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Abstract 

The minimum cut and minimum length linear arrangement problems usually occur in solving 
wiring problems and have a lot in common with job sequencing questions. Both problems are 
NP-complete for general graphs and in P for trees. We present here two parallel algorithms for 
the CREW PRAM. The first solves the minimum length linear arrangement problem for trees 
and the second solves the minimum cut arrangement for trees. We prove that the first problem 
belongs to NC for trees, and the second problem is in NC for bounded degree trees. To the 
best of our knowledge, these are the first parallel algorithms for the minimum length and the 

minimum cut linear arrangement problems. 

1. Introduction 

Given a graph G = ( V, E) with 1 VI = n, a luyout of G is a one-to-one mapping 

cp from V to the first n integers { 1,2,. . . , a}. The term layout is also known as lin- 

em arrangement [ 14, 131. Notice that a layout q on V determines a linear ordering 

of the vertices. Given a natural i, the cut of the layout at i is the number of edges 

that cross over i, i.e. the number of edges {u, v} E E with q(u) < i < q(u). The 

cutwidth of cp, denoted by y(q, G), is the maximum cut of cp over all integers from 

1 to n. The kngth of cp, denoted by 3,(q, G), is the sum over all edges (u, L’) of 

Mu) - cp(u>l. 
Graph layout 

layout. We can 

problems are motivated as simplified mathematical models of VLSI 

model a VLSI circuit by means of a graph, where the edges of the 
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graph represent the wires, and the vertices represent the modules. Of course, this graph 

is an oversimplified model of the circuit, but understanding and solving problems in 

this simple model can help us to obtain better solutions for the real-world model (see 

the surveys by Shing and Hu [12], and Diaz [4]). 

In this paper we shall consider two layout problems. The first problem is called the 

minimum linear arrangement (MZNLA) problem. Given a graph G = (V, E), find the 

layout q which minimizes 1,((p, G). The MINLA problem is NP-complete for general 

graphs [S]. Due to the importance of the problem, there has been some work trying 

to obtain polynomial-time algorithms for particular types of graphs. For instance, Even 

and Shiloach proved that the problem remains NP-complete for bipartite graphs [6]. 

Adolph and Hu gave an O(n log n) algorithm for the case that the graph is a rooted 

tree, where n is the size of the tree [2]. Finally, Shiloach solved the problem for 

undirected trees by an O(n*.*) algorithm [13]. 

The second problem that we shall consider is the minimum cut linear arrangement 

(MZNCUT) problem. Given a graph G = (V, E), find the layout q that minimizes 

the cutwidth y(cp, G). An important special case of this problem is the graph bisection 

problem; find a partition of 2n vertices into two subsets of size n such that the cutwidth 

between the two subsets is minimized. The MINCUT problem is NP-complete for 

general graphs [7], weighted trees and planar graphs [ 111. The graph bisection problem 

is also NP-complete [8]. As in the case on the MINLA, the MINCUT has a history 

of results for particular types of graphs. Harper gave a polynomial-time algorithm for 

the n-dimensional hypercube [9]. Chung et al. [3] presented an O(n(logn)d-2) time 

algorithm to solve the MINCUT problem on trees, where d is the maximum degree of 

any vertex in the tree. Yannakakis gave an O(n logn) algorithm for the case that the 

graph is an undirected tree [ 141. 

We present here two parallel algorithms. The first one solves the MINLA for undi- 

rected trees in 0(log2 n) time using O(n23”gn ) processors on a CREW PRAM. The 

second algorithm solves the MINCUT for undirected trees of maximum degree d in 

time O(d log* n) using O(n*/ logn) CREW PRAM processors. To the best of our 

knowledge, these are the first parallel algorithms for the above problems. 

2. A parallel algorithm for the MINLA problem on trees 

2.1. Preliminaries 

Let cp be a layout of a tree T of n vertices. cp is a minimum length layout of T 

if there is no other layout with smaller length. Let $5 denote the layout obtained by 

reversing the order of the vertices. Note that 3.((p, T) = i(Cp, T). 

Let u be a vertex of T. Deleting v and its incident edges from T, yields several 

subtrees of T. Each of them is called a subtree of T modv. For each edge (v’, v) 

there is a unique subtree T’ of T mod v such that v’ E T’. The vertex V’ is the root of 

T’ mod v. 
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Definition 1. A central vertex of T is a vertex u* such that if To, Tt , , Tk are all the 

subtrees of T mod v*, then the number of vertices in each T;, for i = 0. I,. .k, is at 

most Ln/21. 

In [ 131 has been proved that for each tree T, there exists a central vertex c*. 

Let To be a subtree of T mod c’, and let vo be its root mod r. Assume that we want to 

compute a minimum length layout of T. Computing minimum length layouts of To and 

T - TO separately is wrong since we have no control on the length of the edge ( IJO. r). In 

order to take into account this edge we consider ricght and l<fi unchored trees. Let T be 

an n-vertex tree, let c E T, and let cp be a layout of T. T is called right unchord at P, 

and is denoted by T(V) when its length is defined by iL( y, ;i’( c)) = j.( cp, T) + n ~ cp( t, )_ 

T is called kfi unchored at U, and is denoted by F(r) when its length is defined by 

;.(q, c?;(c)) = j.( q, T) + q(v) - 1. In other words, in the length definition of a layout for 

a right (left) anchored tree, we consider an extra edge that covers the distance between 

r and the rightmost (resp., leftmost) vertex of T. Notice that finding a minimum length 

layout for right and left anchored trees is equivalent, since by reversing the order of 

the vertices a right anchored tree becomes a left anchored tree, while the total length 

remains unchanged. When considering all the subtrees mod{‘, all the anchored subtrees 

will be anchored at their root mod c. In such a case we will not state explicitly the 

corresponding root. 

In the following, we use T(r) to denote a tree, with x = 0 for free trees and :! = I 

for anchored trees. Further, /,( T, c, 3) denotes the minimum length of a layout for T(x) 

where L’ is either the vertex at which the anchor is connected to T, if x = I, or 

a central vertex of T, if x = 0. In both cases, we refer to the vertex 1’ as the root of 

the tree. 

Let Ti,. . , Tk- be trees, and let ni denote the number of vertices of T,. i = I. _. . k. 

In order to simplify notation we will use ( TI (3, ), . . . . Tk(q)), where x, = 0 if T, is a 

free tree, and Xi = 1 if 7; is an anchored tree, for 1 <i < k, to represent the layout 

obtained from the layouts of the subtrees T;, 1 < i <k, which are composed together 

such a way that the following holds: 

43 
in 

j-l I 

c ni < y(v)<Cn; 
/=I iz, 

for all P E Tj and for all 1 <j < k. 

