
Computing Shortest Paths and Distances
in Planar Graphs*

Hristo N. Djidjev 1 Grammati E. Pantziou 2 Christos D. Zaroliagis 2

(1) Center of Informatics and Computer Technology, Bulgarian Academy of Sciences
Acad. G. Bonchev str. bl. 25-A, 1113 Sofia, Bulgaria

(2) Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
Computer Sc and Eng Dept, University of Patras, Greece

Abstract

We provide here efficient sequential and parallel solutions to the following problem: given
a planar digraph G (with real edge weights but no negative cycles) for preprocessing, answer
on-line queries requesting the shortest distance (or path) between any two vertices in G. Our
algorithms for preprocessing need O(n log n + q2) space and O(nlog n ÷ q2) sequential time.
(Here q is the cardinality of a set of faces of a planar embedding of G that cover all vertices.)
A parallel implementation on a CREW PRAM needs also O(nlogn + q2) space and runs in
O(Iog 2 n) time using O(n + M(q)) processors (where M(q) is the number of processors required
to multiply two q x q matrices in O(logq) time), provided that the q faces are given by the
input. This enables us to achieve O(logn) time using a single processor for a "distance" query,
or O(L + log n) time for a "path" query (where L is the length of the path). Note that this is
a considerable improvement over previous results in the case where q = o(n). Our techniques
are based on the hammock decomposition of a planar digraph and the use of separators for
computing quickly internal distances in the graph. Several other results are achieved. For
outerplanar graphs, our algorithms preprocess the graph in O(nlog n) space and run either in
O(nlogn) sequential time, or in O(log 2 n) time using O(n) processors on a CREW PRAM. A
"distance" query can be answered in O(logn) time using a single processor. A "path" query is
answered in O(L+log n) time. An optimal solution is given in the case of trees. We achieve O(1)
time per "distance" query and we need O(n) sequential time, or O(log n) time and O(n/log n)
processors (on an EREW PRAM) for preprocessing. A "path" query is answered in O(L) time.

1 I n t r o d u c t i o n

An important class of graph problems are related to finding shortest path information in graphs. Let
G be a digraph with real edge weights but no negative cycles and p be a path in G with endpoints v
and w. The cost of p is the sum of the weights of all edges of p and the distance between v and w is
the minimum cost of a path p~ joining v and w (called a shortest path between v and w). Many recent
papers address the problem of finding shortest paths between all pairs of vertices for special classes of
graphs, e.g. Fredman and Tarj an [9] propose an O(nm + n 2 log n)-time algorithm for n-vertex m-edge
graphs (efficient for sparse graphs), Frederickson gives an O(n2)-time algorithm for planar digraphs
[5], parallel algorithms and other versions of the problem have been investigated in [1, 11, 12].

Frederickson [6] shows that certain topological characteristics can be exploited in the development
of efficient shortest-path algorithms in the case of planar digraphs. He defines a parameter q as the

*This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM), by the
Ministry of Education of Greece and by a bilateral scientific agreement between Bulgaria and Greece.

328

minimum cardinality of a subset of the faces that cover all vertices of the digraph and gives an
O(qn)-time algorithm for succinct encoding of shortest path information in an embedded n-vertex
planar digraph ([6]).

Computmg thed~stances between all pairs of vertices in an n-vertex digraph obviously requires
~(n 2) time because of the output size. In some applications, e.g. in computational geometry, decision
making and parallel processing it is enough to know only the distance between a small number of
pairs of vertices, often given in a dynamic fashion. For such kind of applications our algorithms give
performance superior to that of any previous algorithm. Informally, the first problem investigated in
this paper is the following.
Problem 1: Let G be an embedded n-vertex planar digraph with real edge weights but no negative
cycles. Preprocess G in order to answer in polylogarithmic time queries of the form "given any two
vertices v and z find the distance between v and z".

By the best currently known algorithms that can be used for solving problem 1 one has either to
compute shortest paths between all pairs and store their lengths in an n x n matrix (which will require
fl(n ~) space and time for preprocessing and O(1) query time [5]) or construct compact routing tables
in O(qn) time and space (see [6]), in which case the distance is computed in time O(L log n), where
L is the length of a shortest path between v and z (i.e. the number of edges which can be ~(n)). Also
in [6], a different encoding of all pairs shortest path information (not only compact routing tables)
provides O(n + q2) preprocessing time and space but the query time remains O(L log n).

In this paper we provide efficient sequential and parallel algorithms for the above problem. In
sequential computation O(nlogn + q2) time and O(nlog n + q2) space is needed for preprocessing
the planar digraph. A query can be answered in O(logn) time. Here q is the cardinality of a
face-on-vertex covering, i.e. a set of faces that cover all the vertices in a planar embedding of the
planar digraph. Ifi parallel computation (in the CREW PRAM model) our methods need O(log ~ n)
time using O(n + M(q)) processors and O(nlogn + q2) space for the preprocessing of the graph,
and O(log n) time per query (using a single processor). Thus the query time of our algorithm is a
considerable improvement over the O(L log n) query time (which in the worst case can be ~(n log n)
[6]). Let us also note here that if we use k processors on an CREW PRAM, then k such queries can
be answered in O(log n) time using k processors.

Our methods are based: (i) on the decomposition of a planar digraph into certain outerplanar
graphs called hammocks (see [6, 12]), and (ii) on the use of separators in a very convenient tree
structure which allows us to compute several distances in the graph in an extremely fast way.

