
[n]: the set{1, . . . ,n}.

For the representation of theCurrentStatus of the VirtualBSPMachine (VM), we use the
following data structures, which are robustly stored among the live processors ofRM,
using a nontrivial combination of a tentative storage scheme (the LOCALSTORAGE) and
a definite one (the GLOBALSTORAGE) (the reader is referred to Section 3.5.3, for the

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 439

description of the mixed storage scheme adopted):

VLMi : the contents of the Local Memory used by the virtual processing element
Qi . The size of theVLMs. is an input parameter for our simulation strategy.
A reasonable assumption might be to consider a polylogarithmic size (e.g.,
O(log2 n)) for these local memories.

LoUi : a list of still undelivered outgoing messages, on behalf of the threads hosted
by the live processorPi .

PJi : thePrimaryJobQueue of Pi , containing the (uniquely assigned) threads that
it executes during each PRIMARYJOB.

b: the number of threads chosen to be executed by a live processor during a
SECONDARYJOB.

Nu: the size of a local neighborhood of real processors afteru BACKTRACK oper-
ations have occurred, withN0 = logn andNu−1 = 2u · logn.

3.2. Assumptions

Regarding the model of faults, we consider that an oblivious adversary determines a
sequence of processor failures that are randomly distributed all over the whole simulation
of a specific input algorithmA, and these faults are unrecoverable (i.e., we adopt the
nonrestartable fail-stop model, where the dynamic faults are distributed uniformly during
the whole simulation process).

This fault model tries to capture the behavior of a decentralized setting, such as a
NETWORK OF WORKSTATIONS, or an arbitrary distributed computing environment, that
behaves like a dynamically changing parallel machine through a virtual parallel interface
(e.g.,MPI or PVM). This dynamic computing environment initially allocates processors
to the simulation process according to the demands of the input algorithm, and then
reclaims resources (according to the demands of the whole parallel setting) because of
processor unavailability.

It is also assumed that the amount of processor failures during the simulation process
is upper-bounded by a fractiona, which is an input parameter to our simulation strategy.
Clearly, this bound affects the cost for creatingSafeStates during the simulation process,
to which the strategy will backtrack, when some unexpected behavior of the parallel
setting occurs, without jeopardizing the whole simulation process.

From the above two restrictions (i.e., the random distribution of the faults during the
simulation process and the existence of an overall upper-bound on the fraction of faults),
it becomes apparent that if we divide the simulation time into sufficiently large (e.g.,
polylog(n)) time intervals, there is an upper boundr = r (a) on the fraction of faults that
may occur in each of these intervals and it is easily shown that the concentration around
this bound is very sharp (this is easily understood by a simple application of the well
knowCoupon Collector’s Problem). This implies that if a virtual superstepVSk

needs polylog(n) time to be executed, thenFk ≤ rn.
For the communication part, we suppose that theBSPalgorithmA to be executed

imposes regularh-relation implementations (for someh, which is a parameter of the
input algorithm), which means that the corresponding communication graph among the
n threads is anh-regular digraph. In case this is not true, some dummy messages could
be used so as to have a regular communication digraph.

This copy belongs to 'agrawal'

440 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

Fig. 2. The flowchart of Robust-BSP .

3.3. Overview of Robust-BSP
Robust-BSP considers aBSPalgorithmA with a polynomial number of virtual super-
steps, and divides it intoepochsof K0 virtual supersteps (the size of each epoch can be
as large asK0 = 2(n), as will be demonstrated later by the analysis of the corruption
probabilities of our strategy). It then tries to simulate robustly the execution of the next
epoch ofA and create a newSafeState at the end of it, so as to have the work done up
to this point committed. In what follows we deal with the simulation of a single epoch
of virtual supersteps and the presentation is done in a top-down fashion, starting from
an overview of Robust-BSP (see Figures 2 and 3), and then we describe the major
techniques that we use.

[1] For k = 1 TO K0 PARDO

[2] Perform a PRIMARYJOB for VSk.

[3] IF (NOT FINISHED)THEN PARDO y times:

[3.1] IF CHECKPOINT== OK

[3.2] THEN Perform a new SECONDARYJOB

[3.3] ELSE Disseminate the new corruption information

during the next BSPAGREEMENT

[4] ENDPARDO

[5] IF CHECKPOINT != OK THEN BACKTRACK

to the lastSafeState

[6] ELSE IF k = K0 THEN Perform a GLOBALSTORAGEAND setk := 1

[7] ENDFOR

Fig. 3. The Robust-BSP simulation strategy.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 441

The purpose of Robust-BSP is initially to let the live processors ofRM try to
execute the current virtual superstepVSk as if there were no more processor failures
and the workload were evenly distributed among them (this is done during the rou-
tine PRIMARYJOB). In caseVSk is not yet completed, the overall strategy executesy
SECONDARYJOBS, so that the work ofVSk is finished and the pending workload is
evenly distributed among the remaining live processors. As will be shown in what fol-
lows, a double logarithmic number of SECONDARYJOBS is enough for our strategy to
work.

Remark. ThePrimaryJobQueues of the remaining live processors at the end of the
previous virtual superstep(VSk−1) comprise a partition of the set of virtual processors
into disjoint and almost evenly balanced sets of threads to be executed. Thus, provided
that no more processor failures occur during the PRIMARYJOB of VSk and the workload is
already evenly balanced among the live processors ofRM, this part would be sufficient
for the completion of the work ofVSk. Notice that no work replication is imposed at this
part of our strategy.

To assure the robustness of our simulation against processor failures, we deploy a
fast storage scheme (see Section 3.5.3), according to which theCurrentStatus of VM is
stored during each superstep in some properly constructed neighborhoods of real pro-
cessors, the size of which depends on the fault occurrences (up to the specific point
of the simulation process). A GLOBALSTORAGE scheme is also deployed for creating
a SafeState at the end of each epoch: that is a robust storage of a specific instance of
VM’s CurrentStatus so as to be able to reconstruct it at any time, if a neighborhood
of processors has been corrupted. The LOCALSTORAGE procedure is based on an im-
plementation of the well knownInformation Dispersal Algorithm(IDA [32]), while the
GLOBALSTORAGE procedure creates the necessary replicas of LOCALSTORAGESso that
up to arbitrarya · n processor failures can be overcome.

In the case of a new corruption of the LOCALSTORAGE having been discovered by
a processor, the dissemination of this exceptional information will occur the next time
an agreement protocol for coordination of work among the remaining live processors
is performed. This is done at the beginning of the next job (either a PRIMARYJOB or a
SECONDARYJOB). At the end of the current epoch, a BACKTRACK routine is performed
by all live processors to the lastSafeState, in case a locally unrecoverable error has
occurred, otherwise a newSafeState is created and the work of the current epoch is then
completed.

Remark. A possible new processor failure that will not let the corruption information
be disseminated to all the live processors, or a failure of the GLOBALSTORAGE may
cause no problem at all. This is because the problematic situation will be discovered
during the next superstep, and a new BACKTRACK procedure will fix this abnormality.
Additionally, as will be demonstrated in Section 3.5.2, each time a new BACKTRACK

occurs, the probability of having a new corruption decreases the significantly because
of the redistribution of faults in the new, double-sized neighborhoods of processors and
thus there is no chance of an infinite loop in the same epoch.

This copy belongs to 'agrawal'

442 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

In our simulation strategy, an ADAPTIVE LOAD BALANCING scheme (ALB in short) is
adopted. It tries to distribute the workload ofVMevenly among the currently operational
processors ofRM. The purpose of ALB is to make the PRIMARYJOB routine work as
close to optimal as possible, in the case when the parallel setting is at a stable state
(i.e., when no more processors dies for a while). This is a consequence of the “almost
even workloads among the operational processors” property, achieved by our balancing
scheme. This is actually an on-line load-balancing technique based on ideas such as work
stealing [6] and dynamic contest among the live processors for the assignment of new
work. In Section 4, ALB is shown to have a very good performance with respect to our
simulation model.

The “FINISHED?” condition of the Robust-BSP strategy can be implemented by
the network infrastructure that will have to add the number of completed threads in
the PrimaryJobQueues of the live processors, and will signify the end ofVSk if n
is reached by this sum. This added intelligence of the network infrastructure is ne-
cessitated by the fact that apart from the periodic synchronization operation among
the virtual processors is also necessary, that will signify the end of the virtual super-
steps in the ideal machine (VM). Another approach could be the use of a tentative
estimation for this Boolean condition, by having the processors apply a BSPAGREE-
MENT protocol to decide whether the simulation ofVSk has been completed or not.
Of course, a solution like this would require an assured load-balancing property (i.e.,
very tight upper and lower bounds on thePrimaryJobQueues) for the failure probabil-
ity to be extremely small. On the other hand, some checkpointing procedures such as
those proposed in [16] and [12] could be adapted to provide this virtual SYNC opera-
tion that would assure the integrity ofVM. Recall that a possible failure at this point
would not be catastrophic since it would be discovered anyway during the next virtual
superstep.