Let c be the root of a tree T(a), and let TO, T,, . , T, be all the subtrees of 

T(~)modt’. In the sequel, we will assume that the subtrees are numbered so that 

n,,>ni 3 “’ >nk, where ni denotes the size of T,, i = 0, 1,. . , k. Furthermore, 

T - { Tl, , Tk} denotes the tree obtained by removing the vertices of TI, . , T,> and 

their incident edges from T. 

We define p( T, u, CC) as the value of the greatest integer p satisfying Hi > li(n~ 

+2)j + ~~(n++2)] for i = 1,2,. . .,2p-a, where n* = n-C$” n; and n is the number 
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T-To 

Fig. I. 

of vertices of T. If such a p does not exist, then we set p( T, v, CC) = 0. We will denote 

by T* the tree T(U) - { Tl, . . , T2p_a}, for p = p(T, v, a). 

We state now the main result given in [13]. For motivation and more detailed dis- 

cussion of the result, we refer the reader to the original paper by Shiloach [13]. 

Theorem 1 (Shiloach [13]). Let T(a) be a tree with root v*, and let To,.. . Tk be all 

its subtrees mod v*. Let p = p(T, v, cl) and T* = T - {T,, . . . , Tz~_~}. 

(a) If p = 0 then, if a = 0 then T(a) has a minimum length layout of type 

A= 

else 

Fig. 

(%,=-To) (see Fig. l(u)), with length 

4~ T) = A(cp, %v,)) + A(403 =(v*)) + 1 

(i.e., CI = 1) T(a) has a minimum length layout q of type A = (70, T - To) (see 

l(b)), with length 

4~7) = 49, Z(Q)) + 4~ T - To(v*>> + n - 110, 

where n is the number of vertices of T(M), and no is the number of vertices of TO. 

(b) If p > 0 then T(a) has a minimum length layout of type A (dejned as in 

case (a)) or of type B = (yl, ‘3,. . ., - T+I, T*, FlP_21r.. .,??~,Fz) (see Figs. 2(a) 
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“* 

Fig. 2 

and (b)), M’ith length 

SO = cn3 + n4> + 2(n5 + n6) f “. + (p - l>(n2f-l + n2,) f p(n* + 1 ), 

~1=(n2+n3)+2(n4+n5)+~~~+(p-I)(n2~-2+n2~-1)+p(n*+l)-l. 

w*ith ni being the number of vertices of 7;: for i E (0,. ,2p-a}, and n* = n-Cf!,’ n,. 

Fact 1 (Shiloach [ 131). (a) Zf CJI is a minimum length layout of T(x) of type A. then 

(p/To (cp restricted to To) is a minimum length layout of’ %(Q) and v/T ~ To (q 

restricted to T - To) is a minimum length layout of G(vt) (or T - TO if 2 = 1). 

(b) !f’q is a minimum length layout of T(a) of type B, then q/T! (cp restricted to 

T,) is a minimum length layout of z(q), jbr i = 1,3,...,2p - 1, und of' x(r,).fiw 

i = 2,4,. . .2p - 2~. q/T* is a minimum length Iuyout of’ T;r. 

The design of the sequential algorithm is based on the decomposition given in 

Theorem 1. The correctness of the algorithm comes from Theorem 1 and Fact 1. Using 

the parameter x, the algorithms for free and anchored trees are combined 
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together. Each of them recursively computes a minimum length layout of a tree T 

from minimum length layouts of its subtrees. Notice that if p( T, U, 3) > 0, then the 

algorithm computes both types of layouts and takes the one with the smaller length. 

2.2. The parallel algorithm 

Our parallel algorithm for the MINLA problem will be divided into two stages. 

In the first stage, starting with T, we recursively decompose each tree into subtrees until 

all subtrees have size one. At the same time, we keep the appropriate information that 

will allow us to compute a minimum length layout of each tree from minimum length 

layouts of its subtrees. In the second stage, we reconstruct the layouts, until we get 

a minimum length layout for the whole tree T. We only present the decomposition stage 

and specifically, the decomposition of both free and anchored trees. The reconstruction 

stage can be easily derived in view of the decomposition one. 

The decomposition of free and anchored trees is based on Theorem 1 and exploits 

the properties of type A and B layouts, as well as the properties of the central vertices 

and the parameters p( T, v, 3). We first prove the basic lemmas used for deriving the 

decomposition of free and anchored trees. 

Lemma 1. Let T be u free tree with central vertex v*, and let To,. . . Tk be all its 

subtrees mod v*. Let p = p(T, v*, 0), n* = n - Cf& ni, and T* = T - { TI, . . . , TQ,}. 

If p > 0 then IT*1 <n/2, i.e., the number of vertices of T+ is at most n/2, where n is 

the number of vertices of T, and ni is the number of vertices of Ti for i E (0,. . . , k}. 

Proof. As p 3 1, we have 

Thus, 2% > no + nzp+ t + . . t nk + 1 = 1 T* 1. Furthermore, 2p > 1, thus 2nIP <n, + 
. . . +Q. As no+nl +...+nk+ 1 = ITI, we get jT*I <n/2. [7 

Lemma 2. Let T be u free tree with central vertex v*, and let TO, Tl be the two 

heaviest subtrees modv*. If IT - {TO, Tl}l >n/2 then v* is a central vertex of 

T - {TO, TI }, where n is the number of vertices of T. 

Proof. As the size of T - {TO, T, } is n - no - nl and, all ni are sorted, we need only 

to show that n2 < i(n - no - nI ) to prove that v* is a central vertex of T - {TO, Tl }. 

Suppose that n2 > +(n -no - nI ), then 2n2 > n -no - nl > n/2. Thus n2 > n/4. As n2 

is smaller than no and n1, we have that no +nl > n/2. But this implies n-no - nl < n/2, 

and we get a contradiction. 0 

Lemma 3. Let T be tree anchored at v*, and let TO,. . . , Tk be all its subtrees mod v*. 

Let p = p(T,v*,O), and T* = T - {T~,...,TQ_~}. Then, if p > 0 then IT*l<3n/4, 

where n is the number of vertices of T. 
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Proof. Let nh = 1 T* /. We consider two cases, depending on whether no >n/2 or not. 

