
ELSEVIER Theoretical Computer Science 18 I (I 997) 267.-287

Theoretical
Computer Science

Parallel algorithms for the minimum cut and
the minimum length tree layout problems’

Josep Diaz”, Alan Gibbonsb, Grammati E. Pantziou’,*, Maria J. Serna”,
Paul G. Spirakis’, Jacob0 Torana

d Departcrment de Llenyuutyes i Sistemes. Universitat Polit&c,nicu Cmtalun~u. Pau Gurgullo 5,

08028-Barcelona, Spain

‘Department qf Computer Science, University oJ Warwick, Wurwick, tiK

c Computer Technolo,yJ, Institute, P. 0. Box 1122, 26110 Patrus, Greece

Abstract

The minimum cut and minimum length linear arrangement problems usually occur in solving
wiring problems and have a lot in common with job sequencing questions. Both problems are
NP-complete for general graphs and in P for trees. We present here two parallel algorithms for
the CREW PRAM. The first solves the minimum length linear arrangement problem for trees
and the second solves the minimum cut arrangement for trees. We prove that the first problem
belongs to NC for trees, and the second problem is in NC for bounded degree trees. To the
best of our knowledge, these are the first parallel algorithms for the minimum length and the

minimum cut linear arrangement problems.

1. Introduction

Given a graph G = (V, E) with 1 VI = n, a luyout of G is a one-to-one mapping

cp from V to the first n integers { 1,2,. . . , a}. The term layout is also known as lin-

em arrangement [14, 131. Notice that a layout q on V determines a linear ordering

of the vertices. Given a natural i, the cut of the layout at i is the number of edges

that cross over i, i.e. the number of edges {u, v} E E with q(u) < i < q(u). The

cutwidth of cp, denoted by y(q, G), is the maximum cut of cp over all integers from

1 to n. The kngth of cp, denoted by 3,(q, G), is the sum over all edges (u, L’) of

Mu) - cp(u>l.
Graph layout

layout. We can

problems are motivated as simplified mathematical models of VLSI

model a VLSI circuit by means of a graph, where the edges of the

* Corresponding author. E-mail: pantziou@cti.gr.

’ A preliminary version of this paper was presented at COCOON ‘9.5 [5]. This research was supported by
the EEC ESPRIT Basic Research Project ALCOM II (contract no. 7141). The work of the third and the

fifth author was also supported by the EEC ESPRIT Project GEPPCOM (contract No. 9072).

0304-3975/97/$17.00 @ 1997 - Elsevier Science B.V. All rights reserved

PII SO304-3975(96)00274-S

268 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

graph represent the wires, and the vertices represent the modules. Of course, this graph

is an oversimplified model of the circuit, but understanding and solving problems in

this simple model can help us to obtain better solutions for the real-world model (see

the surveys by Shing and Hu [12], and Diaz [4]).

In this paper we shall consider two layout problems. The first problem is called the

minimum linear arrangement (MZNLA) problem. Given a graph G = (V, E), find the

layout q which minimizes 1,((p, G). The MINLA problem is NP-complete for general

graphs [S]. Due to the importance of the problem, there has been some work trying

to obtain polynomial-time algorithms for particular types of graphs. For instance, Even

and Shiloach proved that the problem remains NP-complete for bipartite graphs [6].

Adolph and Hu gave an O(n log n) algorithm for the case that the graph is a rooted

tree, where n is the size of the tree [2]. Finally, Shiloach solved the problem for

undirected trees by an O(n*.*) algorithm [13].

The second problem that we shall consider is the minimum cut linear arrangement

(MZNCUT) problem. Given a graph G = (V, E), find the layout q that minimizes

the cutwidth y(cp, G). An important special case of this problem is the graph bisection

problem; find a partition of 2n vertices into two subsets of size n such that the cutwidth

between the two subsets is minimized. The MINCUT problem is NP-complete for

general graphs [7], weighted trees and planar graphs [111. The graph bisection problem

is also NP-complete [8]. As in the case on the MINLA, the MINCUT has a history

of results for particular types of graphs. Harper gave a polynomial-time algorithm for

the n-dimensional hypercube [9]. Chung et al. [3] presented an O(n(logn)d-2) time

algorithm to solve the MINCUT problem on trees, where d is the maximum degree of

any vertex in the tree. Yannakakis gave an O(n logn) algorithm for the case that the

graph is an undirected tree [141.

We present here two parallel algorithms. The first one solves the MINLA for undi-

rected trees in 0(log2 n) time using O(n23”gn) processors on a CREW PRAM. The

second algorithm solves the MINCUT for undirected trees of maximum degree d in

time O(d log* n) using O(n*/ logn) CREW PRAM processors. To the best of our

knowledge, these are the first parallel algorithms for the above problems.

2. A parallel algorithm for the MINLA problem on trees

2.1. Preliminaries

Let cp be a layout of a tree T of n vertices. cp is a minimum length layout of T

if there is no other layout with smaller length. Let $5 denote the layout obtained by

reversing the order of the vertices. Note that 3.((p, T) = i(Cp, T).

Let u be a vertex of T. Deleting v and its incident edges from T, yields several

subtrees of T. Each of them is called a subtree of T modv. For each edge (v’, v)

there is a unique subtree T’ of T mod v such that v’ E T’. The vertex V’ is the root of

T’ mod v.

J. Dim et al. I Theoretical Computer Science 181 (I997) 267-287 269

Definition 1. A central vertex of T is a vertex u* such that if To, Tt , , Tk are all the

subtrees of T mod v*, then the number of vertices in each T;, for i = 0. I,. .k, is at

most Ln/21.

In [131 has been proved that for each tree T, there exists a central vertex c*.

Let To be a subtree of T mod c’, and let vo be its root mod r. Assume that we want to

compute a minimum length layout of T. Computing minimum length layouts of To and

T - TO separately is wrong since we have no control on the length of the edge (IJO. r). In

order to take into account this edge we consider ricght and l<fi unchored trees. Let T be

an n-vertex tree, let c E T, and let cp be a layout of T. T is called right unchord at P,

and is denoted by T(V) when its length is defined by iL(y, ;i’(c)) = j.(cp, T) + n ~ cp(t,)_

T is called kfi unchored at U, and is denoted by F(r) when its length is defined by

;.(q, c?;(c)) = j.(q, T) + q(v) - 1. In other words, in the length definition of a layout for

a right (left) anchored tree, we consider an extra edge that covers the distance between

r and the rightmost (resp., leftmost) vertex of T. Notice that finding a minimum length

layout for right and left anchored trees is equivalent, since by reversing the order of

the vertices a right anchored tree becomes a left anchored tree, while the total length

remains unchanged. When considering all the subtrees mod{‘, all the anchored subtrees

will be anchored at their root mod c. In such a case we will not state explicitly the

corresponding root.

In the following, we use T(r) to denote a tree, with x = 0 for free trees and :! = I

for anchored trees. Further, /,(T, c, 3) denotes the minimum length of a layout for T(x)

where L’ is either the vertex at which the anchor is connected to T, if x = I, or

a central vertex of T, if x = 0. In both cases, we refer to the vertex 1’ as the root of

the tree.

