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Abstract

Mobile Agent (MA) technology has been recently proposed in Wireless Sensors Net-
works (WSNs) literature to answer the scalability problem of client/server model in
data fusion applications. Herein, we present CBID (Clone-Based Itinerary Design), a
novel algorithm that calculates near-optimal routes for MAs that incrementally fuse
the data as they visit the nodes while enabling a fast update of designed itineraries
which is especially important for highly dynamic topologies. The order of visited
nodes highly affects the quality and the overall cost of data fusion. The key MAs
characteristic exploited by CBID to reduce energy consumption and response time
is their cloning capability. Parallel dispatched MAs sequentially visit sensor nodes
arranged in tree structures and upon visiting a node with two or more child nodes,
the MAs (master MAs) clone of themselves with each clone (slave MA) visiting a
tree branch. When all slave MAs return to that node, report their data to the master
MA and are self-destroyed. This results in highly reduced energy consumption and
response time since many MAs work in parallel. Simulation results prove the high
effectiveness of CBID in data fusion tasks compared to other alternative algorithms.

Key words: Wireless Sensor Networks, mobile agents, jamming avoidance,
routing, data fusion, itineraries

∗ Corresponding author, tel.:+306936028286.
Email addresses: crmaris@aegean.gr (Aristides Mpitziopoulos),

dgavalas@aegean.gr (Damianos Gavalas), konstant@cti.gr (Charalampos
Konstantopoulos), pantziou@teiath.gr (Grammati Pantziou).



1 Introduction

Data fusion is the process of combining data and knowledge from different

sources with the aim of maximizing the useful information content. It improves

reliability while offering the opportunity to minimize the data retained. Multi-

ple sensor data fusion is an evolving technology, concerning the problem of how

to fuse data from multiple sensors in order to make a more accurate estima-

tion of the environment[10]. Applications of data fusion cross a wide spectrum,

including environment monitoring, automatic target detection and tracking,

battlefield surveillance, remote sensing, global awareness, etc [1]. They are usu-

ally time-critical, cover a large geographical area and require reliable delivery

of accurate information for their completion. Most energy-efficient proposals

are based on the traditional client/server computing model to handle multi-

sensor data fusion in Wireless Sensor Networks (WSNs); in that model, each

sensor sends its sensory data to a back-end processing element (PE) or sink.

However, as advances in sensor technology and computer networking allow the

deployment of large amount of smaller and cheaper sensors, huge volumes of

data need to be processed in real-time.

Recent research works suggested the use of Mobile Agents (MAs) [6], an in-

trinsically distributed computing technology, in the field of WSNs. The term

Mobile Agent (MA) is referred to an autonomous application program able of

migrating from node to node to complete specific tasks assigned from network

users. A MA can be programmed to determine the local process of data in each

sensor node according to the data it already carries and hence the remaining

data after each local data fusion. These data are then carried by the MA to

the next sensor node where the same procedure is applied.

When MAs are employed for data fusion tasks in WSNs the choice of agents’

itineraries (order of visited sensors) is of immense importance because it

greatly affects the overall energy consumption and data fusion cost. The most

notable drawback of existing solutions that have been proposed in the litera-

ture for determining the routes of the MAs [9,13] is that they rely on a single

MA to visit and fuse the data from sensor node and this is a serious problem

in large scale WSNs where thousands of sensor nodes should be visited by the

MA.

The main objective of our proposed CBID algorithm is to calculate near-

optimal routes for MAs that incrementally fuse the data as they visit the

nodes. An inviting side-effect of CBID is that it enables a fast update of de-

signed itineraries which is especially important for highly dynamic topologies.

For instance, the fast execution of CBID makes it suitable for responding to
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jamming/interference [7] and also in applications that include tracking and

monitoring of moving objects. The main objective is addressed through the

design of CBID that not only determines the proper number of MAs for min-

imizing the total data fusion cost but also constructs low cost itineraries for

each of them. The remainder of the paper is organized as follows: Section 2

reviews works related to our research. Section 3 discusses the design and func-

tionality of our heuristic algorithm for designing near-optimal itineraries for

mobile agents performing data fusion and security tasks in WSNs. Simulation

results are presented in Section 4, while Section 5 concludes the paper and

presents future directions of our work.