C’use 1. no < n/2: In the case that p > 1 we have to remove at least three subtrees 

from T, and using the same argument as in Lemma 1 we get oh <n/2. When /-’ = I, 

we have nl > F that is nl > n/3. As nl, = II - 111 we get nh <2?r/3. 

Cusc 2. no 2 17/2: Notice that in this case p < 2 because otherwise, nl, nz, 113 must be 

bigger than no;!2 (from the definition of p) that is, bigger than 1714 and thus, MO could 

not be bigger than n/2. When p = I we have that 111 > n(jj2 and therefore, n/, <3r1/4. 

The decomposition stage consists of a number of phases. The size of the trees which 

are decomposed during phase i is at most n/(4/3)‘. Therefore, in O(logn) phases we 

have trees of size one. 

Frw tree &composition. The idea of the decomposition in the case of a free tree, 

is as follows. Let T be a free tree of size n, and let z’* be its central vertex. According 

to Theorem 1. if p( T, c’*, 0) = 0 then T has a minimum length layout of type A, while 

if p( T, P*. 0) > 0, then a minimum length layout of T is computed as the minimum of 

type A and type B layouts. To simplify our discussion, we will consider the case that 

p( T, c*, 0) > 0. (This case is more general in the sense that both type A and B layouts 

should be computed.) Notice that all subtrees that appear in the type B layout have size 

smaller than n/2 (T, by the central vertex property and Te by Lemma 1 ). Therefore, 

the size of the problem is reduced by a constant factor and in O(logn) phases we will 

have trees of constant size. In the case of the type A layout, if T - To has size at most 

n.‘2 then the size of the problem is reduced by a constant factor. Otherwise, we have 

to further decompose the tree noTo in the current phase. Notice that the root is 

still c*, therefore, the largest subtree is TI . Now a layout of type B again verifies the 

properties according to Lemma 3. In the case of the type A layout, if T ~ {To, TI } has 

size at most n/2 we are done, i.e., the size of the problem has been reduced. Otherwise, 

we have to further decompose T - {To, TI }. But from Lemma 2, I‘* is still a central 

vertex for this tree thus, its subtrees mod r* are Tl.. , T,. The above procedure should 

be repeated until the size of the derived subtrees is less than or equal to n/2. Note 

that the procedure should be repeated for at most /j times, where /_? is the first index 

for which IT - {To,...,T,j)l<n/2. 

Before we give the algorithm for the free tree decomposition we need the following 

definition. 

Definition 2. Let TI, , Tk be subtrees of T(x). Let T, = T(r) ~ { T,, , TX}, II, = 1 T, /, 

for iE{l,....k} d an n 1 3 122 3 > nk. A bulunced lu~m~t of the subtrees TI . , T,%, Tb 

is the layout 

f--ii tt+ 
( TI, Tj, Tj...., Th,..., Tf,, T4, T2). 

If cp is a balanced layout of T1,. . _ Tk, Tb, and nh = /Thl, then the length of cp is 

computed as in the following lemma. We assume that k is even (the case that k is 

odd is similar). 
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Lemma 4. Let T,,..., Tk be subtrees of T(a) and Tt, = T(a) - {T,, . . . , Tk}. rf cp is a 

balanced layout of TI, . . . , Tk, Tt, then 

k-l 

149, T(a)) = c 4~3) + 5 4~ E) + A(cp, Tt,) + Q2 

where 

i=l,i odd i=l,i wen 

Qo=(n3 +n4)+2(n5 +n6)+“’ + (k/2 - l)(nk-, + I’&) + k/2(nb + I), 

Q1=(n2+n3)+2(n4+n~)+...+(k/2- l)(nk-2+nk-1) 

+k/z(nk +nb + I)- 1. 

Proof. The proof is by a straightforward calculation using the subtree sizes, which 

follows from the definition of a balanced layout, and the elementary definitions of the 

length of free and anchored tree layouts. 0 

Fact 2. Zf cp is a minimum length layout of T(a) computed as a balanced layout 

of TI,. . . , Tk, Tb, then q/T, (cp restricted to Ti) is a minimum length layout of z for 

i = 1,3,..., k - 1, and of 5 for i = 2,4,. . . , k. cp/Tb is a minimum length layout 

of Tb. 

Proof. The proof is immediate since Qa for a E (0, l}, is independent of cp. 0 

The decomposition of a free tree T of size n, is obtained as follows. 

1. Compute a central vertex v* of T. 

2. Compute in parallel the sizes of the subtrees of T mod u*. Let To,. . . , Tk be the 

subtrees of T mod v*, and ITi/31c+i(, for all iE{O ,..., k - 1). 

3. Compute p the first index for which IT - {TO,. . , Tb}l <n/2. 

4. Letp~=p(T,v*,O)andBobethelayout(-T)~,?~ ,..., ?2po--l,T*r~2po ,..., F4,F2). 

5. For each i = l,...,fi 

5.1. 

5.2. 

5.3. 

Compute in parallel pi = p( T - {To,. . . ,7;_ I}, v*, ai), where ai = 0 for i even, 

and ai = 1 for i odd. If pi = 0 then Bi is empty. Otherwise, B; is computed 

in step 5.3. 

Let T$ = T - {To )..., 7;:-1,q+l,... Ti+2p,-x,}, where ai=O for i even, and 

ai = 1 for i odd. 

Let Bi be the balanced layout of To,. .., T;_l, c+l,... Ti+zp,_q, Ti(ai) (see 

Definition 2). 

6. Let Tt+’ = T - {To, T 1,. . . , Tp}. Let B/j+, be the balanced layout of To, T,, . . . , Tl, 

Ti+’ (ay+l ), where q+i = 1 if /I is even, and u/r+1 = 0 if p is odd. 

Let T be a free tree, and U* be a central vertex of T. Let To,. . . , Tk be all the 

subtrees of T mod v*. Let p, Bi, for i E { 0, 1, . . , j? + 1 }, be as they are defined above. 

Then we have the following. 
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Lemma 5. A minimum length luyout qf T cun be computed us the luyout out of' B,, 

i = 0,. , p + 1, which attains minimum length. Furthermore, the size of’ all subtrees 

that uppeur in uny such luyout is at most 3n/4. 