As for the “BACKTRACK?” condition at the end of the current virtual superstep, if
a new corruption of the LOCAL STORAGE has been discovered by a processor, the dis-
semination of this exceptional information will occur the next time a BSPAGREEMENT

protocol is executed by the remaining live processors ofRM. This is done at the be-
ginning of the next job (either a PRIMARYJOB or a SECONDARYJOB). At the end of the
current superstep, a BACKTRACK routine is performed by all the live processors to the last
SafeState in case a locally unrecoverable error has occurred. Otherwise, the simulation
process proceeds with a new virtual superstep or with the creation of a newSafeState
and the work of the current epoch is then completed.

3.4. TheBSPAGREEMENTProtocol: a Basic Technique

The purpose of an agreement protocol is to be able to have all live processors of the
BSP machine agree in a unique value. In our BSPAGREEMENT protocol (see Figure 4),
each live processor computes anInitial Value and subsequently an agreement rule (e.g.,
majority, median, etc.), which is given as an input parameter to this protocol, is employed
in order to have all live processors agree on a unique value. For example, suppose that
we have to make a unique estimation of the number of currently live processors or
choose a unique random seed for the later choice of a hash function, common to all live
processors.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 443

[1] Initial Values: Each processor estimates independently an initial value.

[2] PARDO x times:

[2.1] BSPAgreement:Each processor sends logn messages to random

target processors.

[2.2] For each live processor,NewEstimation= AgreementRule(samples)

Fig. 4. The BSPAGREEMENTprotocol.

At the beginning, each live processor acquires its ownInitial Value (e.g., RAN-
DOMSAMPLING is applied by each live processor to get an estimation of the number
of live processors inRM or a random seed is chosen independently by each live
processor). Subsequently, some rounds of agreement attempts are performed in or-
der for all live processors eventually to end up with the same value or with values
that are very close to each other. In a single round, each live processor estimates a
new value according to the agreement rule that is applied on a new random sample of
values.

Remark. The agreement rule depends on the nature of the problem to be solved.
For example, a “median” agreement rule for the choice of a unique random seed would
destroy the randomness of a common seed, while a “majority” rule would work, provided
that theInitial Values are truly randomly and uniformly chosen. On the other hand, if
the problem is the estimation of the number of currently live processors,Ak, then a
“weighted median” among the newly sampled values seems more reasonable than a
“majority” rule that would have no sense in this case.

Case study: estimation of currently live processors. In this subsection we demonstrate
how we use the BSPAGREEMENTprotocol to have the remaining live processors acquire
consistent estimations of their number inRM, i.e., with their variance converging to
zero.

The Initial Values of step [1] (see Figure 4) are determined by an application of
RANDOMSAMPLING independently by each live processor: each live processor throws in-
dependently and uniformly at random (u.a.r.)O(logn) polling messages (which are sent
to distinct targets with overwhelming probability according to theSparse Occupancy
problem, see Section 2.2). Then each polled live processor responds to the polling by
sending a message to the corresponding requester.

In step [2] a sequence of rounds is performed among the live processors, so that
they eventually agree in tight estimations of the number of live processors
inRM.

Lemma 3.1. The requested number of rounds of theBSPAGREEMENTprotocol, until
all processors have agreed(with polynomially small deviation probability) on a unique
value, isO(logn/logN), whereN is the size of the neighborhood of theRANDOMSAM-
PLING applications.

This copy belongs to 'agrawal'

444 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

Proof. We proceed in our analysis by following the BSPAGREEMENTroutine step by
step:

Step1. Each live processorPj samplesN real processors fromRM. Consider one
indicator variableXi, j for the i th sample ofPj , which is

Xi, j =
{

1 if the i th sample ofPj corresponds to a live processor
0 otherwise.

RANDOMSAMPLING is actually the implementation of twoO(N)-relations, one dur-
ing which each live processor pollsNprocessors chosen u.a.r. fromRM (with replace-
ment), and one for getting the answers by the live polled processors. If at the beginning
of VSk the number of live processors isAk and RANDOMSAMPLING is performed at the
beginning ofVSk, then the probability of each sample hitting a live processor will be
upper-bounded bypa = Ak/n. Thus,P[Xi, j = 1] ≤ pa, andP[Xi, j = 0] ≥ 1−pa. Since
RANDOMSAMPLING is a relatively fast routine (with respect to the fact that the faults are
considered to be uniformly distributed along the simulation process),pa may be consid-
ered to be a very good approximation of the actual ratio of live processors inRM at the
end of RANDOMSAMPLING. Thus, these indicator variables are clearly i.i.d. (random sam-
ples with replacement from the same sample space) with success probability very close
to pa, which implies thatE[Xi, j] = pa and Var[Xi, j] = pa · (1− pa),∀i ∈ [N], j ∈ [n].
Hence,Pj ’s first estimation of the ratio of live processors inRM is given by the follow-
ing relation:R(0)j = 1/N ·∑N

i=1 Xi, j . The expected value and the variance of this new
random variable are

E[R(0)j] = pa and Var[R(0)j]

= 1

N2
·
(

N∑
i=1

Var[Xi, j] − 2 ·
∑
i>k

Cov(Xi, j , Xk, j)

)
= pa · (1− pa)

N
.

Step2. Each live processorPj randomly selects processors fromRM until it gets
N live answers (this implies that each live processor will have to sendc/(1 − a) ·
N polling messages to randomly chosen targets, and will accept the firstN answers).
The new estimation ofPj if R(1)j = 1/N ·∑N

i=1 R(0)λi
(Pj has accepted the answers of

Pλ1, Pλ2, . . . , PλN). For this new estimation we have

E[R(1)j] = pa and Var[R(1)j] = 1

N2
·
(

N∑
i=1

Var[R(1)λi
] − 2 ·

∑
i>k

Cov(R(0)λi
, R(0)λk

)

)
.

SinceR(0)λ1
, P(0)

λ2
, . . . , R(0)λN

are variables randomly chosen (with replacement) from the

same sample space, they are independent from each other, and this implies that Cov(R(0)λi
,

R(0)λk
) = 0,∀ j, k ∈ [N]. Hence, we have that

Var[R(1)j] = 1

N2
·

N∑
i=1

Var[R(0)λi
] = pa · (1− pa)

N2
. (5)

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 445

Step3. Repeat step 2x times. After thesex repetitions we have

E[R(x+1)
i] = pa and Var[R(x+1)

j] = pa · (1− pa)

Nx+2
.

Each processorPj that is live estimates the number of live processors inRM at the
beginning of the Virtual SuperstepVSk asAj,k = n · R(x+1)

j , where

E[Aj,k] = n · pa and Var[Aj,k] = n2 · Var[R(x+1)
j] = n2 pa(1− pa)

Nx+2
≤ n2

4Nx+2
.

In order to have small deviations among the live processors’ estimations, the following
must hold:

lim
n→∞

n2

4Nx+2
= 0 ⇒ x = O

(
logn

logN

)
, (6)

considering thatN = logn. For example, ifx = c logn/logN− 2, then Var[Aj,k] =
n−c+2/4, and by applying Chebysev’s inequality we haveP[|Aj,k − pa · n| ≥ 1] ≤
n−2c+4/16.

Lemma 3.2. The time cost ofBSPAGREEMENT is TBSPAgreement= O(logn/log logn ·
max{L , g · logn}).

Proof. Each RANDOMSAMPLING demands the implementation of anO(logn)-relation
(each live processor sendsO(logn)messages, while it may receive more thanO(logn)
messages with polynomially small probability—an immediate application of Lemma 2.2)
in a first superstep, and anotherO(logn)-relation (each polled live processor replies only
to its own requesters) in a second superstep. Thus, twoO(logn)-relations have to be
implemented for RANDOMSAMPLING that cost timeO(max{L , g · logn}). Additionally,
the number of rounds that are necessary for the live processors to acquire consistent
estimations ofAk, has been proved to beO(logn/log logn) (considering thatN= logn),
while the cost of each round is dominated by the cost of RANDOMSAMPLING.

3.5. The Major Techniques Exploited by Robust-BSP
In this section we present the major techniques that are used by the Robust-BSP sim-
ulation strategy. These techniques have to do with the simulation process itself (Sec-
tion 3.5.1), the periodic synchronization of the remaining live processors (Section 3.5.2),
and the mixed storage scheme (Section 3.5.3).

3.5.1. Primary and Secondary Jobs

Primary job. Suppose that the current virtual superstep that has to be executed isVSk.
As mentioned above, the task of PRIMARYJOB (Figure 5) is to let all live processors
behave as if everything were fine and no new processor failures will occur duringVSk.

This copy belongs to 'agrawal'

446 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

[1] BSPAGREEMENT: Find an estimation of the currently live processors,Ak.