Let Ti,. . , Tk- be trees, and let ni denote the number of vertices of T,. i = I. _. . k.

In order to simplify notation we will use (TI (3,), Tk(q)), where x, = 0 if T, is a

free tree, and Xi = 1 if 7; is an anchored tree, for 1 <i < k, to represent the layout

obtained from the layouts of the subtrees T;, 1 < i <k, which are composed together

such a way that the following holds:

43
in

j-l I

c ni < y(v)<Cn;
/=I iz,

for all P E Tj and for all 1 <j < k.

Let c be the root of a tree T(a), and let TO, T,, . , T, be all the subtrees of

T(~)modt’. In the sequel, we will assume that the subtrees are numbered so that

n,,>ni 3 “’ >nk, where ni denotes the size of T,, i = 0, 1,. . , k. Furthermore,

T - { Tl, , Tk} denotes the tree obtained by removing the vertices of TI, . , T,> and

their incident edges from T.

We define p(T, u, CC) as the value of the greatest integer p satisfying Hi > li(n~

+2)j + ~~(n++2)] for i = 1,2,. . .,2p-a, where n* = n-C$” n; and n is the number

270 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

T-To

Fig. I.

of vertices of T. If such a p does not exist, then we set p(T, v, CC) = 0. We will denote

by T* the tree T(U) - { Tl, . . , T2p_a}, for p = p(T, v, a).

We state now the main result given in [13]. For motivation and more detailed dis-

cussion of the result, we refer the reader to the original paper by Shiloach [13].

Theorem 1 (Shiloach [13]). Let T(a) be a tree with root v*, and let To,.. . Tk be all

its subtrees mod v*. Let p = p(T, v, cl) and T* = T - {T,, . . . , Tz~_~}.

(a) If p = 0 then, if a = 0 then T(a) has a minimum length layout of type

A=

else

Fig.

(%,=-To) (see Fig. l(u)), with length

4~ T) = A(cp, %v,)) + A(403 =(v*)) + 1

(i.e., CI = 1) T(a) has a minimum length layout q of type A = (70, T - To) (see

l(b)), with length

4~7) = 49, Z(Q)) + 4~ T - To(v*>> + n - 110,

where n is the number of vertices of T(M), and no is the number of vertices of TO.

(b) If p > 0 then T(a) has a minimum length layout of type A (dejned as in

case (a)) or of type B = (yl, ‘3,. . ., - T+I, T*, FlP_21r.. .,??~,Fz) (see Figs. 2(a)

J. Diaz et al. I Theoretical Computer Science I81 f 1997) 267-287 271

“*

Fig. 2

and (b)), M’ith length

SO = cn3 + n4> + 2(n5 + n6) f “. + (p - l>(n2f-l + n2,) f p(n* + 1),

~1=(n2+n3)+2(n4+n5)+~~~+(p-I)(n2~-2+n2~-1)+p(n*+l)-l.

w*ith ni being the number of vertices of 7;: for i E (0,. ,2p-a}, and n* = n-Cf!,’ n,.

Fact 1 (Shiloach [131). (a) Zf CJI is a minimum length layout of T(x) of type A. then

(p/To (cp restricted to To) is a minimum length layout of’ %(Q) and v/T ~ To (q

restricted to T - To) is a minimum length layout of G(vt) (or T - TO if 2 = 1).

(b) !f’q is a minimum length layout of T(a) of type B, then q/T! (cp restricted to

T,) is a minimum length layout of z(q), jbr i = 1,3,...,2p - 1, und of' x(r,).fiw

i = 2,4,. . .2p - 2~. q/T* is a minimum length Iuyout of’ T;r.

The design of the sequential algorithm is based on the decomposition given in

Theorem 1. The correctness of the algorithm comes from Theorem 1 and Fact 1. Using

the parameter x, the algorithms for free and anchored trees are combined

272 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

together. Each of them recursively computes a minimum length layout of a tree T

from minimum length layouts of its subtrees. Notice that if p(T, U, 3) > 0, then the

algorithm computes both types of layouts and takes the one with the smaller length.

2.2. The parallel algorithm

Our parallel algorithm for the MINLA problem will be divided into two stages.

In the first stage, starting with T, we recursively decompose each tree into subtrees until

all subtrees have size one. At the same time, we keep the appropriate information that

will allow us to compute a minimum length layout of each tree from minimum length

layouts of its subtrees. In the second stage, we reconstruct the layouts, until we get

a minimum length layout for the whole tree T. We only present the decomposition stage

and specifically, the decomposition of both free and anchored trees. The reconstruction

stage can be easily derived in view of the decomposition one.

The decomposition of free and anchored trees is based on Theorem 1 and exploits

the properties of type A and B layouts, as well as the properties of the central vertices

and the parameters p(T, v, 3). We first prove the basic lemmas used for deriving the

decomposition of free and anchored trees.

Lemma 1. Let T be u free tree with central vertex v*, and let To,. . . Tk be all its

subtrees mod v*. Let p = p(T, v*, 0), n* = n - Cf& ni, and T* = T - { TI, . . . , TQ,}.

If p > 0 then IT*1 <n/2, i.e., the number of vertices of T+ is at most n/2, where n is

the number of vertices of T, and ni is the number of vertices of Ti for i E (0,. . . , k}.

Proof. As p 3 1, we have

Thus, 2% > no + nzp+ t + . . t nk + 1 = 1 T* 1. Furthermore, 2p > 1, thus 2nIP <n, +
. . . +Q. As no+nl +...+nk+ 1 = ITI, we get jT*I <n/2. [7

Lemma 2. Let T be u free tree with central vertex v*, and let TO, Tl be the two

heaviest subtrees modv*. If IT - {TO, Tl}l >n/2 then v* is a central vertex of

T - {TO, TI }, where n is the number of vertices of T.

Proof. As the size of T - {TO, T, } is n - no - nl and, all ni are sorted, we need only

to show that n2 < i(n - no - nI) to prove that v* is a central vertex of T - {TO, Tl }.

Suppose that n2 > +(n -no - nI), then 2n2 > n -no - nl > n/2. Thus n2 > n/4. As n2

is smaller than no and n1, we have that no +nl > n/2. But this implies n-no - nl < n/2,

and we get a contradiction. 0

Lemma 3. Let T be tree anchored at v*, and let TO,. . . , Tk be all its subtrees mod v*.

Let p = p(T,v*,O), and T* = T - {T~,...,TQ_~}. Then, if p > 0 then IT*l<3n/4,

where n is the number of vertices of T.

J. Diuz et al. I Theoretid Cornpurer S&nce 181 i 1997) X7-287 273

Proof. Let nh = 1 T* /. We consider two cases, depending on whether no >n/2 or not.