Proof. Let T be a free tree of size n. Notice that all subtrees that appear in the 

type B layout have size smaller than n/2, q by the central vertex property and r* 

by Lemma 1. This layout is Bo. If T - T” has size at most n/2 we are done, be- 

cause j = 0. Note that the size of each subtree in Bo is at most n/2. Otherwise, we 

have to decompose the tree ‘ra(r,). Notice that the root is still c*, therefore, the 

largest subtree is T,. Now a layout of type B again verifies the properties according 

to Lemma 3. Furthermore, putting To on the left it corresponds to layout BI The size 

of each subtree in BI is at most 3n/4. If T - {To, T,} has size at most n/2 we are 

done; layout B/I+, = B2 is the balanced layout of T”(l), Tl( 1). T - {To, Ti }. Notice 

again that the size of each subtree in Bii-1 is at most n/2. Otherwise, we have to fur- 

ther decompose T - {To, T,}. But, from Lemma 2, c* is still a central vertex for this 

tree therefore, its subtrees mod z’* are T,. . , Tk. The procedure is repeated for at most 

fi times, and the layouts B;, for i = 0, I,. . , /i + 1, are obtained. Notice that the subtrees 

that appear in the above layouts have size at most 3n/4. Notice also that the layouts 

B; for i = 0, 1,. , b + 1, have been obtained by simply combining type A and type B 

layouts of subtrees of T mode*, in a way that the sequential algorithm would follow. 

Therefore, a minimum length layout of T can be correctly computed as the layout out 

of B,, for i = 0, 1, fi + 1, which attains minimum length. The lengths of these layouts 

can be computed using Theorem 1 and Lemma 4. 0 

Anchored tree decomposition. Before we give the anchored tree decomposition we 

introduce some additional notation. Let T(c*) be an anchored tree of size n. We 

will denote by T,f, T,(‘, its subtrees mode* sorted by size, and by (::I, cl’,. the 

corresponding roots mod v*. Recursively, whenever we have an anchored tree z( c;,), 

by To’+‘, T,‘-‘, we will denote its subtrees mod ~6, and by u;“, c;+‘, . we will denote 

their corresponding roots mod L$. 

The idea of the decomposition of ?(zl*) is based on the following. If no = 1 T$ < 

Ln/2] then I‘* is a central vertex and ?(u*)‘s decomposition is similar to the de- 

composition of a free tree. Consider now the case where no > [n/2]. According to 

Theorem 1, if p( 7, c*, 1) = 0 then 7 has a minimum length layout of type A, while 

if ~(7, c*, 1) > 0 then a minimum length layout of 7 is computed as the minimum 

of type A and type B layouts. As in the case of the free tree decomposition, to simplify 

our discussion we will consider the case that p( 7, u*, 1) > 0. From Lemma 3, since 

~0 >n/2, p( 7, v*, 1) cannot be bigger than 1. Therefore, the two trees that appear 

in the type B layout have size smaller than 3n/4 (T,‘) has size smaller than Ti’, and 

T* = T - T:’ by Lemma 3). Therefore, the size of the problem is reduced by a constant 

factor and in O(logn) phases we may have trees of constant size. In the case of the 
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type A layout, note that T - Ti has size at most n/2. If Tt has also size smaller than 

n/2, then the size of the problem is reduced by a constant factor. Otherwise, we have 

5 to further decompose the tree T,, m the current phase. Now a layout of type B again 

verifies the properties according to Lemma 3. In the case of the type A layout, if Td( 1) 

(i.e. the anchored tree Td) has size smaller than n/2 we are done, i.e., the size of the 

problem has been reduced. Otherwise, we have to further decompose Td (1). Note that 

the above procedure should be repeated for at most y times, where y is the first index 

for which ITi1 < n/2. 

Therefore, the decomposition of an anchored tree T(u*) is obtained as follows. 

1. Compute y the first index for which 1 T;;‘I < n/2. 

2. If p(??),u*, 1) = 1 then let ro = (?,‘,T - TP) 

3. For each i = l,...,y: 

3.1. Compute in parallel, pi = p( To, v& 1). If pi = 0 then c is empty. Otherwise, 

fi is computed in step 3.2. 

3.2. Let fi be the layout (s(vi ), Ti-’ - T;, . . . , Tt - Td, T - T:). 

4. Let r,+l be the layout (5, TJ-’ - Tl,. . , Tt - Td, T - Tl). In the case that the 

size of Ti-’ - T;;’ is bigger than 3nJ4 apply the free decomposition on it, until the size 

of each of Tl-’ - Ti’s subtrees is smaller than 3n/4. 

Let ?(v* ) be an anchored tree and let y, &, for i E (0, 1, . . . , y + l}, be as they 

are defined above. Notice that all subtrees appearing in the rj layouts, for i = 0,. . , y, 

have size smaller than 3n/4. The only tree that can have big size in the r.+, layout, 
is T;;‘-’ - T;i’. In such a case we decompose it according to Lemma 5, taking as a 

parameter the size of the original tree. 

Lemma 6. A minimum layout for an anchored tree T can be computed as the layout 

out of ri, i = 0, 1,. . y + 1, which attains minimum length. 

The proof of the previous lemma follows from the above discussion. The length of 

each layout ri, for i = 0, 1, . , y + 1, can be easily computed from the lengths of the 

layouts of the subtrees that appear at it. Notice that the extra length that should be 

added due to the anchors, depends only on the size of the subtrees. 

We can now prove the following theorem. 

Theorem 2. Given an undirected tree T with n vertices, there exists a parallel algo- 

rithm that computes a minimum length layout of T. The algorithm needs 0(log2 n) 

time using 0(n3.6) CREW PRAM processors, where n is the size of the tree. 

Proof. The algorithm consists of two stages. In the first stage (decomposition stage), 

the tree is decomposed into subtrees of size one. The decomposition stage consists 

of O(log n) phases. At phase i, a number of subtrees of size at most n/( $ )’ are de- 

composed into a number of subtrees of size at most n/( G )i+‘. (At phase 0 the whole 
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tree T is decomposed into subtrees of size at most 3n/4.) A free tree is decomposed 

using the free tree decomposition procedure, and an anchored tree using the anchored 

tree decomposition procedure. During the decomposition phases, we keep the neces- 

sary information that will be used to compute a minimum length layout of a tree from 

minimum length layouts of its subtrees. Therefore, appropriate expressions that keep 

the lengths of layouts B; and c (as they are defined in the free and anchored tree de- 

composition procedures) are kept. Those expressions will be used at the second stage 

of the algorithm (reconstruction stage) to compute the minimum length layout of T, by 

first computing minimum length layouts of the subtrees constructed at the decomposi- 

tion stage. Notice that the reconstruction stage consists also of O(logn) phases. The 

correctness of the algorithm follows from Theorem 1, Fact 2, and Lemmas 5 and 6. 