2 Related work

WSNs pose new challenges as the wireless bandwidth is typically much lower

than that of a wired network and sensory data traffic may even exceed network

capacity. To solve the problem of the overwhelming data traffic Qi at al in [9]

and [10] proposed the MA-based Distributed Sensor Network (MADSN) for

scalable and energy-efficient data aggregation. By transmitting the software

code (MA) to sensor nodes, a large amount of sensory data may be filtered at

the source by eliminating the redundancy. MA may visit a number of sensors

and progressively fuse retrieved sensory data, prior to returning back to the

PE to deliver the data. This scheme may be more efficient than traditional

client/server model; within the latter model, raw sensory data are transmitted

to the PE where data fusion takes place (see Fig. 1). In [11,15] the higher per-

formance of the MASDN over the client/server model is demonstrated through

both analytical study and simulations. The shortcoming of these studies is that

both assume a constant size for the MA, which is not realistic since MAs grow

larger as they collect data from distributed nodes.

Xu at al. in [14] study the problem of determining mobile agent itinerary

for collaborative processing and models the Dynamic Mobile Agent Planning

(DMAP) problem. They present two itinerary planning algorithms, ISMAP

and IDMAP. The main drawback of both algorithms is that they rely on a

single MA. This causes a problem in large scale WSNs where thousands of

sensor nodes should be visited by a single MA.

Qi and Wang in [9] proposed two heuristics to optimize the itinerary of MAs

performing data fusion tasks. In Local Closest First (LCF) algorithm, each

MA starts its route from the PE and searches for the next destination with

the shortest distance to its current location. In Global Closest First (GCF)

algorithm, MAs also start their itinerary from the PE node and select the node
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closest to the centre of the surveillance region as the next-hop destination.

The output of LCF-like algorithms though highly depends on the MA original

location, while the nodes left to be visited last are typically associated with

high migration cost [3] the reason for this is that they search for the next

destination among the nodes adjacent to the MA’s current location, instead

of looking at the ‘global’ network distance matrix. On the other hand, GCF

produces in most cases messier routes than LCF and repetitive MA oscillations

around the region centre, resulting in long route paths and unacceptably poor

performance [11,13]. Wu et al. proposed a genetic algorithm-based solution

for computing routes for an MA that incrementally fuses the data as it visits

the nodes in a WSN [13]. Although providing superior performance (lower

cost) than LCF and GCF algorithms, this approach implies a time-expensive

optimal itinerary calculation (genetic algorithms typically start their execution

with a random solution ’vector’ which is improved as the execution progresses),

which is unacceptable for time-critical applications, e.g. in target detection and

tracking.

Most importantly, both the approaches proposed in [11] and [13] involve the

use of a single MA object launched from the PE that sequentially visits all

sensors, regardless of their physical location on the plane. Their performance

is satisfactory for small WSNs; however, it deteriorates as the network size

grows and the sensor distributions become more complicated. This is because

both the MA’s round-trip delay and the overall migration cost increases ex-

ponentially with network size, as the traveling MA accumulates into its state

data from visited sensors [2,12]. The growing MA’s state size not only results

in increased consumption of the limited wireless bandwidth, but also consumes

the limited energy supplies of sensor nodes.

To address the above-mentioned problems we proposed the Near Optimal

Itinerary Design (NOID) algorithm in [5]. This algorithm adapts a method

usually applied in network design problems, namely the Esau-Williams (E-

W) heuristic [4], in the specific requirements of sensor networks. Also, not

only suggests the optimal number of MAs that minimizes the overall data

fusion cost, but also constructs near-optimal itineraries for each of them. To

keep the energy consumption low NOID restricts the number of migrations

performed by individual MAs, thereby promoting the parallel employment of

multiple cooperating MAs, each visiting a subset of sensors. NOID has been

shown to perform better than LCF and GCF at the expense of high algorithmic

complexity (ie. prolonged execution time). Furthermore NOID does not exploit

the cloning capability of mobile agents to reduce the overall data fusion cost

even further.
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3 The CBID Algorithm

In this section we present the Clone Based Itinerary Design (CBID) algorithm

for determining the number of MAs that should be employed and scheduling

their corresponding near-optimal itineraries in WSN environments. CBID’s

execution comprises of three phases. In the first phase (initialization phase)

we ‘connect’ the PE with all sensor nodes located within the PE’s transmission

range (nodes h and e illustrated in Fig. 1). These nodes represent the starting

point of the corresponding MA itineraries; namely, the number of these nodes

equals the number of MA itineraries.