[2] IF |PJi | > c · n/Ak

THEN Discard some of the assigned threads at random, until|PJj | ≤ c1 · /Ak.

[3] LC-phase:Execute all the LC-phases of the threads inPJi .

[4] Comm-phase:Send the outgoing messages to their physical destinations.

[5] Register the undelivered messages to the List of Undelivered messages,LoUi .

[6] SDOU: Deliver as many as possible of the messages inLoUs indirectly.

[7] Store theVLMs of all the completed threads using LOCALSTORAGE.

Fig. 5. The PRIMARYJOB procedure.

In this phase, each live processorPi executes its own (unique) chunk of threads, held
in PJi . Before starting the execution of the threads held inPJi , Pi upper-bounds the
workload that it will execute (based on an estimationAk of the currently live processors).
Let µk ≡ c1n/Ak denote the maximum workload of eachPrimaryJobQueue after the
discarding operation. Consequently, each live processor executes its own portion of
work, sends the outgoing messages to their physical destinations, and tries (employing
the SDOU routine) to forward indirectly the messages heading for migrated threads.
Finally, it stores theVLM of each completed thread using the LOCALSTORAGEscheme.

Lemma 3.3. The cost ofPRIMARYJOB that is executed at the beginning of the virtual
superstep VSk is given by

TPrimJob= O(µk ·max{h · logn, log4 n, TLC + TComm}). (7)

Proof. For the time analysis of PRIMARYJOB we notice the following: step [1] is an
application of the BSPAGREEMENTprotocol, so that all the live processors acquire the
same estimation of the number of live processors,Ak. The time cost for this step is
O(logn/log logn · max{L , g · logn}), as shown in Section 3.4 presenting the BSP-
AGREEMENTprotocol. Step [2] is trivial, while steps [3] and [4] are the same as if the
input algorithmA ran directly onVM, and impose no multiplicative overhead to the
simulation process. Step [5] is also trivial, while step [6] costsO(h · µk · logn) (for
this time estimation, see the time analysis of the SDOU procedure in Lemma 3.8).
Finally, the LOCALSTORAGE procedure in step [7] costs at most 2µk · |VLM| · (Nu +
max{L , g}) according to the discussion about the safe storage of theCurrentStatus
(see Section 3.5.3). Considering that|VLM| = O(log2 n) andNu ≤ log2 n with high
probability (see Section 3.5.2 for BACKTRACK occurrences), we get the stated cost for the
PRIMARYJOB.

Remark. Recall thatNu is a parameter that only depends on the total numberu of
BACKTRACK operations having occurred until the end of the current epoch.

Secondary job. As previously mentioned, the goal of each SECONDARYJOB Ji is to
complete the outstanding work ofVSk and redistribute it among the live processors as
evenly as possible (see Figure 6). The new work assignment is done as follows: Each
of the Ak live processing elements choosesb = g(n) · n/Ak threads to cover (that is,

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 447

[1] BSPAGREEMENT: Check for new LOCALSTORAGEcorruptions.

[2] Each live processorPi creates a bucketBi of b randomly chosen threads.

[3] INFORMATIONGATHERING: For all the threads inBi , get the corresponding

VLMs from the appropriate neighborhoods.

[4] LC-phase:Execute the LC-phases of the threads inBi .

[5] Comm-phase:Send all the outgoing messages to their physical destinations.

[6] Register the undelivered messages toLoUi .

[7] SDOU: Send as many of the undelivered messages as possible, indirectly.

[8] Store theVLMs of the just completed threads using LOCALSTORAGE.

Fig. 6. The SECONDARYJOB procedure.

to execute, if not yet completed) either at random or derived by previous unsuccessful
communication attempts with pending threads. For the purposes of the following analysis
we consider all these choices independent and random, although it is our strong belief
that the “biased” choices would make the processing elements focus exactly on the
remaining unsatisfied threads.

Completeness of a secondary job. In this subsection we study the probability of the
SECONDARYJOB Ji leaving pending threads (and thus not being able to complete the
work of VSk) when it finishes. For this we need the following technical lemma.

Lemma 3.4. The number of individual processors that cover a specific(pending)
thread during Ji is at least c3 logn with probability1−n−c4,∀c3 > 0,and c4 depending
on c3.

Proof. This lemma is an application of Lemma 2.2 withc3 = k1 andm= g(n)·n/Ak =
n(k1 logn− 1)/Ak.

We now focus our attention on finding the probability of a specific thread being pending
at the end of thei th SECONDARYJOB, Ji .

Lemma 3.5. ∀c5 > 0,P[Pi ≥ c5] ≤ n−min{c3·log |(1−a)/r],c4}+1/c5.

Proof. For this fact to hold for threadTm, all live processors that coverTm must die
during Ji . However, these processors are randomly chosen amongAk processors, at
most Fk ≤ rn of which will die during the whole current virtual superstep. Hence,
the probability of a specific random choice being a newly dead processor is at most
Fk/Ak ≤ r/(1−a). As a consequence, the probability ofTm being pending at the end of
Ji is bounded by the product of the probability ofTm having been covered by a specific
number of (randomly chosen) processors, times the probability of all these processors
dying during the current virtual superstep. By conditioning on the number of processors

This copy belongs to 'agrawal'

448 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

that coverTm, we have that

P[Tmis pending at the end ofJi] ≤ (1− n−c4) ·
(

r

1− a

)c3 logn

+ n−c4 · 1

≤ 2 · n−min{c3 log(1−a)/r,c4}.

Usingn indicator variables

Zm =
{

1, if Tm becomes pending duringJi ,

0, otherwise,

and settingZ = ∑n
m=1 Zm, it is clear that the number of pending threads at the end

of Ji is Pi = Z andE[Pi] = E[Z] = ∑n
m=1E[Zm] ≤ 2 · n−min{c3·log((1−a)/r),c4}+1. By

applying the Markov inequality on this expectation we get the desired result.

As has been shown up to this point, the probability of having even just one pending
thread at the end of a SECONDARYJOB is polynomially small.

Lemma 3.6. The time cost of eachSECONDARYJOB during the virtual superstep VSk

is given by

TSecJob= O(b ·max{h · logn, log4 n, TLC + TComm}). (8)

Proof. Step [1] in SECONDARYJOB takesO(log2 n) according to the analysis of the
BSPAGREEMENTprotocol (see Section 3.4). Step [2] is a trivial task that is performed
locally by each live processor. Step [3] costsb · (Nu · |VLM|+2· |VLM| ·max{L , g}) time
steps for retrieving the necessary information for theb threads residing in the buckets of
the live processors during the current SECONDARYJOB. Considering thatNu ≤ O(log2 n),
and|VLM| = O(log2 n), this is equal toO(b · (log4 n + logn ·max{L , g})). Steps [4]
and [5] cost at mostb · TLC andb · TComm, respectively, for each live processor. Step [6]
is a trivial local operation, while step [7] costsO(h · b · logn), according to the analysis
of the SDOU procedure (see Lemma 3.8). Finally, the LOCALSTORAGEprocedure in step
[8] costs at most 2· b · |VLM| · (Nu+max{L , g}) = O(b · log4 n). Thus, the overall cost
of each SECONDARYJOB is given by (8).

Secure delivery of undelivered messages. In the SDOU procedure the primary objective
is the safe delivery of messages heading for migrated threads that have been kept in the
LoUs of the live processors up to this point. Additionally, in the case of a SECONDARYJOB

having preceded, this is also the rescheduling procedure for the pending threads.
The basic idea of this procedure (see Figure 7) is the use of multiplemailboxes

for each thread until all threads have been served by at least one live mailbox. That
is, usingν random permutations of [n], (51,52, . . . ,5ν), we proceed inν rounds of
indirect communication attempts, where in roundj each live processorPi tries to send
any message forTm, held in LoUi , successfully to the mailboxP5j (m). Consequently
(in the same round), each mailbox sends the incoming messages of the corresponding
thread to a (possibly one chosen among many) requester ofTm according to the following

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 449

[1] PARDO ν times:

[2] BSPRandomChoice:Each live processor chooses a common random seed.

[3] Choose a new permutation5j according to the random seed and send

all the messages to their corresponding mailboxes.

[4] ThreadRequest:Each processor claims the incoming messages for

its own newly executed threads from the proper mailboxes

(e.g.,Tm from P5j (m)).

[5] ThreadAssignment:Each live mailbox acceptsONLY one of the requests

and sends the incoming messages of the thread that it serves to it.

[6] ThreadCommittment: Each live processorPi that receives the mailbox

of a threadTm, adds it toPJi and marks it as newly completed.

[7] ENDPARDO.

Fig. 7. The SDOU procedure.

rescheduling rule: In the case of multiple contesting processors for a specific thread,
the mailbox sends it to one of the contestants (and thus assigns the corresponding virtual
processor to it) depending on the contestants’ current workload. Let50 be the identical
permutation of [n] and let51,52, . . . ,5ν be the required permutations so that each of
then threads is served by at least one live processor (to be its mailbox). For the following
proof we need some definitions from the Theory of Negative Dependence of Random
Variables (see [14] and [13]):

Definition 3.2. Let n be a positive integer.