Before we discuss the implementation details of our algorithm, as well as its com- 

plexity, we first discuss the way the trees are represented. Each tree will be represented 

by a linked list keeping an Euler tour representation, together with a mask that keeps 

which vertices of the original tree are present in it. This mask will also contain pointers 

to the linked list. To distinguish between free and anchored trees we keep the param- 

eter c( and the corresponding root for anchored trees. We record in a matrix, pointers 

to the subtree masks that form part of any of the layouts in a decomposition phase, 

together with the additional information required to trace back the length of any layout. 

A central vertex of a free tree T, of m vertices, can be computed in time O(log nz) 

using O(m’) CREW PRAM processors. This is done as follows. We compute for each 

edge the sizes of the two subtrees using the Euler tour technique [lo], and compute the 

difference of subtree sizes. We take as central vertex the root of the heaviest subtree 

corresponding to an edge of minimum difference. 

Once we have the central vertex of a free tree, we have to compute subtree sizes 

(now the tree is rooted) using the Euler tour technique, and sort subtrees by size. From 

the tree sizes using suffix sums we compute fi, pa, ~1,. , p/j. Consider the free tree 

decomposition. There are two ways to create new subtrees at each decomposition phase 

of a free tree. First, trees obtained just removing an edge, i.e., all subtrees mod L’ for a 

given root c. Second, the union of some of the subtrees mod c rooted at a “new” copy 

of c. In the first case, we compute the corresponding subtrees by removing the root 

and running a rooting algorithm (in parallel) for each root moda, in order to separate 

subtrees. This part will be the basic step for the second case; now we just have to 

merge the corresponding trees adding a new vertex as root. So for a tree of size m. 

we can maintain the tree representation using CREW PRAM O(m2) processors in time 

O(log m). 

In the case of an anchored tree T,,,, the root of T,,, is the vertex in which the anchor is 

connected to T. We first compute subtree sizes using the standard Euler tour technique, 

and then again with the same technique, we find a path of roots of trees of maximum 

cardinality. Finally, using suffix sums we compute the index ;‘. From the anchored tree 

decomposition, it is easy to compute the representation of each subtree. 

Taking into account that the sum of the sizes of the trees obtained in the decom- 

position of a tree T, is at most 3 times the number of vertices of T,, the number 
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of processors needed in any phase is at most 3 times the number of processors in 

the previous one. Thus, the maximum number of processors needed by the algorithm 

is 0(3 10s n$) = O(n3.6) . Furthermore, the time used in each phase in the first and 

second stage is O(logn). Thus, the algorithm needs O(log2 n) time and O(n3.6) CREW 

PRAM processors. 0 

3. A parallel algorithm for the MINCUT problem on trees 

In this section we give an O(n*/ log n)-processor, O(d log’ n)-time parallel algorithm 

which finds a minimum cut layout of a tree T of maximum degree d, where 12 is the 

number of vertices of T. 

For each vertex u E T, the parallel algorithm proceeds as follows: Let T, be the 

tree that contains all the vertices of T and is rooted at v. The algorithm converts T, 

into a binary tree TO0 and then applies the parallel tree contraction technique to TV0 

to compute a minimum cut layout of T,. Let cpv be a minimum cut layout of T,. The 

layout cpV, VE T, with the minimum cutwidth is output as a minimum cut layout of T. 

Before we describe the algorithm we give some terminology and definitions. 

3.1. Terminology and dejinitions 

Let T be a tree which we convert into a binary one To. Let v be a vertex of T 

with degree d and let WI,. . . , wd be its children. Then, the vertex set of To includes 

vertices v’, . , vdf’. For 1 <i <d, v’+’ IS the right child of vi in TO (see Fig. 3). We 

will say that the vertices v’, 1 < i <d, are of the same lube1 since they are coming from 

the same vertex of T (e.g., in Fig. 3 the vertices U* and vd+’ are of the same label 

while WA and u2 are not). 

With each vertex u E T, we associate two pieces of information: (i) A layout se- 

quence, vu, realizing the layout of the subtree rooted at u and u’s position in this layout 

and (ii) a cost-sequence, cost(cp,) of the layout sequence cpU defined in the sequel. 

(In the sequel, we will use rpU to denote both the layout of a tree T, rooted at u, 

and the layout sequence realizing the layout.) 

Given a layout cpU for the subtree rooted at U, (leftcost( is a sequence (yi, ~1, 

y2,y/2,. . .) where parameters yi and vi are defined as follows: yi is the largest cut 

(in cpU) occurring on the left side of U. Let wi be the point where the cut of yi occurs. 

If WI is immediately to the left of u then (leftcost( = (rl). Otherwise, let y11 be 

the smallest cut between WI and u and let w2 be the point closest to u where yli 

occurs. Suppose that 72 is the maximum cut between w2 and u and w3 is the point 

closest to u where 72 occurs. If y2 = yi or w3 is immediately to the left of u then 

(leftcost( = (~1, ~1, ~2). Otherwise, we continue similarly by taking the smallest cut 

between w3 and u. (rightcost( is a sequence (y{, y/I, ~4,. . .) where y{ is the largest 

cut in cpU occuring on the right side of u. The rest of the sequence is defined in a 

way similar to that of (Zeftcost(u)) but we now work on the right side of u. Clearly, 
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Definition 3. Let cpU be a layout sequence and let 71, y{, leftcost(q,,), rightcost(cp,,) 

be as they are defined above. Then the cost of the layout q,, is ;elr = max{;lr .?‘I }, and 

the cost-sequence of the layout cpu is cost(q7,,) = (leftcost((pL,), *, rightcost(cp,,)) where 

the “*” denotes the position of u. 

The algorithm involves comparisons of cost sequences in order to construct a min- 

imum cut layout of a subtree rooted at 2’ using the minimum cut layouts of subtrees 

rooted at U’S children. This is motivated by the fundamental work of Yannakakis [14]. 

In the sequel, we describe how we compare cost sequences. 

Let a and b be the two subsequences of a cost sequence cost. If a # b, and neither 

is a prefix of the other, then a > b iff a is lexicographically larger than b. If u is a 

prefix of b and a ends with a 7i entry, then a > b, while if a ends with a q, entry, then 

a < b. If Iefkcost(cp,,) > rightcost(cp,) then we call the left side of cpu (with respect to 

the position of u) heavy side, and the right side of u light side. 