C’use 1. no < n/2: In the case that p > 1 we have to remove at least three subtrees

from T, and using the same argument as in Lemma 1 we get oh <n/2. When /-’ = I,

we have nl > F that is nl > n/3. As nl, = II - 111 we get nh <2?r/3.

Cusc 2. no 2 17/2: Notice that in this case p < 2 because otherwise, nl, nz, 113 must be

bigger than no;!2 (from the definition of p) that is, bigger than 1714 and thus, MO could

not be bigger than n/2. When p = I we have that 111 > n(jj2 and therefore, n/, <3r1/4.

The decomposition stage consists of a number of phases. The size of the trees which

are decomposed during phase i is at most n/(4/3)‘. Therefore, in O(logn) phases we

have trees of size one.

Frw tree &composition. The idea of the decomposition in the case of a free tree,

is as follows. Let T be a free tree of size n, and let z’* be its central vertex. According

to Theorem 1. if p(T, c’*, 0) = 0 then T has a minimum length layout of type A, while

if p(T, P*. 0) > 0, then a minimum length layout of T is computed as the minimum of

type A and type B layouts. To simplify our discussion, we will consider the case that

p(T, c*, 0) > 0. (This case is more general in the sense that both type A and B layouts

should be computed.) Notice that all subtrees that appear in the type B layout have size

smaller than n/2 (T, by the central vertex property and Te by Lemma 1). Therefore,

the size of the problem is reduced by a constant factor and in O(logn) phases we will

have trees of constant size. In the case of the type A layout, if T - To has size at most

n.‘2 then the size of the problem is reduced by a constant factor. Otherwise, we have

to further decompose the tree noTo in the current phase. Notice that the root is

still c*, therefore, the largest subtree is TI . Now a layout of type B again verifies the

properties according to Lemma 3. In the case of the type A layout, if T ~ {To, TI } has

size at most n/2 we are done, i.e., the size of the problem has been reduced. Otherwise,

we have to further decompose T - {To, TI }. But from Lemma 2, I‘* is still a central

vertex for this tree thus, its subtrees mod r* are Tl.. , T,. The above procedure should

be repeated until the size of the derived subtrees is less than or equal to n/2. Note

that the procedure should be repeated for at most /j times, where /_? is the first index

for which IT - {To,...,T,j)l<n/2.

Before we give the algorithm for the free tree decomposition we need the following

definition.

Definition 2. Let TI, , Tk be subtrees of T(x). Let T, = T(r) ~ { T,, , TX}, II, = 1 T, /,

for iE{l,....k} d an n 1 3 122 3 > nk. A bulunced lu~m~t of the subtrees TI . , T,%, Tb

is the layout

f--ii tt+
(TI, Tj, Tj...., Th,..., Tf,, T4, T2).

If cp is a balanced layout of T1,. . _ Tk, Tb, and nh = /Thl, then the length of cp is

computed as in the following lemma. We assume that k is even (the case that k is

odd is similar).

214 J. Dim et al. / Theoretical Compuler Science 181 (1997) 267-287

Lemma 4. Let T,,..., Tk be subtrees of T(a) and Tt, = T(a) - {T,, . . . , Tk}. rf cp is a

balanced layout of TI, . . . , Tk, Tt, then

k-l

149, T(a)) = c 4~3) + 5 4~ E) + A(cp, Tt,) + Q2

where

i=l,i odd i=l,i wen

Qo=(n3 +n4)+2(n5 +n6)+“’ + (k/2 - l)(nk-, + I’&) + k/2(nb + I),

Q1=(n2+n3)+2(n4+n~)+...+(k/2- l)(nk-2+nk-1)

+k/z(nk +nb + I)- 1.

Proof. The proof is by a straightforward calculation using the subtree sizes, which

follows from the definition of a balanced layout, and the elementary definitions of the

length of free and anchored tree layouts. 0

Fact 2. Zf cp is a minimum length layout of T(a) computed as a balanced layout

of TI,. . . , Tk, Tb, then q/T, (cp restricted to Ti) is a minimum length layout of z for

i = 1,3,..., k - 1, and of 5 for i = 2,4,. . . , k. cp/Tb is a minimum length layout

of Tb.

Proof. The proof is immediate since Qa for a E (0, l}, is independent of cp. 0

The decomposition of a free tree T of size n, is obtained as follows.

1. Compute a central vertex v* of T.

2. Compute in parallel the sizes of the subtrees of T mod u*. Let To,. . . , Tk be the

subtrees of T mod v*, and ITi/31c+i(, for all iE{O ,..., k - 1).

3. Compute p the first index for which IT - {TO,. . , Tb}l <n/2.

4. Letp~=p(T,v*,O)andBobethelayout(-T)~,?~ ,..., ?2po--l,T*r~2po ,..., F4,F2).

5. For each i = l,...,fi

5.1.

5.2.

5.3.

Compute in parallel pi = p(T - {To,. . . ,7;_ I}, v*, ai), where ai = 0 for i even,

and ai = 1 for i odd. If pi = 0 then Bi is empty. Otherwise, B; is computed

in step 5.3.

Let T$ = T - {To)..., 7;:-1,q+l,... Ti+2p,-x,}, where ai=O for i even, and

ai = 1 for i odd.

Let Bi be the balanced layout of To,. .., T;_l, c+l,... Ti+zp,_q, Ti(ai) (see

Definition 2).

6. Let Tt+’ = T - {To, T 1,. . . , Tp}. Let B/j+, be the balanced layout of To, T,, . . . , Tl,

Ti+’ (ay+l), where q+i = 1 if /I is even, and u/r+1 = 0 if p is odd.

Let T be a free tree, and U* be a central vertex of T. Let To,. . . , Tk be all the

subtrees of T mod v*. Let p, Bi, for i E { 0, 1, . . , j? + 1 }, be as they are defined above.

Then we have the following.

J. Diaz et al. I Theoreticd Computer Science 181 (1997) 267 287 275

Lemma 5. A minimum length luyout qf T cun be computed us the luyout out of' B,,

i = 0,. , p + 1, which attains minimum length. Furthermore, the size of’ all subtrees

that uppeur in uny such luyout is at most 3n/4.

Proof. Let T be a free tree of size n. Notice that all subtrees that appear in the

type B layout have size smaller than n/2, q by the central vertex property and r*

by Lemma 1. This layout is Bo. If T - T” has size at most n/2 we are done, be-

cause j = 0. Note that the size of each subtree in Bo is at most n/2. Otherwise, we

have to decompose the tree ‘ra(r,). Notice that the root is still c*, therefore, the

largest subtree is T,. Now a layout of type B again verifies the properties according

to Lemma 3. Furthermore, putting To on the left it corresponds to layout BI The size

of each subtree in BI is at most 3n/4. If T - {To, T,} has size at most n/2 we are

done; layout B/I+, = B2 is the balanced layout of T”(l), Tl(1). T - {To, Ti }. Notice

again that the size of each subtree in Bii-1 is at most n/2. Otherwise, we have to fur-

ther decompose T - {To, T,}. But, from Lemma 2, c* is still a central vertex for this

tree therefore, its subtrees mod z’* are T,. . , Tk. The procedure is repeated for at most

fi times, and the layouts B;, for i = 0, I,. . , /i + 1, are obtained. Notice that the subtrees

that appear in the above layouts have size at most 3n/4. Notice also that the layouts

B; for i = 0, 1,. , b + 1, have been obtained by simply combining type A and type B

layouts of subtrees of T mode*, in a way that the sequential algorithm would follow.