1. The random variablesJ1, . . . , Jn are said to have thepermutation distribution
on [n] if they take values in [n] and for any permutationσ : [n] → [n],P[J1 =
σ(1), . . . , Jn = σ(n)] = 1/n!.

2. Let x1, . . . , xn be arbitrary real numbers. The random variablesX1, . . . , Xn are
said to have apermutation distribution on {x1, . . . , xn} if there is a set of
random variablesJ1, . . . , Jn with the permutation distribution on [n] and Xi =
xJi ,∀i ∈ [n].

Definition 3.3. The random variablesX = {X1, . . . , Xn} arenegatively associated
if for every index setI ⊆ [n],Cov[f (Xi , i ∈ I), g(Xj , j ∈ [n] − I)] ≤ 0, for all
nondecreasing functionsf : R|I | → R andg: R|[n]−I | → R.

The following proposition concerning sets of negatively associated random variables is
proved in [13] and will be used in what follows:

Proposition 3.1. If X = (X1, . . . , Xn)andY = (Y1, . . . ,Ym)are two sets of negatively
associated random variables and are mutually independent, then the augmented vector
(X,Y) = X = (X1, . . . , Xn,Y1, . . . ,Ym) is also a vector of negatively associated
random variables.

This copy belongs to 'agrawal'

450 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

Lemma 3.7. If the numberν of required rounds of communication attempts during
SDOU is ((c6 + 1)/ log(1/a)) · logn, then the failure probability isP[SDOU fails] ≤
n−c6,∀c6 > 0.

Proof. Consider the followingν · n indicator variables:

∀i ∈ [ν], j ∈ [n], Xi, j =
{

1, if P5i (j) is live,
0, otherwise.

For any fixedi , the vectorX i = (Xi,1, Xi,2, . . . , Xi,n) has the permutation distribution
on

Status= {Status(1),Status(2), . . . ,Status(n)},

whereStatus(j) indicates the status of machinej . Thus, for any fixedi ∈ [ν], the vector
X i follows the negative association property. Additionally, the vectorX = (X1, X2, . . . ,

Xν) consists of mutually independent components (since they correspond to randomly
and independently chosen permutations), and thusX also has the negative association
property.

Consider now the functionsZj =
∑ν

i=1 Xi, j . Since these variables are actually
nondecreasing functions on disjoint sets of negatively associated random variables (r.v.’s
in short), the vectorZ = (Z1, . . . , Zn) also follows the negative association property.
Now we can proceed with the failure probability of the SDOU routine to serve all the
assigned or pending threads successfully:

P[SDOU fails] = P[∃ j ∈ [n] : Zj = 0] ≤
n∑

j=1

P[Zj = 0],

P[Zj = 0] = P[Xi, j ≤ 0,∀i ∈ [ν]] = P[X̄i, j ≥ 0,∀i ∈ [ν]] .

Since(X1, j , . . . , Xν, j) are negatively associated, the same goes for the vector of
complementary random variables(X̄1, j , . . . , X̄ν, j). Thus we have

P[X̄i, j ≥1,∀i ∈ [ν]]≤ ∏
i∈[ν]

P[X̄i, j ≥ 1]

∀i ∈ [ν], j ∈ [n], P[X̄i, j ≥1] = P[Xi, j ≤ 0] ≤ a

 ⇒ P[Zj = 0] ≤ aν .

(9)

The total failure probability of SDOU is bounded byP[SDOU fails] ≤ n · aν = n−c6,
wheren · aν = n−c6 ⇒ ν = ((c6+ 1)/log(1/a)) · logn

Lemma 3.8. The time cost ofSDOU is TSDOU = O(logn ·max{l , gbh, gµkh}).

Proof. For the time analysis of SDOU we have: Step [1] impliesO(logn) rounds,
according to Lemma 3.7. For Step [2] we consider that there is aBSPRandom Number
Generator that provides at start-up all live processors ofRM with a string of random
seeds. Then each processor can fix the new permutation of step [3] using the next seed
of this “shared” string of random seeds. Steps [4] and [5] are actually implementations

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 451

of (h ·max{b, µk})-relations for the requests of the inboxes of the threads covered by a
specific processor, and the assignments of the pending threads to one of the contestants.
Step [6] is a trivial local operation.

The failure probability of a virtual superstep. In this section we study the failure
probability of a single virtual superstep,VSk, and specify the number ofK0 of the virtual
supersteps that comprise an epoch.

Lemma 3.9. The failure probability of a Virtual Superstep VSk to complete its work is
nO/−log logn), considering that y= log logn SECONDARYJOBSare executed, if necessary.

Proof. A virtual superstepVSk fails if all they SECONDARYJOBSthat it performs have at
least one pending thread when they finish, or the corresponding executions of SDOU fail
to serve an assigned thread. In this section we neglect the corruption probability of some
neighborhood of real processors (which implies a failure of some LOCALSTORAGES)
because this failure probability is separately studied for the whole epoch in Section 3.5.2
that deals with BACKTRACK occurrences. Thus, we consider the INFORMATIONGATH-
ERING and LOCALSTORAGE routines to be safe. In that case,VSk will fail if, for all
its SECONDARYJOBS, there is either a failure to cover all the threads or a failure for
some (pending or assigned) threads to be served by a live mailbox during the SDOU
procedure. The probability of SDOU leaving an assigned or pending thread with no op-
erational mailbox has already been estimated and isP[SDOU fails] ≤ n−c6, while the
probability that a specific SECONDARYJOB fails to cover at least an assigned or pending
thread isP[S Ji fails] ≤ 2 · n−min[c3·log((1−a)/r),c4+1. Thus, the failure probability for each
SECONDARYJOB to finish the work ofVSk is polynomially small and the total failure
probability forVSk is

P[VSk fails] = n−O(c·y), (10)

wherey is the number of SECONDARYJOBSto be executed andc = min{c6, c3 · log((1−
a)/r)− 1, c4− 1}.

Remark. Having a subpolynomially small failure probability for each of the virtual
supersteps that comprise an epoch, it is now apparent that an epoch can containK0 =
2(n) virtual supersteps and still have subpolynomially small failure probability.

3.5.2. Checkpointing and Backtracking. The CHECKPOINTprocedure is actually a vir-
tual process that is done by any processor during the simulation of the input algorithm.
More specifically, CHECKPOINTsignifies the failure of some LOCALSTORAGEor INFOR-
MATIONGATHERING procedure call discovered by a live processor, either because of an
update failure of the LOCALSTORAGE routine or because of an unsuccessful attempt to
retrive a specificVLM. The discovery of a problematic situation is disseminated to the
rest of the live processors the next time that a BSPAGREEMENTprotocol is executed as an
exception code to the specific live processor’s value. Observe that a new processor failure
may not cause any trouble at all because the problematic situation will be discovered by

This copy belongs to 'agrawal'

452 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

O(logn) live processors that will try to cover the corresponding pending thread (due to
the new death) during the next SECONDARYJOB.

When such an interruption to the flow of the simulation process is done, the BACK-
TRACK operation simply makes the live processors set their program counters to the
last SafeState, set a new valueNu = 2 · Nu−1 (u is the number of BACKTRACKS

having occurred up to now), consider a new, random hash function for the size-Nu

equipartition of the real processing elements inton/Nu neighborhoods of real proces-
sors (see the description of the LOCALSTORAGE scheme in Section 3.5.3) and con-
tinue with the simulation process after having retrieved theCurrentStatus from the last
SafeState.

For an epochei to be successfully simulated,K0 consecutive virtual supersteps
must be executed with no BACKTRACK interference. The epoch will end up with the
creation of a newSafeState. In what follows we study the corruption probability of
some neighborhood of processors because of the fault occurrences up to now and
the number of BACKTRACKS that may occur during an epoch ofK0 virtual
supersteps.

Remark. The choice of a new (pseudo)random hash function for the construction of
the new neighborhoods of processors is done in order to redistribute the faults occurred
up to this point evenly among the new neighborhoods, and protect the simulation from
a malicious behavior of an adversary that would try to focus his power on a single
neighborhood of processors.

Backtrack occurrences during an epoch. In this subsection we bound the number of
corruptions that may occur in a single epoch of virtual supersteps. First we estimate the
corruption probability at a specific instance of the simulation process, and consequently
we calculate the total number of corruptions.

Lemma 3.10. The probability8(D,N) that a randomly chosen size-N equipartition
corrupts because of D processor failures is given by

8(D,N) =

0, if D <

N
2
+ 1,

n · 2N+1/2

√
πN · (N+ 2)

· exp
[
−
(

N
2
+1
)
(Hn − HD)

]
, otherwise,

where Hn and HD are the corresponding harmonic numbers.