Let cost1 = (heazyside,, *, lightside, ), cost2 = (heuzy~side2, *, li~ghtside,) be two cost 

sequences corresponding to two layouts for the same tree. Let heacyside, = ;:I,, 11 i,, ;‘2;, 

ql,, . and lightside, = $,, yi,, yii, vii, . . , for i E { 1.2). To compare the cost sequences 

cost1 and cost?, we construct the sequence cornpure, = (;.ii, qfi, y$, q&, .), for i E { I. 2}, 

as follows: If ~1~ # r’li then 77; = ~1, and compare, = ($,,). If 71~ = ;“,, and there arc 

no next entries vu, yii in heavyside,, lightside,, respectively, then let ;I;‘, = ;‘I, and 

compurei = (yf,,:$, ) If only one of the heavyside; or lightside, has an entry following 

;‘ti or yyi then call that entry ye;, and let compare, = (;I;+$,). If ~1, # ?I’,, then let 
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qfi = vii and compare, = (yfi,&). If yrl = qli then in the case that yzi = qii or 

y2i # yii, let qEi = t/ii, y5i = y2i and compare, = (yfi, yTj, ~5~). In the case that y2i = yi,, 

we continue in the same way as in the case (above) where yii = rii. 

We say that cost1 = cost2 iff compare, = compare,. If the sequences compare, # 

compare, and neither is a prefix of the other, then cost1 +cost2 iff compare, is lexi- 

cographically smaller than compare,. If compare, is a prefix of compare2 and compare, 

is of odd length then cost] + cost2 while if compare, is of even length then cost2 4 

costl. Note that 3 is a transitive relation. 

Definition 4. Let T, be a tree rooted at a vertex U, and let cp,, be a layout of T,. qo, 

is optimal iff there is no other layout cp: of T, such that cost(q$)+cost(cp,). 

3.2. The parallel algorithm 

The parallel tree-contraction algorithm (see [l]) evaluates the root of a tree T by 

processing a logarithmic number of binary trees TO, T,, . . , Tk, k = O(log ITI), where 

TO = T and Tk contains only one vertex. Also, I7;:1 d ~1 E-1 1, 0 < E < 1. The tree 7; is 

obtained from Ti;:-1 by applying a local operation, called shunt, to a subset of the leaves 

of Ti- 1. The shunt operation of our algorithm involves the construction of an optimal 

layout for a subtree T,, rooted at a vertex v, using optimal layouts of the subtrees 

T “,, . . . , T,, rooted at v’s children, vi,. . ., ud. The correctness of the approach is based 

on the following fact proved by Yannakakis [ 141. Let T be a tree that consists of two 

rooted trees T,, T2 rooted respectively at vertices vi, ~12, and the edge {VI, ~2). Then the 

cutwidth of T depends on the cost-sequences cost( (PI ), cost( ~422) of the optimal layouts 

ql and 432 of TI and TX, respectively. Furthermore, the cutwidth of T is a monotonic 

function of both cost(cpl) and cost(cpz), i.e., if we replace Ti by another tree T,’ with 

optimal layout cp{ and cost(cpl) + cost(cp{ ) or cost(cp1) = cost(cp’, ), and replace T2 by 

another tree Ti with optimal layout ‘pi and COS~(~~)+COS~((P~) or cost(q2) = cost(cpi), 

then the cutwidth of the resulting tree T’ is at least as large as the cutwidth of T. 

The shunt operation involves two merge-operations on the layout sequences: 

Merge-operation A: Let T,, be a tree rooted at a vertex u. T,, consists of two 

trees T,,, T, (rooted at u, v respectively) and the edge {u,v}. Suppose that rp, and cpv 

are optimal layouts of T,,, T,, respectively. The merge-operation A uses vu and qov to 

compute an optimal layout quo of T,,. 

Merge-operation B: Let T,, be a tree rooted at u with children ui,. . . ,ud and T, a 

tree rooted at v with children ~1,. . , t&j’. Suppose that we are given the optimal layouts 

of T,, T,. The merge-operation B computes an optimal layout cpUV realizing a layout of 

the tree T,, which is rooted at u and has as children the children of both T, and T,. 

We give now the shunt operation of the tree contraction technique. Suppose that Zi 

is the leaf which is ready to perform the shunt and that 5 is the father of li, p(A) is 

the father of fi and fj is the other child of A. Suppose also that optimal layouts of 

Zi, fi, fj, p(fi) are given. For the sake of simplicity in the notation, assume that these 

layouts are denoted by c(li ), c(fi ), c(f, ), C( PM >), respectively. In the sequel, fij will 
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be the vertex which is the result of the shunf operation. A and B will denote the merge 

operations. We will use A(qU, cpu) (B(cp,, cpr)) to denote the layout sequence we get by 

applying the merge operation A (respectively, B) to the layout-sequences cpl( and cp,. 

Cuse 1. I, is the left leaf of ,fi. (Ii, f, cannot be of the same label.) 

c(.fiL) = A(c(l,),c(f,)) 

Cusr 1.a. ,f;, ,j’j are of the same label. c(fiJ) = B(c(hl,)),c(f,)). 

Cuse 1.b. ,fi, fj are not of the same Iubel. c(fil) = A(c(f,li)),c(f,)). 

Cuse 2. I, is the right leaf of fi. (fi, f/ cannot be of the same lubrl.) 

Cuse 2.a. I,, J are of the same label. c(fili) = B(c(li),c(.f;)) 

Subcase 2.a.a. ,fi, p(,f, ) are also of the same lubel. 

C(P(.fi)) = B(c(hli),c(P(f,))) 

a, ) = cc.r;,. 

Subcase 2.a.b. ,f;, p(fi) are not of the same label. 

CM,) = A(c(f,L)> c(fj)>. 

Suppose that the resulting sequence c(,f,j) is as in the Fig. 4, i.e., c(fiJ) = (A, *, B). 

From c(,f;,) we easily take the layout-sequence c’( f,) = (C, *,D), where the “*” 

denotes the position of fj (see Fig. 4). Let T,-*,, be the subtree - of the current r,.o 

~ rooted at Jij. In the sequel, every merge operation of ,fi, with a vertex M: of T,,, 

is done using the layout sequence c’(.hj) while every merge operation of ,f;, with a 

vertex of Tro - Tf;j is done using the layout sequence c(fiJ). 

CUSS 2.b. I,, f/ are not of the same lubel. This case is similar to the above ones. 

The efficient parallel implementation of the merge operations A considers a number 

of cases depending on whether the leaf that is going to perform the shunt is a right or 

a left leaf and whether or not it has the same label with its father. 