Therefore, a minimum length layout of T can be correctly computed as the layout out

of B,, for i = 0, 1, fi + 1, which attains minimum length. The lengths of these layouts

can be computed using Theorem 1 and Lemma 4. 0

Anchored tree decomposition. Before we give the anchored tree decomposition we

introduce some additional notation. Let T(c*) be an anchored tree of size n. We

will denote by T,f, T,(‘, its subtrees mode* sorted by size, and by (::I, cl’,. the

corresponding roots mod v*. Recursively, whenever we have an anchored tree z(c;,),

by To’+‘, T,‘-‘, we will denote its subtrees mod ~6, and by u;“, c;+‘, . we will denote

their corresponding roots mod L$.

The idea of the decomposition of ?(zl*) is based on the following. If no = 1 T$ <

Ln/2] then I‘* is a central vertex and ?(u*)‘s decomposition is similar to the de-

composition of a free tree. Consider now the case where no > [n/2]. According to

Theorem 1, if p(7, c*, 1) = 0 then 7 has a minimum length layout of type A, while

if ~(7, c*, 1) > 0 then a minimum length layout of 7 is computed as the minimum

of type A and type B layouts. As in the case of the free tree decomposition, to simplify

our discussion we will consider the case that p(7, u*, 1) > 0. From Lemma 3, since

~0 >n/2, p(7, v*, 1) cannot be bigger than 1. Therefore, the two trees that appear

in the type B layout have size smaller than 3n/4 (T,‘) has size smaller than Ti’, and

T* = T - T:’ by Lemma 3). Therefore, the size of the problem is reduced by a constant

factor and in O(logn) phases we may have trees of constant size. In the case of the

276 1. Diaz et al. i Theoretical Computer Science 181 j1997) 267-287

type A layout, note that T - Ti has size at most n/2. If Tt has also size smaller than

n/2, then the size of the problem is reduced by a constant factor. Otherwise, we have

5 to further decompose the tree T,, m the current phase. Now a layout of type B again

verifies the properties according to Lemma 3. In the case of the type A layout, if Td(1)

(i.e. the anchored tree Td) has size smaller than n/2 we are done, i.e., the size of the

problem has been reduced. Otherwise, we have to further decompose Td (1). Note that

the above procedure should be repeated for at most y times, where y is the first index

for which ITi1 < n/2.

Therefore, the decomposition of an anchored tree T(u*) is obtained as follows.

1. Compute y the first index for which 1 T;;‘I < n/2.

2. If p(??),u*, 1) = 1 then let ro = (?,‘,T - TP)

3. For each i = l,...,y:

3.1. Compute in parallel, pi = p(To, v& 1). If pi = 0 then c is empty. Otherwise,

fi is computed in step 3.2.

3.2. Let fi be the layout (s(vi), Ti-’ - T;, . . . , Tt - Td, T - T:).

4. Let r,+l be the layout (5, TJ-’ - Tl,. . , Tt - Td, T - Tl). In the case that the

size of Ti-’ - T;;’ is bigger than 3nJ4 apply the free decomposition on it, until the size

of each of Tl-’ - Ti’s subtrees is smaller than 3n/4.

Let ?(v*) be an anchored tree and let y, &, for i E (0, 1, . . . , y + l}, be as they

are defined above. Notice that all subtrees appearing in the rj layouts, for i = 0,. . , y,

have size smaller than 3n/4. The only tree that can have big size in the r.+, layout,
is T;;‘-’ - T;i’. In such a case we decompose it according to Lemma 5, taking as a

parameter the size of the original tree.

Lemma 6. A minimum layout for an anchored tree T can be computed as the layout

out of ri, i = 0, 1,. . y + 1, which attains minimum length.

The proof of the previous lemma follows from the above discussion. The length of

each layout ri, for i = 0, 1, . , y + 1, can be easily computed from the lengths of the

layouts of the subtrees that appear at it. Notice that the extra length that should be

added due to the anchors, depends only on the size of the subtrees.

We can now prove the following theorem.

Theorem 2. Given an undirected tree T with n vertices, there exists a parallel algo-

rithm that computes a minimum length layout of T. The algorithm needs 0(log2 n)

time using 0(n3.6) CREW PRAM processors, where n is the size of the tree.

Proof. The algorithm consists of two stages. In the first stage (decomposition stage),

the tree is decomposed into subtrees of size one. The decomposition stage consists

of O(log n) phases. At phase i, a number of subtrees of size at most n/($)’ are de-

composed into a number of subtrees of size at most n/(G)i+‘. (At phase 0 the whole

J. Dim et al. I Theoretical Computer Science 181 i 1997) 267-287 271

tree T is decomposed into subtrees of size at most 3n/4.) A free tree is decomposed

using the free tree decomposition procedure, and an anchored tree using the anchored

tree decomposition procedure. During the decomposition phases, we keep the neces-

sary information that will be used to compute a minimum length layout of a tree from

minimum length layouts of its subtrees. Therefore, appropriate expressions that keep

the lengths of layouts B; and c (as they are defined in the free and anchored tree de-

composition procedures) are kept. Those expressions will be used at the second stage

of the algorithm (reconstruction stage) to compute the minimum length layout of T, by

first computing minimum length layouts of the subtrees constructed at the decomposi-

tion stage. Notice that the reconstruction stage consists also of O(logn) phases. The

correctness of the algorithm follows from Theorem 1, Fact 2, and Lemmas 5 and 6.

Before we discuss the implementation details of our algorithm, as well as its com-

plexity, we first discuss the way the trees are represented. Each tree will be represented

by a linked list keeping an Euler tour representation, together with a mask that keeps

which vertices of the original tree are present in it. This mask will also contain pointers

to the linked list. To distinguish between free and anchored trees we keep the param-

eter c(and the corresponding root for anchored trees. We record in a matrix, pointers

to the subtree masks that form part of any of the layouts in a decomposition phase,

together with the additional information required to trace back the length of any layout.

A central vertex of a free tree T, of m vertices, can be computed in time O(log nz)

using O(m’) CREW PRAM processors. This is done as follows. We compute for each

edge the sizes of the two subtrees using the Euler tour technique [lo], and compute the

difference of subtree sizes. We take as central vertex the root of the heaviest subtree

corresponding to an edge of minimum difference.