Proof. Each group of the equipartition to be constructed may be thought of as a bin that
will receive exactlyN balls, some of which are expected to be black (dead processors)
and the remainder will be red (live ones). The amount of black balls isD, and the red ones
is A = n−D. All possible ways of creating a size-Nequipartition ofn indistinguishable
balls aren!/(N!)n/N. We count all possibly corrupted equipartitions by theD black balls,
in a constructive fashion. More specifically, we first choose one of the bins at random.
Then we chooseN/2 + 1 from the D black balls and throw them in the chosen bin.
Consequently, we chooseN/2−1 from the remainingn−N/2−1 balls and throw them

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 453

into the chosen bin. Finally, we let the remainingn−Nballs be equipartitioned into the
n/N− 1 bins in all possible ways. In numbers, all possible corrupted equipartitions are

n

N
·
(

D
N/2+ 1

)
·
(

n− N/2− 1
N/2− 1

)
· (n− N)!

(N!)n/N−1
.

Hence, the requested corruption probability (provided thatD ≥ N/2+ 1) is given by

8(D,N) = n

N
·
(

D
N/2+ 1

)
·
(

n− N/2− 1
N/2− 1

)
· (n− N)!

(N!)n/N−1
· (N!)n/N

n!

= n

N
·
(

D
N/2+ 1

)
·
(

n− N/2− 1
N/2− 1

)
·
(

n
N

)−1

= n · D! · (n− N/2− 1)! · N! · (n− N)!

N · (N/2+ 1)! · (D − N/2− 1)! · (N/2− 1)! · (n− N)! · n!

= · · · = n · N!

(N+ 2) · (N/2)!2
·

n∏
λ=D+1

(
1− N+ 2

2λ

)
∼ n · N!

(N+ 2) · (N/2)!2
· exp

[
−
(

N

2
+ 1

)
· (Hn − HD)

]
. (11)

By applying Stirling’s formula, one can show that the claimed result holds. In the case
that D ≤ N/2 + 1, there is no chance of having a corrupted neighborhood of real
processors.

The following lemma states that it is most unlikely to have more than log logn
BACKTRACK occurrences during the whole simulation process (this also implies that the
size of the neighborhoods will be at mostO(log2 n) with subpolynomially small failure
probability):

Lemma 3.11. The probability of a neighborhood corruption afterlog logn BACK-
TRACK isO(n− logn · log−3 n).

Proof. Assume that we haven processors and we choose a random equipartition of
them inton/Nu neighborhoods of sizeNu (u indicates the number of BACKTRACK oc-
currences, up to now). Suppose also thatD processors have already died (and have
caused theu BACKTRACKS) and A = n − D remain live. We say that an equipar-
tition corrupts if there exists a neighborhood that has at leastNu/2 + 1 dead
processors.

The corruption probability of size-Nu equipartition (Nu = 2u · logn) is given by
8(D, Nu), which is always at most equal to8(an, Nu). Some calculation will help to
see that this is a very good bound for the failure probability, which actually implies
that at most log logn backtrack operations may occur during the simulation of the input
algorithm, with very high probability. More specifically, considering thatHn − Ha·n =

This copy belongs to 'agrawal'

454 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

ln(1/a)+2(1) = ln(1/a)+ ω1, we have

8(D,Nu) ≤ 8(an,Nu) ≤ n · 2Nu+1/2

√
πNu · (Nu + 2)

· exp

[
−
(

Nu

2
+ 1

)(
ln

(
1

a

)
+ω1

)]
≤ 1√

πNu · (Nu + 2)
· 2Nu+1/2+logn−Nu·(log(1/a)/2+ω1/(2 ln 2))−(log(1/a)+ω1/ ln 2)

≤ 2ω2

√
πNu · (Nu + 2)

= O (n−2u · (2u logn)−3/2
)
, (12)

where

ω2 ≡ Nu + 1
2 + logn− Nu ·

(
log(1/a)

2
+ ω1

2 ln 2

)
−
(

log

(
1

a

)
+ ω1

ln 2

)
= O(−2u · logn).

3.5.3. Safe Storage ofVM’s CurrentStatus. In this subsection we study the robustness
of our simulation strategy against the (at mosta·n) processor failures that are imposed by
the parallel setting. Recall that our parallel setting is aBSPmachine which is essentially
a message passing model. Thus, for overcoming arbitrary processor failures, one has to
sustain some information replication which depends on the input parametera (recall that
a is an upper bound on the fraction of processor failures that may occur overall during the
simulation process). Since the recovery from a situation wherea ·n faults have occurred
necessitates the existence of an (at least)(1/(1− a))-fold replication of theVLMs that
comprise theCurrentStatus of VM, one might consider that the best that can be done
is to use the IDA algorithm which achieves space optimality, given the total fraction of
faults,a. Yet, this is a very expensive procedure to run in each virtual superstep, since
IDA would require at leastO(n2) time (according to the time estimations of theBSP

implementation of IDA in Section 3.5.3) to create aSafeState from which up toa · n
faults may be overcome. Additionally, such a storage scheme would force a total cost of
the simulation process that would not be scalable with the number of fault occurrences
and thus our strategy would be efficient if as many as possible errors actually occurred
during the execution ofBSPalgorithm.

The salient point of our storage scheme (see Figure 8) is the use of a local, volatile
storage routine (LOCALSTORAGEfor the tentative storage ofVM’s CurrentStatus in com-
bination with a global routine (GLOBALSTORAGE) that robustly stores periodic instances
of theCurrentStatus at the end of each epoch. This way, the cost of this expensive opera-
tion of creating a newSafeState is amortized over theK0 virtual supersteps that comprise
a single epoch. The more volatile LOCALSTORAGEscheme during each virtual superstep
makes the execution much faster, while being able to tolerate small bursts of processor
failures in each neighborhood of real processors. Each time a neighborhood corruption
occurs, the size of the neighborhoods participating in LOCALSTORAGEis doubled and a
new hash function for the determination of the neighborhoods is employed. Addition-
ally, an INFORMATIONGATHERING procedure takes over the responsibility of retrieving
the requested information, either from the proper neighborhoods of real processors or
from the lastSafeState in the case when a BACKTRACK operation has preceded.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 455

Fig. 8. The mixed storage scheme.

Local storage. The LOCALSTORAGE routine is used to save theVLM of each newly
completed threadTm (at the end of the current (either Primary or Secondary) Job) to a
proper (with respect to theV id of Tm) size-Nu neighborhood, so that anyNu/2 of them
will be able to reconstruct in the future.

In particular, we consider that then real processors are partitioned inton/Nu neigh-
borhoods of sizeNu according to a randomly chosen hash functionH: [n] → [n/Nu].
Then each neighborhood takes over the responsibility of storing theVLMs of the virtual
processors that have their physical destinations in this neighborhood. So, if a live pro-
cessorPi uses LOCALSTORAGE to save a newly completed thread’sVLM (e.g.,VLMj),
then it will apply the FILEDISPERSALpart if IDA on VLMj with m = Nu/2 (see Sec-
tion 3.5.3), and will save theNu created files to the neighborhood of processors indicated
byH(j).

Supposing that a real processorPj hasNCi newly completed threads during jobJi ,
and considering the fact that logn ≤ Nu ≤ O(log2 n) with high possibility (recall the
justification of this fact in Section 3.5.2), the time overhead onPj for the LOCALSTORAGE

will be

TLocalStorage= 2 · |VLM| · NCi · (N+max{L , g}). (13)

The space overhead for each real processorPj being a member of a specific neigh-
borhood, will be the sum of the sizes of the dispersal files for theVLMs of the corre-
spondingNu virtual processors which are locally stored in the specific neighborhood,
that is,Nu · |Fi | = Nu · |VLM|/(Nu/2) = 2 · |VLM|, where|VLM| is the size of each of the
virtual local memories. This implies a two-fold space overhead on each live processor
for implementation of the LOCALSTORAGEscheme on each processor, which is optimal
for tolerating up toNu/2 processor failures in each neighborhood.

Global storage. The purpose of the GLOBALSTORAGE scheme (Figure 9) is to create
SafeState periodically, that is, to store periodic instances ofVM’s CurrentStatus securely
for the simulation process to backtrack to, in case some (locally) unrecoverable errors
have occurred. This routine is actually the one that necessitates the existence of the input

This copy belongs to 'agrawal'

456 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

[1] FOR k = 1 TO 3 DO

[1.1] IF Pk·Nu+ j is live,

[1.2] THEN Pj sends to it its own part of theLocalStorage

[1.3] ELSE Pj makes at mostNu/2− 1 trials to find a live processor in

the target neighborhood, to send its part of the LOCALSTORAGE.

[2] PartDistribution: Each live processor that holds multiple parts of a

LOCALSTORAGE, distributes them to live processors of the same

neighborhood that have no part of this LOCALSTORAGE.