Fig. 1. Itineraries suggested by CBID

To dynamically adjust the number of itineraries, we use the parameter a×rmax

where a is an input parameter in the range (0, 1] and rmax is the maximum

transmission range of the PE. In the second phase (phase 1 illustrated in Fig.

1b,c,d), we attach new nodes to the initially formed trees, so as to maintain

low itinerary cost post the attachment. The connection cost is calculated with

an efficient way, as defined in definition 1 and exemplified in equation (1). The

three basic rules that should be taken into account to establish each connection
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are: (a) the candidate for attachment node must not be already attached to

another tree; (b) the candidate node is attached to an in-range node that

provides a connecting path back to the PE; (c) the node to be connected must

keep the itinerary cost to minimum compared to other candidate nodes.

Let as now assume that we have a WSN with the PE connected to a tree with

4 nodes (nodes e,f,υ,g in Fig. 2a,b). The more distant from the PE node is υ

and we assume an unconnected node u that is in range of node υ. We consider

the edge (u,υ) that connect node u with node υ. We also provide the following

definition:

Definition 1 The Connection Cost CC of edge (u,υ) is the ensuing itinerary

cost assuming only one MA follows the itinerary after connecting node u to the

tree of node υ provided that υ is in some tree. Otherwise, we have CC(u,υ) = ∞.

CC(u,υ) = S · (CPE,e + Ce,f + Cf,υ + Cυ,u)

+ (df + S) · Cu,υ + (2df + S) · Cυ,g + (3df + S) · (Cg,υ + Cυ,f )

+ (4df + S) · Cf,e + (5df + S) · Ce,PE

(1)

In equation 1 the individual costs are calculated taking into account only

the spatial distance between nodes (although additional parameters such as

residual energy could be easily included). S represents the MA initial size in

bytes and df equals to the data the MA is carrying (d in bytes) multiplied

with data fusion coefficient (f).

With the use of equation 1 we choose the nodes to be connected in phases 1

and 2 among all candidate nodes. We connect the nodes that give the smallest

Connection Cost after connection(see Fig. 1c).

The end result is multiple trees, all rooted at the PE. The nodes of each

individual tree will comprise the itinerary of separate MAs. Each MA (master

MA) starts its itinerary from the PE following its assigned tree structure.

When it reaches a ‘parent’ node with two or more child-nodes (e.g. node k

in Fig. 2a) the cloning is performed and each clone (slave MA) is assigned

to visit each child-node branch while the master MA remains to the ‘parent’

node.

When the slave MAs reach the more distant from the PE nodes (n and q nodes

in Fig. 2b), they start the collection of data. On the way back to the route,

the slave MAs that return to the parent’ node deliver their collected data to

the master MA and are subsequently self-destroyed. The master MA waits for
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Fig. 2. CBID MA cloning and data collection

a fixed time period for the arrival of all slave MAs. If this time period elapses

with no arrival of all slave MAs, it assumes a node failure or communication

disconnection and returns back to the PE following the same route. It should

be emphasized that the above-described procedure is recursive, that is if a

slave MA, on its way to the more distant leaf node, visits another parent’

node, it changes its status to Master MA and the same process is repeated.

Using the above-mentioned method the overall data fusion cost and response

time (MA round trip delay) are considerably reduced. This is because CBID

enables the parallel employment of multiple MAs carrying small loads of data

instead of a single MA traveling longer distances and growing heavy, especially

in the last hops of its itinerary[2].

Fig. 3. Itineraries suggested by CBID

Phase 2 is executed only for itinerary updates performed upon topology changes.

In this phase we assume that the PE sends on specific time intervals queries to

all sensor nodes (e.g. energy level) and logs possible topology changes (e.g. not

responding sensor nodes or sensors that report low energy level). All the edges
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starting or ending at problematic nodes (node l in Fig. 3a) are deleted. Then

nodes with limited connectivity (part of cut-off trees) are identified (nodes m

and n in Fig. 3a). All the cut-off trees nodes having in range working nodes

are examined (see Fig. 3a) and the corresponding CC values are updated. The

nodes with the lowest CC value are then connected (nodes m and o in Fig.

3b).