Once we have the central vertex of a free tree, we have to compute subtree sizes

(now the tree is rooted) using the Euler tour technique, and sort subtrees by size. From

the tree sizes using suffix sums we compute fi, pa, ~1,. , p/j. Consider the free tree

decomposition. There are two ways to create new subtrees at each decomposition phase

of a free tree. First, trees obtained just removing an edge, i.e., all subtrees mod L’ for a

given root c. Second, the union of some of the subtrees mod c rooted at a “new” copy

of c. In the first case, we compute the corresponding subtrees by removing the root

and running a rooting algorithm (in parallel) for each root moda, in order to separate

subtrees. This part will be the basic step for the second case; now we just have to

merge the corresponding trees adding a new vertex as root. So for a tree of size m.

we can maintain the tree representation using CREW PRAM O(m2) processors in time

O(log m).

In the case of an anchored tree T,,,, the root of T,,, is the vertex in which the anchor is

connected to T. We first compute subtree sizes using the standard Euler tour technique,

and then again with the same technique, we find a path of roots of trees of maximum

cardinality. Finally, using suffix sums we compute the index ;‘. From the anchored tree

decomposition, it is easy to compute the representation of each subtree.

Taking into account that the sum of the sizes of the trees obtained in the decom-

position of a tree T, is at most 3 times the number of vertices of T,, the number

278 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

of processors needed in any phase is at most 3 times the number of processors in

the previous one. Thus, the maximum number of processors needed by the algorithm

is 0(3 10s n$) = O(n3.6) . Furthermore, the time used in each phase in the first and

second stage is O(logn). Thus, the algorithm needs O(log2 n) time and O(n3.6) CREW

PRAM processors. 0

3. A parallel algorithm for the MINCUT problem on trees

In this section we give an O(n*/ log n)-processor, O(d log’ n)-time parallel algorithm

which finds a minimum cut layout of a tree T of maximum degree d, where 12 is the

number of vertices of T.

For each vertex u E T, the parallel algorithm proceeds as follows: Let T, be the

tree that contains all the vertices of T and is rooted at v. The algorithm converts T,

into a binary tree TO0 and then applies the parallel tree contraction technique to TV0

to compute a minimum cut layout of T,. Let cpv be a minimum cut layout of T,. The

layout cpV, VE T, with the minimum cutwidth is output as a minimum cut layout of T.

Before we describe the algorithm we give some terminology and definitions.

3.1. Terminology and dejinitions

Let T be a tree which we convert into a binary one To. Let v be a vertex of T

with degree d and let WI,. . . , wd be its children. Then, the vertex set of To includes

vertices v’, . , vdf’. For 1 <i <d, v’+’ IS the right child of vi in TO (see Fig. 3). We

will say that the vertices v’, 1 < i <d, are of the same lube1 since they are coming from

the same vertex of T (e.g., in Fig. 3 the vertices U* and vd+’ are of the same label

while WA and u2 are not).

With each vertex u E T, we associate two pieces of information: (i) A layout se-

quence, vu, realizing the layout of the subtree rooted at u and u’s position in this layout

and (ii) a cost-sequence, cost(cp,) of the layout sequence cpU defined in the sequel.

(In the sequel, we will use rpU to denote both the layout of a tree T, rooted at u,

and the layout sequence realizing the layout.)

Given a layout cpU for the subtree rooted at U, (leftcost(is a sequence (yi, ~1,

y2,y/2,. . .) where parameters yi and vi are defined as follows: yi is the largest cut

(in cpU) occurring on the left side of U. Let wi be the point where the cut of yi occurs.

If WI is immediately to the left of u then (leftcost(= (rl). Otherwise, let y11 be

the smallest cut between WI and u and let w2 be the point closest to u where yli

occurs. Suppose that 72 is the maximum cut between w2 and u and w3 is the point

closest to u where 72 occurs. If y2 = yi or w3 is immediately to the left of u then

(leftcost(= (~1, ~1, ~2). Otherwise, we continue similarly by taking the smallest cut

between w3 and u. (rightcost(is a sequence (y{, y/I, ~4,. . .) where y{ is the largest

cut in cpU occuring on the right side of u. The rest of the sequence is defined in a

way similar to that of (Zeftcost(u)) but we now work on the right side of u. Clearly,

J. Diu-_ et al. I Theoretical Computrr Scimce 181 (1497) 267 287 279

V

54 V2

Wl
1

wl . .
2

Vd

/\
1

,d+l

Wd

Fig. 3

Definition 3. Let cpU be a layout sequence and let 71, y{, leftcost(q,,), rightcost(cp,,)

be as they are defined above. Then the cost of the layout q,, is ;elr = max{;lr .?‘I }, and

the cost-sequence of the layout cpu is cost(q7,,) = (leftcost((pL,), *, rightcost(cp,,)) where

the “*” denotes the position of u.

The algorithm involves comparisons of cost sequences in order to construct a min-

imum cut layout of a subtree rooted at 2’ using the minimum cut layouts of subtrees

rooted at U’S children. This is motivated by the fundamental work of Yannakakis [14].

In the sequel, we describe how we compare cost sequences.

Let a and b be the two subsequences of a cost sequence cost. If a # b, and neither

is a prefix of the other, then a > b iff a is lexicographically larger than b. If u is a

prefix of b and a ends with a 7i entry, then a > b, while if a ends with a q, entry, then

a < b. If Iefkcost(cp,,) > rightcost(cp,) then we call the left side of cpu (with respect to

the position of u) heavy side, and the right side of u light side.

Let cost1 = (heazyside,, *, lightside,), cost2 = (heuzy~side2, *, li~ghtside,) be two cost

sequences corresponding to two layouts for the same tree. Let heacyside, = ;:I,, 11 i,, ;‘2;,

ql,, . and lightside, = $,, yi,, yii, vii, . . , for i E { 1.2). To compare the cost sequences

cost1 and cost?, we construct the sequence cornpure, = (;.ii, qfi, y$, q&, .), for i E { I. 2},

as follows: If ~1~ # r’li then 77; = ~1, and compare, = ($,,). If 71~ = ;“,, and there arc

no next entries vu, yii in heavyside,, lightside,, respectively, then let ;I;‘, = ;‘I, and

compurei = (yf,,:$,) If only one of the heavyside; or lightside, has an entry following

;‘ti or yyi then call that entry ye;, and let compare, = (;I;+$,). If ~1, # ?I’,, then let

280 J. Diaz et al. /Theoretical Computer Science 181 (1997) 267-287

qfi = vii and compare, = (yfi,&). If yrl = qli then in the case that yzi = qii or

y2i # yii, let qEi = t/ii, y5i = y2i and compare, = (yfi, yTj, ~5~). In the case that y2i = yi,,

we continue in the same way as in the case (above) where yii = rii.

We say that cost1 = cost2 iff compare, = compare,. If the sequences compare, #

compare, and neither is a prefix of the other, then cost1 +cost2 iff compare, is lexi-

cographically smaller than compare,. If compare, is a prefix of compare2 and compare,

is of odd length then cost] + cost2 while if compare, is of even length then cost2 4

costl. Note that 3 is a transitive relation.

Definition 4. Let T, be a tree rooted at a vertex U, and let cp,, be a layout of T,. qo,

is optimal iff there is no other layout cp: of T, such that cost(q$)+cost(cp,).