Fig. 9. The GLOBALSTORAGEscheme.

parametera that expresses an upper bound on the overall fraction of processor failures
during the simulation of the input algorithmA.

Supposing that we used IDA for the secure storage of theCurrentStatus ofVM to the
wholeRM, we would need anO(n2) time overhead, according to the time estimations
of the implementation of IDA onBSP, which is actually a prohibitive cost in a setting
of parallel computations simulation. There are two reasons for this prohibitive cost in
this approach for the implementation of GLOBALSTORAGE: the first is IDA’s restriction
for |VLM| ≥ m = (1− a)n which necessitates the extension of theVLMs with some
dummy characters, and the second is that we disperse once more the already dispersed
(for the sake of the last LOCALSTORAGE) VLMs. Thus we resort to an alternative scheme
for the GLOBALSTORAGE that tries to avoid the unnecessary time (and space, which
is actually communication cost inBSP) overhead. The GLOBALSTORAGE strategy is as
follows: Each of then/Nu neighborhoods inRM creates replicas of the contents of the
next3 (modulo-n/Nu) neighborhoods. Thus, each real processor actually participates in
3+1 replicas of the LOCALSTORAGEscheme, and each size-Nu neighborhood is capable
of restoring theVLMs of (3 + 1) · Nu distinct virtual processors. The space overhead
for each real processor, regarding the GLOBALSTORAGE, is (3+ 1) · Nu · |VLM|. As for
the time overhead for creating the3 new replicas of the last LOCALSTORAGEbefore the
new GLOBALSTORAGE, this may be done in3 communication supersteps, where each
neighborhood sends the contents of its LOCALSTORAGE to a new neighborhood, and
afterwards an “all-to-all” communication in each neighborhood re-assigns the parts of a
specific LOCALSTORAGEto unique live processors.

Lemma 3.12. Given that no more that a·n faults may occur in overall during the sim-
ulation of an input algorithmA, the necessary number of replicas of theLOCALSTORAGE

that will comprise a newSafeState is no more than2an/(Nu + 2).

Proof. For a specific neighborhood of processors to be globally destroyed, all the3+1
replicas should be destroyed by the fault occurrences. This means that at leastN/2+ 1
real processors per size-Nneighborhood must have already died. Thus, totally, we must
have at least(3+ 1) · (N/2+ 1) faults up to now. However, if

(3+ 1) ·
(

N

2
+ 1

)
> a · n ⇒ 3 >

2an

N+ 2
− 1, (14)

then it is impossible for this to happen.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 457

Notice that in each round the communication among the neighborhoods is “one-to-
one.” So, if we fix3 = 2an/(Nu + 2), the time for creating a newSafeState with
GLOBALSTORAGEis given by

TGlobalStorage≤ 2 ·3 · |VLM| ·
(

Nu

2
− 1

)
≤ O(a · n · |VLM|). (15)

GLOBALSTORAGE is called everyK0 virtual supersteps, because it is actually a time-
consuming operation which introduces a heavy cost. This way this heavy cost is amortized
among theK0 virtual supersteps.

Information gathering. The INFORMATIONGATHERING procedure is an application of
the FILERETRIEVAL phase of the IDA algorithm from the proper neighborhood of real
processors (with respect to the requested threads’V ids), unless a BACKTRACK has just
preceded, in which case eachVLM is retrieved from the lastSafeState of VM, which is
robustly stored inRM.

According to the analysis of the FILERETRIEVAL phase of IDA, each LOCALRE-
TRIEVAL of a VLM costs

TLocalRetrieval= Nu · |VLM| + 2 · |VLM| ·max{L , g}, (16)

while a GLOBALRETRIEVAL operation will actually have to try to retrieve the specificVLM
from one of the3+1 replicas of the corresponding neighborhood of the LOCALSTORAGE

scheme inRM:

TGlobalRetrieval≤ (3+ 1)(Nu · |VLM| + 2|VLM| ·max{L , g})
= O(a · n · |VLM|). (17)

The following lemma summarizes the time costs for these routines that comprise
our mixed storage scheme:

Lemma 3.13. Supposing that each live processor is responsible for at mostλ threads,
the time costs for the procedures of our storage scheme are

TLocalStorage= 2λ|VLM|(N+max{L , g}), (18)

TGlobalStorage= O(λan|VLM|), (19)

TLocalRetrieval= λ(Nu|VLM| + 2|VLM| ·max{L , g}), (20)

TGlobalRetrieval= O(λan|VLM|). (21)

A BSP implementation of IDA. In this section we demonstrate theBSPimplementation
of the IDA algorithm (see Figure 10), as well as our routines for storing and retrieving
theCurrentStatus of VM from the live processors ofRM.

Suppose that we have a fileF of size |F | and we want to store it safely among
N processing elements, in such a way that anym of these processors will be able to
reconstructF . IDA is a space-optimal strategy for dispersing and reconstructing the
initial file, which may very easily be adapted to theBSPmodel, since it was designed for
applications to arbitrary distributed environments.

This copy belongs to 'agrawal'

458 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

[1] FileDispersal:ProcessorPi dispersesF and sends the corresponding

parts to the processing elements of the proper size-N neighborhood.

[1.1] Pi splitsF into N parts (F1,F2, . . . ,FN) of size|Fj | = |F |/m, j ∈ [Ñ] each.

[1.2] Pi sends theN parts to the processors of the size-N neighborhood.

[2] FileRetrieval: A processorPi wants to gather the parts of a fileF
from a proper (size-N) neighborhood, and reconstructF .

[2.1] Pi sends requests to all the parts of the proper neighborhood.

[2.2] Every live processor in the neighborhood sends its own part toPi .

[2.3] IF Pi has enough (i.e., more thanm) parts,THEN it reconstructsF .

Fig. 10. A BSPimplementation of IDA.

For the computational cost of the file dispersal intoNparts, IDA uses a set ofNsize-m
vectors, that arem-wise independent, splitsF into size-m sequences of characters, and
applies an inner product operation onF with each of theseN vectors, so as to produce
theNnew files, anym of which be able to reconstructF . An obvious restriction of IDA
is that |F | ≥ m. If not, F is extended with some dummy characters, up to size ofm
words. The communication cost for the transmission of theN parts ofF to the proper
neighborhood is actually the cost of a “1→ N” transmission of size-|Fj |messages, that
is the same as anN · |Fj |-relation.

As for the file retrieval, IDA uses the inverse transformation to convert anym input
files of size|Fi | = |F |/m each, to the fileF . This is easily shown to cost 2m · |F | local
operations, while the communication cost of this part is anN-relation for the requests,
plus an “N→ 1” transmission of the input files toPi . This is the same as an(N · |Fj |)-
relation. According to the above discussion, the costs of IDA for Dispersal and Retrieval
of the fileF on a size-Nneighborhood of aBSPmachine are the following:

TDispersal-LC = N · d|F |/me · (2m− 1), (22)

TDispersal-Comm= d|F |/me · N ·max{L , g}, (23)

TRetrieval-LC = 2m · |F |, (24)

TRetrieval-Comm= d|F |/me · N ·max{L , g}. (25)

Remark. Theceiling operation expresses the fact that|F | ≥ m. In fact this implies
that the transmission of each of the new files to theN processors costs at least as much
as the transmission ofNconstant-size messages.

3.6. The Performance of the Robust-BSP Simulation Strategy

In this section we estimate the amortized cost of a virtual superstep executed by our
Robust-BSP simulation strategy, and give a bound on the competitive ratio of our strategy,
against an optimal off-line strategy, that always lets the operational processors execute
a fully balanced workload. Recall that the optimal workload would ben/Ak threads per
operational processor, and thusTOPT= n/Ak · (TLC + TComm).

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 459

Theorem 3.1. The amortized cost for the simulation of a single virtual superstep is
given by

TVSk = O
(
(logn · log logn)2 · TOPT+ polylog(n)

)
(26)

with probability at leastO(1− n− logn · log−3 n).

Proof. Assume that during the current epochB corruptions of the LOCALSTORAGE

occur. Then Robust-BSP will have to execute each of theK0 supersteps of this epoch
at mostB + 1 times, and it will have to retrieve information from the lastSafeState B
times. So, the time of a single epoch ofK0 virtual supersteps is upper-bounded by the
following equation:

Tepoch= (B + 1)K0(TPrimJob+ log logn · TSecJob)

+ B · (µk + b · log logn) · (TGlobalStorage+ TGlobalRetrieval),

since each live processor will retrieve at mostµk+b·log logn threads to execute from the
lastSafeState, each time the current epoch restarts. However, according to Lemma 3.11,
the number of BACKTRACKS in the whole simulation process is no more than log logn,
with probability at leastO(1− n− logn · log−3 n).