Suppose that 

VI- = (Yl,Y2,.‘.,Yl,*,Y~,,.‘.,Y~,1.1) 
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Fig. 5 

and 

Merge-operation A 

Case 1: yU = yc and cpU, cpU balanced. In this case, it is clear that the cost of an 

optimal layout sequence cpUV cannot be less than yU + 1. 

Subcase 1.1. Suppose that leftcost( cpu) < rightcost( vu) and rightcost( cpv) < leftcost 

((pc) and ni, # 1, n{, # 1. Then we construct cpUc from cpU, cpU as follows (see Fig. 5): 

cPur = (Yl~~~~~.Yj~Y~~ + 12.. .,y; + 1,1,x1 + l,..., x, + 1,*,x; ,,..., xi) 

and the cost sequence of cpUv is 

COSt((PU,) = (YIU + 1,YlU + l,...,Yk, + l,*,Y~~,...,g~,,Y~u). 

The other subcases are similar. 

Cuse 2: yU > yU and cpU balanced and (pc unbalanced. Let H, be the heavy side of 

u and L, the light one. W.1.o.g. let H,, = leftcost and L, = rightcost( The 

procedure which gives the cost yUL’ of an optimal layout sequence cpUO, is as follows: 

if VI, + yV < yU or y\, + ya < yu then yua = yu else yua = yu + 1. 

In order to find the position between the vertices of T, where we will insert T,, we 

proceed as follows. Let i be the index of the largest v]i, in H, for which qfU +yU < yiU - 1. 

Let j be the index of the largest r$, in L, for which r,$ + yc < $,. Suppose now that 

c(h,,) (c(ZuO)) is the layout sequence we take if we insert cpti between the vertices - 

in vu - where the cut of yiU (resp., $) occurs. Then, cpUv is this one from c(h,,), 

c(luv), with the smallest cost sequence. 

Suppose that we know the position where we will insert cpo and want to compute the 

cost sequence of the layout sequence (pUc. We consider only the case where qiu+~a > ‘Jo 

and ~‘1, + yU <yU (see Fig. 6) (the other cases are similar). Let x$ be the point in the 

layout of T,, where the cut yl’lU occurs. Then, 

CPU = (XI ,..., Xi,*,X(l + l,..., X:k + l,ui + 1 >...,YJ, + 1,Y ,,...> Yi>x;~ >...> xi). 
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In order to compute the cost sequence we distinguish subcases: 

I. .Q < mi~r{gt,, qic} and xik + 1 < ~nin{gi~, q{,-}. In this case we have 

if ;‘? < ;‘i,, + 1 

then ~M(P,,,) = (YI~,I?I~~, . .,*,. .,&, + 1,;‘;, + l.&,.;“,,,) 

else cost(qll~) = (~lu,ylu,...,*....,~~~ + l,;‘;,, + l,$,, + l,;lL,yjl]u,y’,,,) 

II. x,k > muS{ qlc, v{~}. Let 41 L‘ < ~1’1, and yrnax = nr&~{ ;‘lr, ](, + 1, $,, f 1 } 

If J ,F,C,y = :i,, + 1 then 

~‘mcp,,r) = (&t, l?lU> ” > *, . . . 3 q:,, + 1, ;I;, + 1. ~7lLb Y’lu 1. 

If ;‘r,lou = ;I\ I + 1 then 

c,osf(cp,,, ) = (j’ll,, VI,,, . . .? * ,... >q;,, + 1,y;, + 1YViU + L;(, + 1,‘7lr,;‘lr,). 

Let ;‘,,,uY = ~2~. We constder the case that iii, + 1 > ;‘;,, + 1 and IT{, + 1 < ni,, + I 
(the other cases are similar). We use binary search to find in the sequence (;,,,, , 

V(r?- I ,I’, ? ml3 720 ) the y,c with the smallest possible 1 such that: ;‘lr < ;a{, + I or 

q/C > $,? + 1. Suppose that for 1 = Ii we have ;‘I,, > ;“I, + 1 and PI/,,. > 11’1, + I 

(again the other cases are similar). Then, cost( qlrt ) = (;‘I~, rl iU,. , *. . , q;,, + I, $,, + I, 

ullu + l>$ + LYj/ll- + l,~[,L.r~~(l,~l)L.,...,~21,,Y~lcrlilu). 

III. The other subcases are similar to the above ones. 

Cuse 3: ;I,, > yV and vu, cpr balanced. 

Suhcasr 3.1. Suppose that ?I + y 1 II = yu and r~‘,, = 11,~. If we insert r,. between the 

vertices where the cut yrU (or q’,,,) is realized, then the cost of cpUc cannot be less than 

ylr + 1. For this reason, we try to spread the vertices of TP between the vertices of r,, 

in such a way that yur = ;I~. To see this, suppose that ;lzL1 + ~1~ d ;jU and ;$, + )I{, 6 ;‘L,. 

Also suppose that min{y~, + qlU, ;& + ~2~) 6;~~ - 1 and ma.u{~zV + yjzU, $, + ~2,) G:‘,,. 

Let c(c:i ) (C(U;J I)) be the part of the left (resp., right) sequence of qL - with respect 

to the position of L’ - from the beginning until the point realizing the cut ;‘I, (resp., 

;,‘,,). We insert ~‘(72~1) (c(c7ti)) in the position of cpL1 realizing the cut of yliic (resp.. II’,,,) 

and the rest of qr in the position of cp{, realizing the cut of ylz, (see Fig. 7). (Notice 

that the cost of the resulting layout is ;‘,, but it is not necessarily optimal.) 

A parallel procedure implementing the merge-operation A in this case follows. 

Let k be the largest index such that (i) yku = yir and (ii) ‘di<k,yi, = $, (notice that 

we can hnd this index easily in parallel in O(log k) time using m processors, where m 

is the length of the cost sequence co.st(cp,,)). 
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For each yir,, 1 d i < k, we examine if the following holds: 

(A) ]‘iv+yiuGYu-l or yic+~&u-l. 

For each yio, 1 <i< k, that does not satisfy condition (A) we examine if 

(B) ‘Jia + Yud = Yu and PIiu = T&, and max{Y(i+i)u + yIic,Y;i+i)u + Y:,><Y,. 

Also, for ~(k+i 1” we examine if 

mi+(k+l), -t V(k+l)loY;k+l)y + Y(k+l)u) GYU - 1 

and 

maX{Y(k+l)V + Y(k+l)u, Y;k+l)V + )?(k+l)u) dYz4 

or 

min{Y(k+l)” + Yl;k+l)uJ(k+l)u + 9;k+l)J GYU - 1 

and 

m4Y(k+r)u + Yl;k+l)uJ;k+l)u + yl;k+,)J <Ye 

We call the above condition (C). 