3.2. The parallel algorithm

The parallel tree-contraction algorithm (see [l]) evaluates the root of a tree T by

processing a logarithmic number of binary trees TO, T,, . . , Tk, k = O(log ITI), where

TO = T and Tk contains only one vertex. Also, I7;:1 d ~1 E-1 1, 0 < E < 1. The tree 7; is

obtained from Ti;:-1 by applying a local operation, called shunt, to a subset of the leaves

of Ti- 1. The shunt operation of our algorithm involves the construction of an optimal

layout for a subtree T,, rooted at a vertex v, using optimal layouts of the subtrees

T “,, . . . , T,, rooted at v’s children, vi,. . ., ud. The correctness of the approach is based

on the following fact proved by Yannakakis [141. Let T be a tree that consists of two

rooted trees T,, T2 rooted respectively at vertices vi, ~12, and the edge {VI, ~2). Then the

cutwidth of T depends on the cost-sequences cost((PI), cost(~422) of the optimal layouts

ql and 432 of TI and TX, respectively. Furthermore, the cutwidth of T is a monotonic

function of both cost(cpl) and cost(cpz), i.e., if we replace Ti by another tree T,’ with

optimal layout cp{ and cost(cpl) + cost(cp{) or cost(cp1) = cost(cp’,), and replace T2 by

another tree Ti with optimal layout ‘pi and COS~(~~)+COS~((P~) or cost(q2) = cost(cpi),

then the cutwidth of the resulting tree T’ is at least as large as the cutwidth of T.

The shunt operation involves two merge-operations on the layout sequences:

Merge-operation A: Let T,, be a tree rooted at a vertex u. T,, consists of two

trees T,,, T, (rooted at u, v respectively) and the edge {u,v}. Suppose that rp, and cpv

are optimal layouts of T,,, T,, respectively. The merge-operation A uses vu and qov to

compute an optimal layout quo of T,,.

Merge-operation B: Let T,, be a tree rooted at u with children ui,. . . ,ud and T, a

tree rooted at v with children ~1,. . , t&j’. Suppose that we are given the optimal layouts

of T,, T,. The merge-operation B computes an optimal layout cpUV realizing a layout of

the tree T,, which is rooted at u and has as children the children of both T, and T,.

We give now the shunt operation of the tree contraction technique. Suppose that Zi

is the leaf which is ready to perform the shunt and that 5 is the father of li, p(A) is

the father of fi and fj is the other child of A. Suppose also that optimal layouts of

Zi, fi, fj, p(fi) are given. For the sake of simplicity in the notation, assume that these

layouts are denoted by c(li), c(fi), c(f,), C(PM >), respectively. In the sequel, fij will

J. Dia: et al. I Theoretical Computer Science 181 (1997) 267-287 281

-c

A

D

R

Fig. 4

be the vertex which is the result of the shunf operation. A and B will denote the merge

operations. We will use A(qU, cpu) (B(cp,, cpr)) to denote the layout sequence we get by

applying the merge operation A (respectively, B) to the layout-sequences cpl(and cp,.

Cuse 1. I, is the left leaf of ,fi. (Ii, f, cannot be of the same label.)

c(.fiL) = A(c(l,),c(f,))

Cusr 1.a. ,f;, ,j’j are of the same label. c(fiJ) = B(c(hl,)),c(f,)).

Cuse 1.b. ,fi, fj are not of the same Iubel. c(fil) = A(c(f,li)),c(f,)).

Cuse 2. I, is the right leaf of fi. (fi, f/ cannot be of the same lubrl.)

Cuse 2.a. I,, J are of the same label. c(fili) = B(c(li),c(.f;))

Subcase 2.a.a. ,fi, p(,f,) are also of the same lubel.

C(P(.fi)) = B(c(hli),c(P(f,)))

a,) = cc.r;,.

Subcase 2.a.b. ,f;, p(fi) are not of the same label.

CM,) = A(c(f,L)> c(fj)>.

Suppose that the resulting sequence c(,f,j) is as in the Fig. 4, i.e., c(fiJ) = (A, *, B).

From c(,f;,) we easily take the layout-sequence c’(f,) = (C, *,D), where the “*”

denotes the position of fj (see Fig. 4). Let T,-*,, be the subtree - of the current r,.o

~ rooted at Jij. In the sequel, every merge operation of ,fi, with a vertex M: of T,,,

is done using the layout sequence c’(.hj) while every merge operation of ,f;, with a

vertex of Tro - Tf;j is done using the layout sequence c(fiJ).

CUSS 2.b. I,, f/ are not of the same lubel. This case is similar to the above ones.

The efficient parallel implementation of the merge operations A considers a number

of cases depending on whether the leaf that is going to perform the shunt is a right or

a left leaf and whether or not it has the same label with its father.

Suppose that

VI- = (Yl,Y2,.‘.,Yl,*,Y~,,.‘.,Y~,1.1)

282 J. Dial et al. / Theoretical Computer Science 181 (1997) 267-287

Fig. 5

and

Merge-operation A

Case 1: yU = yc and cpU, cpU balanced. In this case, it is clear that the cost of an

optimal layout sequence cpUV cannot be less than yU + 1.

Subcase 1.1. Suppose that leftcost(cpu) < rightcost(vu) and rightcost(cpv) < leftcost

((pc) and ni, # 1, n{, # 1. Then we construct cpUc from cpU, cpU as follows (see Fig. 5):

cPur = (Yl~~~~~.Yj~Y~~ + 12.. .,y; + 1,1,x1 + l,..., x, + 1,*,x; ,,..., xi)

and the cost sequence of cpUv is

COSt((PU,) = (YIU + 1,YlU + l,...,Yk, + l,*,Y~~,...,g~,,Y~u).

The other subcases are similar.

Cuse 2: yU > yU and cpU balanced and (pc unbalanced. Let H, be the heavy side of

u and L, the light one. W.1.o.g. let H,, = leftcost and L, = rightcost(The

procedure which gives the cost yUL’ of an optimal layout sequence cpUO, is as follows:

if VI, + yV < yU or y\, + ya < yu then yua = yu else yua = yu + 1.

In order to find the position between the vertices of T, where we will insert T,, we

proceed as follows. Let i be the index of the largest v]i, in H, for which qfU +yU < yiU - 1.

Let j be the index of the largest r$, in L, for which r,$ + yc < $,. Suppose now that

c(h,,) (c(ZuO)) is the layout sequence we take if we insert cpti between the vertices -

in vu - where the cut of yiU (resp., $) occurs. Then, cpUv is this one from c(h,,),

c(luv), with the smallest cost sequence.

Suppose that we know the position where we will insert cpo and want to compute the

cost sequence of the layout sequence (pUc. We consider only the case where qiu+~a > ‘Jo

and ~‘1, + yU <yU (see Fig. 6) (the other cases are similar). Let x$ be the point in the

layout of T,, where the cut yl’lU occurs. Then,

CPU = (XI ,..., Xi,*,X(l + l,..., X:k + l,ui + 1 >...,YJ, + 1,Y ,,...> Yi>x;~ >...> xi).