Notice also that if we suppose thatTLC+TComm= O(g·h) ≥ log4 n, thenTPrimJob=
µk · max{h · logn, (TLC + TComm)} = O((logn)/g · TOPT) andTSecJob= b · max{h ·
logn, (TLC+TComm)} = O((log2 n)/g ·TOPT). In that case, the amortized cost of a single
virtual superstep is given by

TVSk = (B + 1) · TPrimJob+ an · log logn

K0
· TSecJob

+ B · (µk + b · log logn)

K0
· (TGlobalStorage+ TGlobalRetrieval)

= O((logn · log logn)2) · TOPT+O(log3 n · (log logn)2),

where the additive polylog(n)-term is due to the fact thatK0 = 2(n),B = log logn,
µk andb = O(logn), andTGlobalStorage+ TGlobalRetrieval= O(n · log2 n) (see Lemma
3.13).

Remark. Since the probability of having more than log logn BACKTRACK occurrences
isO(n− logn · log−3 n), the expected (amortized) cost of each virtual superstep converges
to the above value, since the subpolynomially small failure probability dominates over
the cost of some extra BACKTRACK occurrences.

4. The Adaptive Load-Balancing Strategy

A major result of this work which is also of independent interest, is the proposes strategy
for balancing the work of then virtual processors among the currently live processors of
RM. In fact, this is an adaptive on-line load-balancing technique, since the sequence of

This copy belongs to 'agrawal'

460 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

fault occurrences is not known a priori to our simulation process and the live processors
should not execute more than a factor times the optimal workload in a stable state.

Starting from a balanced situation (at the lastSafeState), we show in this section
how we keep the work of the live processors balanced (in a tentative fashion) for a whole
epoch ofK0 virtual supersteps. Recall thatK0 can be as large as2(n). Let Z0(i, k)
denote the size ofPi ’s queue after discarding the excessive work (in case of overloaded
real processors), and letZ(i, k) denote its size at the end ofVSk. Our ADAPTIVELOAD-
BALANCING scheme (ALB in short), which is inherent in the Robust-BSP simulation
strategy, is the following:

(1) At the beginning of each virtual superstepVSk, each overloaded real processor
Pi cuts off the excessive work (i.e., keeps at mostc1n/Ak threads at random in
PJi , according to the estimationAk of the number of live processors inRM,
and makes the remaining threads pending). This is the Discarding step at the
beginning of each PRIMARYJOB.

(2) All the pending threads ofVM (due to either new deaths or discardings) are
rescheduled to still live processors ofRM as follows:
(α) Each live processor contests forb · log logn randomly chosen threads to

cover, during the log logn SECONDARYJOB.
(β) Each mailbox that takes over a threadTλ during a round of SDOU, assigns

it (if it is pending) to one of the live processors that contests for it, with
probability

P[Pλi getsTλ] = 1/Z0(λi , k)∑
j∈C(1/Z0(j, k))

,

whereC = {Pλ1, Pλ2, . . .} is the set of processors contesting forTλ.

Theorem 4.1. Let ξ > 1 be a constant. Then the load of each live processor Pi in
RM at the end of VSk is Z(i, k) ≤ c1n/Ak · 2(log logn), with probability at least
(1− n−ξ)(k+1) ≥ 1− (k+ 1)n−ξ .

Proof. Let ξ > 0 be a constant. We shall prove the good behavior of ALB using
induction on the epochs of the input algorithmA.

Initial Step. At the beginning of our simulation process, each virtual processor is as-
signed to its physical destination, and thus, each operational processor inRMhas exactly
one thread in itsPrimaryJobQueue.

Inductive Hypothesis. Suppose that at the beginning of epochei we have,∀ j ∈
[n],Z(i, k− 1) ≤ c1n/Ak−1 · ω(n), whereω(n) is a constant times log logn.

Inductive Step. Recall that aPrimaryJobQueue PJj is overloaded iffc1n/Ak < Z(i, k−
1) ≤ c1n/Ak−1 · ω(n). The amountP of pending threads duringVSk will have to be
rescheduled among the remaining operational processors ofRM. InP we measure only
assignments of threads to processors that remain live until their completions, because
a thread assigned to a processor that dies before achieving its completion has already
been included inP, either as a pending thread because of a new death, or as a discarded
thread at the beginning ofVSk.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 461

Let fk denote the set of newly dead processors duringVSk, and letD be the number
of discarded threads at the beginning ofVSk. Then Fk = | fk| ≤ rn. Clearly,P =
D +∑i∈ fk

Z0(i, k) ≤ a · n. Consider now a specific threadTλ and suppose that the
operational processorsPλ1, Pλ2, . . . , Pλm contest for it during a SECONDARYJOB. We
already know thatTλ is covered by less thatc3 · logn initially operational processors of
RMwith probabilityn−c4, for some positive constantc3 andc4 depending onc3. So we
can proceed with our proof conditioning on the event “m≥ logn.” By the rescheduling
rule we have

∀i ∈ [log n], P[Pλi getsTλ] ≤ 1/Z0(λi , k)∑logn
j=1 (1/Z0(λj , k))

. (27)

It is now obvious thatZ0(λj , k) ≤ c1n/Ak,∀ j ∈ [log n]. So,
∑logn

j=1 (1/Z0(λj , k)) ≥
(Ak · logn)/c1n and thus we have

∀i ∈ [log n], P[Pλi getsTλ] ≤ c1n

Z0(λi , k) · logn · Ak
. (28)

Now, each live processorPi will randomly (with replacement) chooseb · log logn =
c1n/Ak ·logn log logn threads to cover during the SECONDARYJOBSof VSk. Each random
choice has a probabilityP/n of hitting a pending thread and is independent of the other
choices. Thus the number of pending threads thatPi will contest for, is the number
of successes fromb · log logn Bernoulli trialsB(q,P/n), whereq ≡ c1n/Ak · logn ·
log logn. For each such thread, the probability ofPi prevailing over the other contestants
(in a specific round of SDOU) has already been shown to be

P[Pi getsTλ] ≤ c1n

Ak · logn
· 1

Z0(λi , k)
≡ ϕ.

Let 4i be the number of pending threads thatPi contests for. Then,∀ε ∈ (0,1),4i ∈
[(1− ε) · q ·P/n, (1+ ε) · q ·P/n], with probability at least 1− exp(−ε2/2 · q ·P/n),
by a simple application of Chernoff Bounds on the Bernoulli trials. However, recall that
P ≤ a ·n, and so,∀ε ∈ (0,1),4i ∈ [(1−ε) ·q ·a, (1+ε) ·q ·a] with probability at least
1− exp(−ε2/2 · ac1/(1− a) · logn · log logn) = 1− n−(ε

2·c1·a·loge)/2(1−a)·log logn). Now,
given4i , due to our rescheduling rule,Pi will actually add at most4i ·ϕ new threads in its
ownPrimaryJobQueue with probability at least 1−n−c9 as is easily shown by a new appli-
cation of Chernoff Bounds, considering the worst case forPi ,Z(i, k) = 1, for whichϕ is
maximized. So, with total probability at most(1−n−c9) ·(1−n−(ε

2·c1·a·loge)/2(1−a)·log logn)

each operational processorPi gets at most4i · ϕ threads, i.e.,

1Z(i, k) ≤ (1+ ε) · a · q · ϕ ≤ β

Z0(i, k)

with β = (1+ ε)a(c1/(1− a))2 · log logn. Hence,Z(i, k) = Z0(i, k) + 1Z(i, k) =
Z0(i, k) + β/Z0(i, k), which is maximized at max{Z(i, k)} = max{1 + β,1 + γ ·

This copy belongs to 'agrawal'

462 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

log logn} · c1n/Ak and thus it satisfies the inductive hypothesis with probability of
success at least

(1− n−ξ)k(1− n−c9)(1− n−(ε
2c1a·loge)/2(1−a)·log logn) ≥ (1− n−ξ)k+1,

with ξ ≤ min

{
c9,

ε2c1a loge

2(1− a)
log logn

}
, k ≤ K0.

Remark. Notice that(1− n−ξ)k+1 ≥ 1− (k+ 1) · n−ξ , which implies that our robust
system can tolerate computations of polynomial length.

5. Conclusions—Future Work

In this paper we have provided a general purpose simulation strategy for the execution
of parallel algorithms in dynamically changing, decentralized computing environments.
This simulation strategy is efficient in the sense that it imposes a polylogarithmic slow-
down, compared with an execution of the input algorithm in a stable, totally reliable
decentralized environment.

Our approach was based on three major axes: the provision of a robust storage
scheme, the assurance (with high probability) of the even workload distribution among
the live processing elements of the underlying machine, and the definite, epoch-by-epoch
commitment of the work progress during the computation. Clearly, the latter technique
was actually an attempt to compromise the heavy cost of assuring a definition progress
(i.e., the completion of an epoch) by exploiting some intermediate tentative computations
(i.e., the completion of a virtual superstep). The proposed simulation strategy, Robust-
BSP, is Las Vegas, since CHECKPOINT and BACKTRACK operations assure the work
progress of the execution of the input algorithm, as long as there are at most(1− a)n
live processors during the whole process (a is an input parameter to our simulation
strategy).