4 Simulation Results

Our simulations tests compare the performance of CBID against NOID, LCF

and GCF algorithms in terms of the overall itinerary length, data fusion cost

and data fusion response time. Unless otherwise specified, the parameters used

throughout the simulation tests are those shown in Table 1. The simulation

results presented herein have been averaged over ten simulation runs (i.e. ten

different network topologies).

Table 1
Simulation Parameters
Parameter Value

Simulated plane (m2) 700 × 450
# Sensors 100
Sensors transmission power (dBm) 4
Sensors transmission range (m),assuming clear terrain 10
Network transfer rate (Kbps) 250
Initial sensors battery lifetime 100 energy units
MA execution time at each sensor (processing delay, in msec) 50
MA instantiation delay (msec) 10
MA code size (s, in bytes) 1000
Bytes accumulated by the MA at each sensor (d, in bytes) 200
Parameter a (CBID) 1
Data fusion coefficient (f) 1

Simulations have been conducted using a Delphi-based tool, implemented for

this purpose. In our simulations, without loss of generality, we assume the

following parameter:(a) MA code size s = 1000 bytes (b) bytes accumulated

by the MA at each sensor d = 200 bytes (c) parameter a = 1 (for CBID), (d)

Data fusion coefficient f=1. The simulation results presented herein have been

averaged over ten simulation runs (i.e. ten different network topologies. The

full paper will include additional results (performance comparison in terms of

response time, energy consumption, etc).
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(a)

(b)

(c)

(d)

Fig. 4. Delphi-based simulation of MA-based distributed data fusion algorithms: (a)
Total itinerary length of LCF, GCF, NOID and CBID; (b) Total itinerary length of
NOID and CBID (d=1 and d=1000); (c) number of itineraries suggested by CBID
with parameter a values (0.2-1), BS range=100m, #sensors=100; (d) Max suggested
itinerary length of NOID and CBID s=1000 bytes, d=200, a=1 (for CBID)

A first set of simulation experiments compares the performance of LCF, GCF,

NOID and CBID algorithms in terms of their total itinerary length. As illus-

trated in Fig. 4a, CBID and LCF have the smaller itinerary length, followed
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by NOID. GCF has by far the bigger itinerary length because it suggests

wireless hops among distant sensor nodes. In Fig. 4b we can see that d/s ratio

appears to have no affect in the total CBID itinerary length, in contrast to

NOID wherein as d/s ratio increases, the total length of NOID itineraries in-

creases remarkably (larger number of MAs cooperate in the data fusion task).

The number of itineraries in CBID depends on the parameter a and the sink’s

transmission range (Fig. 4c). Finally Fig. 4d illustrates the total length of

the longer suggested itinerary of NOID and CBID in simulated WSNs with

variable number of sensors.

Fig. 5a (drawn on logarithmic scale) compares LCF, GCF, NOID and CBID

algorithm in terms of their respective overall data fusion cost. GCF is shown

to suggest the larger overall cost, followed by LCF. NOID performs better

than LCF and GCF, while CBID is shown to provide significantly lower data

fusion cost than NOID as: (a) agent itineraries are designed paying ‘respect’

to the tree structures (i.e. MAs migrations follow the tree edges, unlike NOID

which designs similar tree structures but then constructs agent routes that

correspond to a post-order traversal of these trees), (b) NOID fails to exploit

the cloning capability of MAs; on the contrary, CBID enables agent cloning

whenever this can reduce the fusion cost.

In Fig. 5b we compare NOID and CBID for d=200, d=500 for networks up

to 200 sensors. As d and the number of sensors increase, the cost output

difference increases in favor of CBID. Fig. 5c verifies that for a given network

size the cost benefit of CBID over NOID increases drastically with d/s ratio.

As d increases the output cost of CBID increases in a slower rate, mainly due

to the cloning feature of MAs that CBID takes advantage off. Furthermore as

explained in section 3, in CBID the MAs (and their clones) visit first the more

distant leaf nodes of the itinerary and then on their way to the PE start the

collection of data from the other sensors. On the other hand, in NOID, MAs

commence data collection from the node closest to the PE and as soon as they

reach the more distant itinerary nodes, they travel all the distance back to the

Sink carrying the data retrieved from all visited sensors.