J. Diar et al. I Theoretical Computer Science 181 (19971 267-287 2x3

Fig. 6.

In order to compute the cost sequence we distinguish subcases:

I. .Q < mi~r{gt,, qic} and xik + 1 < ~nin{gi~, q{,-}. In this case we have

if ;‘? < ;‘i,, + 1

then ~M(P,,,) = (YI~,I?I~~, . .,*,. .,&, + 1,;‘;, + l.&,.;“,,,)

else cost(qll~) = (~lu,ylu,...,*....,~~~ + l,;‘;,, + l,$,, + l,;lL,yjl]u,y’,,,)

II. x,k > muS{ qlc, v{~}. Let 41 L‘ < ~1’1, and yrnax = nr&~{ ;‘lr,](, + 1, $,, f 1 }

If J ,F,C,y = :i,, + 1 then

~‘mcp,,r) = (&t, l?lU> ” > *, . . . 3 q:,, + 1, ;I;, + 1. ~7lLb Y’lu 1.

If ;‘r,lou = ;I\ I + 1 then

c,osf(cp,,,) = (j’ll,, VI,,, . . .? * ,... >q;,, + 1,y;, + 1YViU + L;(, + 1,‘7lr,;‘lr,).

Let ;‘,,,uY = ~2~. We constder the case that iii, + 1 > ;‘;,, + 1 and IT{, + 1 < ni,, + I
(the other cases are similar). We use binary search to find in the sequence (;,,,, ,

V(r?- I ,I’, ? ml3 720) the y,c with the smallest possible 1 such that: ;‘lr < ;a{, + I or

q/C > $,? + 1. Suppose that for 1 = Ii we have ;‘I,, > ;“I, + 1 and PI/,,. > 11’1, + I

(again the other cases are similar). Then, cost(qlrt) = (;‘I~, rl iU,. , *. . , q;,, + I, $,, + I,

ullu + l>$ + LYj/ll- + l,~[,L.r~~(l,~l)L.,...,~21,,Y~lcrlilu).

III. The other subcases are similar to the above ones.

Cuse 3: ;I,, > yV and vu, cpr balanced.

Suhcasr 3.1. Suppose that ?I + y 1 II = yu and r~‘,, = 11,~. If we insert r,. between the

vertices where the cut yrU (or q’,,,) is realized, then the cost of cpUc cannot be less than

ylr + 1. For this reason, we try to spread the vertices of TP between the vertices of r,,

in such a way that yur = ;I~. To see this, suppose that ;lzL1 + ~1~ d ;jU and ;$, +)I{, 6 ;‘L,.

Also suppose that min{y~, + qlU, ;& + ~2~) 6;~~ - 1 and ma.u{~zV + yjzU, $, + ~2,) G:‘,,.

Let c(c:i) (C(U;J I)) be the part of the left (resp., right) sequence of qL - with respect

to the position of L’ - from the beginning until the point realizing the cut ;‘I, (resp.,

;,‘,,). We insert ~‘(72~1) (c(c7ti)) in the position of cpL1 realizing the cut of yliic (resp.. II’,,,)

and the rest of qr in the position of cp{, realizing the cut of ylz, (see Fig. 7). (Notice

that the cost of the resulting layout is ;‘,, but it is not necessarily optimal.)

A parallel procedure implementing the merge-operation A in this case follows.

Let k be the largest index such that (i) yku = yir and (ii) ‘di<k,yi, = $, (notice that

we can hnd this index easily in parallel in O(log k) time using m processors, where m

is the length of the cost sequence co.st(cp,,)).

284 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

I t
:

c(;,) c(v)_ q1)-c(vy 1) NV 7 1
Yl

Fig. I.

For each yir,, 1 d i < k, we examine if the following holds:

(A)]‘iv+yiuGYu-l or yic+~&u-l.

For each yio, 1 <i< k, that does not satisfy condition (A) we examine if

(B) ‘Jia + Yud = Yu and PIiu = T&, and max{Y(i+i)u + yIic,Y;i+i)u + Y:,><Y,.

Also, for ~(k+i 1” we examine if

mi+(k+l), -t V(k+l)loY;k+l)y + Y(k+l)u) GYU - 1

and

maX{Y(k+l)V + Y(k+l)u, Y;k+l)V +)?(k+l)u) dYz4

or

min{Y(k+l)” + Yl;k+l)uJ(k+l)u + 9;k+l)J GYU - 1

and

m4Y(k+r)u + Yl;k+l)uJ;k+l)u + yl;k+,)J <Ye

We call the above condition (C).

In the sequel, for each yiu, 1 <i< k, we create a vertex with label 1 if yiu satisfies

condition (A), label 0 if ylv does not satisfy (A) but satisfies (B) and null if yio does

not satisfy neither (A) nor (B). Also, we create a vertex for y(k+ljv with label 1 if it

satisfies (C) and label 0 if it does not. From each yio with label 0 or 1 we draw an arc

to y(i+i)” if y(i+i I,, has label 0 or 1. In this way, we create one or more lists. Using the

pointer doubling technique we find, in the list with head yiu, the first yiu with label 1.

If such a yiv does not exist, there is no optimal layout of T,, with cost yu. Otherwise,

there is one (or more) layout of T,, with cost yu. In order to find an optimal one do

the following. Find the largest Q, j>i satisfying

J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287 x-45

and

and the largest I$,,, j >/i satisfying

and

If such a j does not exist, then let j = i.

Let cr(uz’) (c~(uu)) be the layout sequence which we take if we insert the part of

cpr realizing the cut rku into I~x_~, the cut $, into vi,, 1 <k <(i - I), and the rest of

q[, into qjl, (resp., $,). Then, cpUr is this one from ct(uv), c~(uc), that has the smallest

cost sequence.

Once we have the layout sequence cpuc we can construct its cost sequence. The

construction is similar to that of case 2.

The other subcases of case 3 as well as the remaining cases are similar to the above

ones.

Lemma 7. Let T,, be u tree rooted ut a vertex u thut consists of the trees T,,, T,

rooted at u, L’, respectively, and the edge (u, c). Let also qI,, qq be optimal buyouts of

T, und T,, respectitiely. Then, the merge-operation A correctly computes un optimul

luyout cpU,. of’ T,, in O(logn) time using O(n) CREW PRAM processors, where n is

the maximum of the lengths qf’ (pU, qr.

Proof. The correctness is provided by considering the cost sequences of T, and T,

and proving that in each one of the cases, there is no layout of T,,, with cost sequence

smaller than the cost sequence of the layout produced by the procedure implementing

the merge-operation A.

It is easy to see that in case 1.1 any other layout with cost yu + 1 (which is the best

possible) has cost sequence larger than or equal to the one given above.