Yet, there remain several interesting open questions that arise through this work,
which are also indicated in many other related articles in the literature, especially in
the framework of load balancing. Such an open question might be the consideration
of a dynamically changing (by means of unreliable nodes or links) network, that is
continuously imposed computational threads, and the convergence of such a system to
a stable state (if it ever converges).

Additionally, it would be very interesting to invent a deterministic simulation strat-
egy that would be at least as efficient as Robust-BSP. An intriguing open question is
also a lower bound on the performance of any simulation strategy, that would depend on
the fault occurrences during the execution of aBSPalgorithm.

As for the kind of faults that are considered, in this work we studied the fail-stop
model (restartable at any time, but reused from the first job after their reactivation).
One can also extend our techniques to deal with malicious faults, an issue that is very
challenging especially when dealing with decentralized computations over an insecure
network infrastructure, such as the Internet.

This copy belongs to 'agrawal'

Robust Parallel Computations through Randomization 463

References

[1] N. Alon and J. Spencer.The Probabilistic Method. Wiley Interscience, New York, 1992.
[2] Y. Aumann, M. Bender, and L. Zhang. Efficient execution of non-deterministic parallel programs on

asynchronous systems. InProc. of the8th ACM Symposium on Parallel Algorithms and Architectures,
1996, pp. 270–276.

[3] Y. Aumann, Z. Kedem, K. Palem, and M. Rabin. Highly efficient asynchronous execution of large-
grained parallel programs. InProc. of the34th Annual Symposium on Foundations of Computer Science,
1993, pp. 271–280.

[4] A. Baumker, W. Dittrich, and F. meyer auf der Heide. Truly efficeint parallel algorithms: c-optimal
multisearch for an extension of theBSPmodel. InProc. of the3rd Annual European Symposium on
Algorithms, LNCS 979, Springer-Verlag, Berlin, 1995, pp. 17–30.

[5] P. Berenbrink, F. Meyer auf der Heide, and V. Stemann. Fault-tolerant shared memory simulations.
In Proc. of the 13th Annual Symposium on Theoretical Aspects of Computer Science(STACS ’96),
Springer-Verlag, Berlin, 1996, pp. 181–192.

[6] R. Blumofe and C. Leiserson. Scheduling multithreaded computations by work stealing. InProc. of the
35th Annual Symposium on Foundations of Computer Science, 1994, pp. 356–368.

[7] B. Chlebus, A. Gambin, and P. Indyk. PRAM computations resilient to memory faults. InProc. of the
2nd Annual European Symposium on Algorithms(ESA ’94), LNCS 855, Springer-Verlag, Berlin, 1994,
pp. 401–412.

[8] B. Chlebus, A. Gambin, and P. Indyk. Shared-memory simulations on a faulty DMM. InProc. of the
International Colloquium on Automata, Languages and Programming, 1996, pp. 586–597.

[9] B. Chlebus, L. Gasieniec, and A. Pelc. Fast deterministic simulation of computations on faulty parallel
machines. InProc. of the3rd Annual European Symposium on Algorithms, LNCS 979, Springer-Verlag,
Berlin, 1995, pp. 89–101.

[10] T. Cormen, C. Leiserson, and R. Rivest.Introduction to Algorithms. MIT Press, Cambridge, MA, 1990.
[11] P. Dasgupta, Z. Kedem, and M. Rabin. Parallel processing on networks of workstations: a fault tolerant,

high performance approach. InProc. of the15th International Conference on Distributed Systems, 1995,
pp. 467–474.

[12] R. De Prisco, A. Mayer, and M. Yung. Time-optimal message-efficient work performance in the presence
of faults. InProc. of the ACM Symposium of Distributed Computing, 1994, pp. 161–171.

[13] D. Dubhashi, V. Priebe, and D. Ranjan. Negative Dependence through the FKG Inequality. BRICS
Report Series, RS-96-27, ISSN 0909-0878.

[14] D. Dubhashi and D. Ranjan. Balls and Bins: a Study in Negative Dependence. BRICS Report Series,
RS-96-25, ISSN 0909-0878.

[15] C. Dwork, J. Halpern, and O. Waarts. Performing work efficiently in the presence of faults. InProc. of
the11th ACM Symposium on Principles of Distributed Computing, 1992, pp. 91–102.

[16] Z. Galil, A. Mayer, and M. Yung. Resolving message complexity of Byzantine agreement and beyond.
In Proc. of the36th IEEE Annual symposium on Foundations of Computer Science, 1995, pp. 724–733.

[17] J. Garofalakis, S. Rajsbaum, P. Spirakis, and B. Tampakas. Tentative and definite distributed compu-
tations: an optimistic approach to network synchronization.Journal of Theoretical Computer Science,
128(1–2):63–74, 1994.

[18] A. Gerbessiotis and C. Siniolakis. Communication Efficient Data Structures on theBSPModel with
Applications. Technical Report PRG-TR-13-96, Oxford University, May 1996.

[19] A. Gerbessiotis and L. Valiant. Direct bulk-synchronous parallel algorithms.Journal of Parallel and
Distributed Computing, 22:251–267, 1994.

[20] M. Gereb-Graus and T. Tsantilas. Efficient optical communication in parallel computers. InProc. of the
4th Annual ACM Symposium on Parallel Algorithms and Architectures(SPAA ’92), 1992, pp. 41–48.

[21] A. Kamath, R. Motwani, K. Palem, and P. Spirakis. Tail bound for occupancy and the satisfiability
threshold conjecture. InProc.of the35th IEEE Annual Symposium on Foundations of Computer Science,
1994, pp. 592–603.

[22] P. Kanellakis and A. Shvartsman. Efficient parallel algorithms on restartable fail-stop processors. In
Proc. of the10th Annual ACM Symposium on Principles of Distributed Computing, 1991, pp. 23–36.

[23] P. Kanellakis and A. Shvartsman. Efficient parallel algorithms can be made robust.Distributed Com-
puting, 5:201–217, 1992.

This copy belongs to 'agrawal'

464 S. C. Kontogiannis, G. E. Pantziou, P. G. Spirakis, and M. Yung

[24] P. Kanellakis and A. Shvartsman.Fault-Tolerant Parallel Computation. Kluwer Academic, Dordrecht,
ISBN 0-7923-992-6, 1997.

[25] Z. Kedem, K. Palem, A. Raghunathan, and P. Spirakis. Combining tentative and definite executions for
very fast dependable parallel computing. InProc. of the23rd Annual ACM Symposium on Theory of
Computing, 1991, pp. 381–390.

[26] Z. Kedem, K. Palem and P. Spirakis. Efficient robust parallel computations. InProc. of the22nd Annual
ACM Symposium on Theory of Computing, 1990, pp. 138–148.

[27] S. Kontogiannis, G. Pantziou, and P. Spirakis. Efficient computations on fault-prone BSP machines.
In Proc. of the9th ACM Symposium on Parallel Algorithms and Architectures, 1997, pp. 84–93. Full
version athttp://www.ceid.upatras.gr/ ∼kontog/bsp/spaa97/

[28] S. Kontogiannis, G. Pantziou, P. Spirakis, and M. Yung. Dynamic-fault-prone BSP: a paradigm for
robust computations in changing environments. InProc. of the 10th ACM Symposium on Parallel
Algorithms and Architectures, Puerto Vallarta, Mexico, June 28–July 2, 1998, pp. 37–46. Full version
at http://www.ceid/upatras.gr/ ∼kontog/bsp/spaa98/

[29] F. T. Leighton, B. M. Maggs, and R. K. Sitaraman. On the fault tolerance of some popular bounded-
degree networks.SIAM Journal on Computing, 27(5):1303–1333, 1998.

[30] W. F. McColl. Scaleable parallel computing: a grand unified theory and its practical development. In
Proc. of IFIP World Congress, Hamburg, August, 1994, Vol. 1, pp. 539–546.

[31] R. Motwani and P. Raghavan.Randomized Algorithms. Cambridge University Press, Cambridge, 1995.
[32] M. Rabin. Efficient dispersal of information for security, load balancing and fault tolerance.Journal of

the Association for Computing Machinery, 36(2): 335–348, April 1989.
[33] M. Sipser and D. Spielman. Expander codes. InProc. of 35th Annual Symposium on Foundations of

Computer Science, 1994, pp. 566–576.
[34] L. Valiant. A bridging model of parallel computation.Communications of the ACM, 33(8):103–111,

August 1990.
[35] L. Valiant. General purpose parallel architectures. InHandbook of Theoretical Computer Science, J. van

Leeuwen ed. North-Holland, Amsterdam, 1990, pp. 943–972.

Online publication October25, 2000.

This copy belongs to 'agrawal'