In the sequel, for each yiu, 1 <i< k, we create a vertex with label 1 if yiu satisfies 

condition (A), label 0 if ylv does not satisfy (A) but satisfies (B) and null if yio does 

not satisfy neither (A) nor (B). Also, we create a vertex for y(k+ljv with label 1 if it 

satisfies (C) and label 0 if it does not. From each yio with label 0 or 1 we draw an arc 

to y(i+i)” if y(i+i I,, has label 0 or 1. In this way, we create one or more lists. Using the 

pointer doubling technique we find, in the list with head yiu, the first yiu with label 1. 

If such a yiv does not exist, there is no optimal layout of T,, with cost yu. Otherwise, 

there is one (or more) layout of T,, with cost yu. In order to find an optimal one do 

the following. Find the largest Q, j>i satisfying 
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and 

and the largest I$,,, j >/i satisfying 

and 

If such a j does not exist, then let j = i. 

Let cr(uz’) (c~(uu)) be the layout sequence which we take if we insert the part of 

cpr realizing the cut rku into I~x_~, the cut $, into vi,, 1 <k <(i - I), and the rest of 

q[, into qjl, (resp., $,). Then, cpUr is this one from ct(uv), c~(uc), that has the smallest 

cost sequence. 

Once we have the layout sequence cpuc we can construct its cost sequence. The 

construction is similar to that of case 2. 

The other subcases of case 3 as well as the remaining cases are similar to the above 

ones. 

Lemma 7. Let T,, be u tree rooted ut a vertex u thut consists of the trees T,,, T, 

rooted at u, L’, respectively, and the edge (u, c). Let also qI,, qq be optimal buyouts of 

T, und T,, respectitiely. Then, the merge-operation A correctly computes un optimul 

luyout cpU,. of’ T,, in O(logn) time using O(n) CREW PRAM processors, where n is 

the maximum of the lengths qf’ (pU, qr. 

Proof. The correctness is provided by considering the cost sequences of T, and T, 

and proving that in each one of the cases, there is no layout of T,,, with cost sequence 

smaller than the cost sequence of the layout produced by the procedure implementing 

the merge-operation A. 

It is easy to see that in case 1.1 any other layout with cost yu + 1 (which is the best 

possible) has cost sequence larger than or equal to the one given above. 

To see the correctness of case 2, we suppose w.1.o.g. that the cost sequence of the 

optimal layout is as follows: (ylU,qiU ,..., jlilr,q;rr,j’(i+~)U + l,y(;+r,,, + l,..., ?jk, + l,*. 
.I’ 1 (I,’ . 9 4,,~~‘l,,) (i.e., i is the largest index such that yiU + :)I <;:iu - 1 and the cost 

sequence of c(hlll.) is smaller than the corresponding cost sequence of c(ll,,.)). We 

also suppose that compare,, = (rf,,, I?;,, :i&, $Y<,, . . , ;‘L yliu, Y(i+l lu, V(i+l jI,). Note that 
in this case the “compare” sequence of the new cost sequence will be as follows: 

(I$,, Vf,,, 1;;,, ${,, . . . I yiu, viu, yy, + 1, qYl, + 1) for i < y d k. Note also that if we insert cp[ 

in the position where the cut of qXU is realized, for x either smaller or larger than i, then 

the “compare” sequence of the corresponding cost sequence will be lexicographically 

larger than the above one. 

For the other cases the correctness comes also easily from their description. n 
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Merge-operution B 

The parallel implementation of merge-operation B is based on merge-operation A. 

Let T, be a tree rooted at v with children VI,. . . , vd and T, a tree rooted at u with 

children ~1,. . . , qp. Let also d’ be greater than or equal to d. Suppose that (pU, cpU 

are optimal layouts of T,, T,, respectively. Then, the merge-operation B computes an 

optimal layout cpuc of the tree T,, rooted at u and having as children the children of 

both T, and T,, as follows: 

Consider the layout qai, for each i E { 1,. ,d}, which is the restriction of (pL, to 

the subtree z rooted at vi, for each i E { 1,. . . , d}. Note that each (psi, is an optimal 

layout of 7;, for i = 1,. . . ,d (if not then there is another layout qoli with smallest cost 

sequence resulting in another layout ‘p: for T, which has smaller cost sequence than 

cpI;; but cpV is optimal). Then, sequentially use merge-operation A to merge each one of 

cpoi, for i = 1 , . . , d, with cp,,. Notice that from the optimality of the merge-operation 

A, we have that the resulting layout cpU is optimal. 

The proof of the following lemma is based on Lemma 7 and the description of the 

merge-operation B. 

Lemma 8. Let T,, be a tree rooted at u, T, u tree rooted at v and cpU,(pL: be optimal 

layouts of T,, T,, respectively. Then, the merge-operation B correctly computes an 

optimal luyout quo of T,, which is rooted ut u and has as children the children of 

both T, and T,, in O(d log n) time using O(n) CREW PRAM processors, where d is 

the minimum of the degrees of u, v and n is the maximum of the sizes of T,, T,. 

We give now the parallel algorithm for the mincut linear arrangement problem on 

trees. 

for all v E 2” in parallel do 

Let T, be the tree T rooted at v. Convert T, into a binary tree TL’o. 

Apply the parallel tree contraction technique to TUo to compute an 

optimal layout sequence cpU of T, and its cost sequence cost(q,). 

cost(qr) = min{cost(q+) 1 v E T} 

&UNCUT(T) = VT {* cp T is a layout sequence with cost sequence cost(cpr) *} 

Theorem 3. Given an undirected tree T with n vertices, the above ulgorithm constructs 

a minimum cut layout of T in time O(d log2 n) using 0(n2/logn) CREW PRAM 

processors, where d is the maximum degree of T. 

Proof. The correctness of the approach comes from the fact that a minimum cut layout 

of T is computed as the layout out of minimum cut layouts of T,, for each v E T, which 

attains minimum cutwidth, and the fact that the shunt operation correctly computes an 

optimal layout of a subtree rooted at a vertex w, using optimal layouts of the subtrees 

rooted at w’s children (recall the discussion at the beginning of the subsection). The 

correctness of the shunt operation follows from Lemmas 7,8, and the fact that the 

merge-operations A and B are combined correctly (see the description of the shunt 
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operation). The time/processor bounds of the algorithm come from the bounds of the 

parallel tree contraction technique and Lemmas 7 and 8. 0 
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