To see the correctness of case 2, we suppose w.1.o.g. that the cost sequence of the

optimal layout is as follows: (ylU,qiU ,..., jlilr,q;rr,j’(i+~)U + l,y(;+r,,, + l,..., ?jk, + l,*.
.I’ 1 (I,’ . 9 4,,~~‘l,,) (i.e., i is the largest index such that yiU + :)I <;:iu - 1 and the cost

sequence of c(hlll.) is smaller than the corresponding cost sequence of c(ll,,.)). We

also suppose that compare,, = (rf,,, I?;,, :i&, $Y<,, . . , ;‘L yliu, Y(i+l lu, V(i+l jI,). Note that
in this case the “compare” sequence of the new cost sequence will be as follows:

(I$,, Vf,,, 1;;,, ${,, . . . I yiu, viu, yy, + 1, qYl, + 1) for i < y d k. Note also that if we insert cp[

in the position where the cut of qXU is realized, for x either smaller or larger than i, then

the “compare” sequence of the corresponding cost sequence will be lexicographically

larger than the above one.

For the other cases the correctness comes also easily from their description. n

286 J. Diaz et al. I Theoretical Computer Science 181 (1997) 267-287

Merge-operution B

The parallel implementation of merge-operation B is based on merge-operation A.

Let T, be a tree rooted at v with children VI,. . . , vd and T, a tree rooted at u with

children ~1,. . . , qp. Let also d’ be greater than or equal to d. Suppose that (pU, cpU

are optimal layouts of T,, T,, respectively. Then, the merge-operation B computes an

optimal layout cpuc of the tree T,, rooted at u and having as children the children of

both T, and T,, as follows:

Consider the layout qai, for each i E { 1,. ,d}, which is the restriction of (pL, to

the subtree z rooted at vi, for each i E { 1,. . . , d}. Note that each (psi, is an optimal

layout of 7;, for i = 1,. . . ,d (if not then there is another layout qoli with smallest cost

sequence resulting in another layout ‘p: for T, which has smaller cost sequence than

cpI;; but cpV is optimal). Then, sequentially use merge-operation A to merge each one of

cpoi, for i = 1 , . . , d, with cp,,. Notice that from the optimality of the merge-operation

A, we have that the resulting layout cpU is optimal.

The proof of the following lemma is based on Lemma 7 and the description of the

merge-operation B.

Lemma 8. Let T,, be a tree rooted at u, T, u tree rooted at v and cpU,(pL: be optimal

layouts of T,, T,, respectively. Then, the merge-operation B correctly computes an

optimal luyout quo of T,, which is rooted ut u and has as children the children of

both T, and T,, in O(d log n) time using O(n) CREW PRAM processors, where d is

the minimum of the degrees of u, v and n is the maximum of the sizes of T,, T,.

We give now the parallel algorithm for the mincut linear arrangement problem on

trees.

for all v E 2” in parallel do

Let T, be the tree T rooted at v. Convert T, into a binary tree TL’o.

Apply the parallel tree contraction technique to TUo to compute an

optimal layout sequence cpU of T, and its cost sequence cost(q,).

cost(qr) = min{cost(q+) 1 v E T}

&UNCUT(T) = VT {* cp T is a layout sequence with cost sequence cost(cpr) *}

Theorem 3. Given an undirected tree T with n vertices, the above ulgorithm constructs

a minimum cut layout of T in time O(d log2 n) using 0(n2/logn) CREW PRAM

processors, where d is the maximum degree of T.

Proof. The correctness of the approach comes from the fact that a minimum cut layout

of T is computed as the layout out of minimum cut layouts of T,, for each v E T, which

attains minimum cutwidth, and the fact that the shunt operation correctly computes an

optimal layout of a subtree rooted at a vertex w, using optimal layouts of the subtrees

rooted at w’s children (recall the discussion at the beginning of the subsection). The

correctness of the shunt operation follows from Lemmas 7,8, and the fact that the

merge-operations A and B are combined correctly (see the description of the shunt

J. Diaz et ~1. I Theoretical Computer Science 181 11997) 267-287 287

operation). The time/processor bounds of the algorithm come from the bounds of the

parallel tree contraction technique and Lemmas 7 and 8. 0

Acknowledgements

We are grateful to Mihalis Yannakakis and to the anonymous referees for their

valuable comments on a previous version of this work.

References

[I] K. Abrahamson, N. Dadoun, D. Kirkpatrick and K. Przytycka, A simple parallel tree contraction

algorithm, J. Algorithms 10 (1989) 287-302.

[2] D. Adolphson and T.C. Hu, Optimal linear ordering, SIAM J. App/. Math. 25 (1973) 403-423.

[3] M. Chung. F. Makedon, LH. Sudborough and 3. Turner, Polynomial time algorithms for the min cut

problem on degree restricted trees. in: Proc IEEE Symp. on Foundations of’ Computer Science (FOCS)

(1982) 262-271,

[4] J. Diaz, Graph layout problems, in: Proc. (4 Symp. on Mathematic,al Foundations of Computer .%WKY~

(MFCS), Lecture Notes in Computer Science, Vol. 629 (Springer, Berlin, 1992) 14-23.

[5] J. Diaz, A. Gibbons, G. Pantziou. M. Sema, P. Spirakis and J. Toran, Parallel algorithms for some

tree layout problems, in: Proc. Computing and Combinatorics Conf: (COCOON), Lecture Notes in

Computer Science (Springer, Berlin, 1995).

[6] S. Even and Y. Shiloach, NP-completeness of several arrangements problems, Tech. Report. TR-43,

The Technion, Haifa, 1978.

[7] F. Gavril, Some NP-complete problems on graphs, in: Proc. I/t/z. Cmf. on Irzfbrmation Scirnwv trntl

S?‘stmm~~ (1977) 91-95.

[8] M.R. Garey and D.S. Johnson, Computers and Intractability A Guide to the Thror~~ of NP-

Comp/etrne.ss (Freeman, San Fransisco, 1979).

[9] L.H. Harper, Optimal numberings and isoperimetric problems on graphs, J. Comhin. Theor)’ 1 (1966)

3855393.

[lo] R. Karp and V. Ramachandran, Parallel algorithms for shared memory machines, in: J. van Leewen.

ed.. Handbook of Theoretical Computer Science, Vol. A (Elsevier. Amsterdam, 1990) 869-942.

[I I] B. Monien and I.H. Sudborough. Min cut is NP-complete for edge weighted trees, in: Proc,. 13th c‘oll

on Automata, Languages and Programming (ICALP), Lecture Notes in Computer Science (Springer.

Berlin, 1986) 265-274.

[I21 M.T. Shing and T.C. Hu, Computational complexity of layout problems, in: T. Ohtsukt. ed., Lq>vut
Desiyn und Ver$cation (North Holland, Amsterdam, 1986) 2677294.

[131 Y. Shiloach. A minimum linear arrangement algorithm for undirected trees, SIAM J, C’onlput. 8 (1979)

15-31.

[I41 M. Yannakakis, A polynomial algorithm for the min cut linear arrangement of trees. J. ACM 32 (1985)

950-988.