Finally, Fig. 5d compares the total cost output of CBID and NOID with vari-

able number of nodes in the area (we set a=1 because NOID does not support

the a parameter) from 20% to 100% (in the latter case, all sensor nodes are

located within the area). From the results we can see that CBID shows an

increase in cost output as the number of nodes in the area. In contrary the

output cost of NOID decreases since this variable does not affect its output.
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(a)

(b)

(c)

(d)

Fig. 5. Comparison of LCF, GCF, NOID and CBID in data fusion cost for (a)
s=1000 d=200 bytes; (b) comparison of CBID, NOID s=1000, d=200 bytes, d=500
bytes; (c) s=1000 bytes, network size of 200 sensors; (d) s=1000 bytes, d=200 bytes,
20-100% of overall number of nodes in a × rmax area
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The next set of experiments evaluates the overall response time of LCF, GCF,

NOID and CBID algorithms for completing data fusion tasks. Response time

is calculated as the sum of MAs instantiation delay, processing delay, MAs

transmission delay and propagation delay:

toverall = tinst + tproc + ttrans + tprop (2)

The MAs instantiation delay (tinst) is related to the number of MAs involved

in the data fusion task (in our experiments it takes 10 msec to instantiate

each MA object). Hence, it is constant for LCF and GCF algorithms that

always instantiate a single MA that visits the whole set of sensor nodes, while

for NOID it depends on the network scale and the d/s ratio which dictates

the number of proposed itineraries. In CBID it depends also on the network

scale taking into account parameter a (see Fig. 4c) and the communication

range of the Sink. The processing delay (tproc, time needed for the MA to

complete its data fusion task on each sensor) is constant (50 msec in our

experiments). The transmission delay (ttrans) depends on the network transfer

rate and the current size of the MA (i.e. the MA’s code size plus the amount

of data accumulated within the MA’s state). Finally, the propagation delay

(tprop) depends on the physical distance covered in successive MA migrations

(i.e. on the overall itinerary length).

Response time measurements are depicted in Fig. 6a and Fig. 6b. In both

graphs, the response times of LCF and GCF almost coincide: LCF only in-

volves slightly decreased propagation delay compared to GCF since it derives

shorter itinerary lengths (see Fig. 4a). It is demonstrated that as the d/s ratio

and the number of nodes increases (see Fig. 4b) the response time gain of

NOID and CBID over LCF and GCF increases drastically as the transmission

time dominates (for LCF and GCF) over the other delay parameters. That

is, although NOID and CBID dispatches a large number of MAs thereby in-

creasing tinst, these MAs travel in parallel, each visiting a small set of sensors

(unlike LCF and GCF where a single MA performs a number of hops equal to

the number of sensors). Hence, in NOID and CBID cases, by the end of their

itinerary MAs have not collected large chunks of data, considerably decreasing

the associated transmission delay. Finally, Fig. 6a and Fig. 6b show that CBID

involves smaller overall response time than NOID mostly due to the cloning

feature of MAs that utilizes in data collection. As d increases CBID retains

the smaller overall response time compared to LCF, GCF and NOID (see Fig.

6b).
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(a)

(b)

Fig. 6. Comparison of LCF, GCF, NOID and CBID algorithms in terms of the
overall response time for (a) d=200 bytes, s=1000 bytes, (b) d=500 bytes, s=1000
bytes.

The conclusions of our simulation results indicate that CBID:

• achieves smaller overall data fusion cost (thus lower energy consumption for

the nodes).

• retains the smaller overall response time compared to NOID.

• in case(s) of possible topology change(s) in a WSN is able to update the

itineraries followed by the MAs very fast.

However, the above advantages are offered at the expense of more complex

manageability of the data fusion task. That is, an effective inter-agent com-

munication protocol should be devised to allow exchange of data among the

individual clones (e.g. through the ’message board abstraction). In addition,

the creation of multiple MA clones may consume valuable nodes resources.

5 Conclusion

In this article we presented CBID, an efficient heuristic algorithm that derives

near-optimal itineraries for MAs performing incremental data fusion in WSN

environment. CBID is also able to address possible topology changes modifying
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MA itineraries through a fast update, so as to exclude problematic nodes from

the data fusion process. CBID achieves lower data fusion cost and smaller

response time, compared to alternative approaches.

As a future work, we intend to implement CBID in real WSN environments and

evaluate its performance in various applications. A set of sensor nodes capable

of hosting and providing an execution environment for MAs programmed in

Java [8] will form the basis of our field trials.
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