The heart of our algorithms for solving the shortest distance problem on a planar digraph with real
edge weights but no negative cycles, is based on the solution of the same problem in an outerplanar
digraph. In this case, we need for preprocessing O(n log n) space and either O(n log n) time, or
O(log 2 n) time using O(n) processors on a CREW PRAM. A query can be answered in O(log n) time
using a single processor. (Also k such queries can be answered in O(log n) time using k processors.)

An optimal solution is also given to an important subproblem which is used very often as an
intermediate step in our main scheme. This concerns the shortest distance problem in the case of
trees. We achieve O(n) sequential time, or O(tog n) time and O(n/log n) processors (on an EREW
PRAM) for preprocessing, O(1) time per query and O(n) space.

The second problem investigated in this paper is the following•
Problem 2: Let G be an embedded n-vertex planar digraph with real edge weights but no negative
cycles. Preprocess G in order to answer queries of the form "given any two vertices v and z find a
shortest path between v and z" in time proportional to the length of the path.

We will show that a modification of our preprocessing algorithms (for computing distances)
enables us to answer on-line "path" queries in planar (or outerplanar) graphs in O(L + log n) time
where L is the length of the path. In the case of trees the query is answered in O(L) time. Both
results are improvements over the best previous O(L log n) algorithm from [6].

329

2 Pre l iminar ies

Let G = (V, E) be a planar digraph with real edge weights but no negative cycles. For each edge
(v,w) of G we define the label S(v,w) of the edge as follows:

S(v,w) = {ul(v,w) is the first edge in a shortest path from v to u}

Each S(v, w) is described as a union of a minimum number of subintervals of [1, n], assuming V =
{1, 2, ..., n}. (A subinterval is allowed to wrap around n.)

Edge labels are used in the succinct encoding of all pairs shortest paths information in what
it is called compact routing tables (see [15, 6]). Compact routing tables have been used for keeping
shortest path information (edge labels) in a space-efficient way, either in sequential ([6]) or in parallel
computation ([12]). Here, we shall consider their use only for outerplanar graphs. If G is outerplanar
then each S(v, w) is a single interval [a, b] (see [8]). In this case a compact routing table for v consists
of a list of initial values a of each interval, along with pointers to the corresponding edges. It is clear
that the total size of a compact routing table for an outerplanar graph is O(n).

A hammock decomposition of G is a decomposition of the graph into certain outerplanar subgraphs
called hammocks. This decomposition is defined relative to a given face-on-vertex covering of G. Let
us call G the embedding of G in the plane. Then a face-on-vertex covering C is a set of faces that
cover all vertices in G. The problem of finding the minimum face-on-vertex covering of azl embedded
planar digraph G is NP-complete ([2]). Frederickson in [6] gives an approximation to the above
problem which is at most 4 times the optimal solution. The approximation is computed in O(n)
time. A parallel O(log n) approximation can be obtained using the ideas of [3] (see [12]), but it needs
O(n) processors and O(log 6 n) time. The question of finding an efficient parallel approximation to
the face-on-vertex covering problem that is a constant multiple away of optimal still remains open.

A haznmock shares at most four vertices with all other hammocks in the decomposition. These
vertices are called attachment vertices. To generate the decomposition, we first convert G into an
embedded undirected planar graph G1 called neatly prepared since: (a) G1 has no parallel edges; (b)
if C1 is the face-on-vertex covering of 01 (resulting from that of G) then all faces in G1 (except C1)
are triangulated and the faces of C1 do not share vertices; (c) the boundary of each face is a simple
cycle. We now group the faces in G1 using two operations: absorption and sequencing (see details in
[6, 12]). Initially mark all edges bordering the faces belonging to C1. Let fl , f2 be two such faces (not
in Cl) that share an edge. If fl contains two marked edges then absorb fl into fl~ as follows: first
contract one marked edge in fl. The first face then becomes a face bounded by two parallel edges,
one of which is shared with the second face. Delete this edge, thus merging fl and f2. Repeat this
operation until it can no longer be applied. Then identify maximal sequences of faces such that each
face in the sequence has a marked edge and each pair of consecutive faces share an edge in common.
Expand the "absorbed" faces. Each subgraph resulting from expanding such a sequence is called
a (major) hammock. The two vertices at each end of the hammock are called attachment vertices.
Any edge not included in a major hammock induces a (minor) hammock. Note that the hammock
decomposition spans all the edges of a planar digraph.

The model of parallel computation used in this paper is the PRAM one. A PRAM employs
P synchronous processors. Each processor may have access to a shared-memory (and to its local
memory) and may execute simple word and bit operations in constant time (see [16]). By allowing,
or disallowing simultaneous access by more than one processor to the same memory location, we get
variants of the PRAM model. In this paper we use the CREW PRAM (which allows concurrent read
operations but ho concurrent write ones) and the EREW PRAM (which allows neither concurrent
read nor concurrent write operations to the same memory location).

The following results have been proved in [6] (the sequential version) and in [12] (the parallel
version).

T h e o r e m 1 Given an n-vertez planar digraph G with a face-on-vertex covering of cardinality q, then
G can be.decomposed into O(q) hammocks either in O(n) sequential time, or in O(log 2 n) time using
O(n) processors on a CREW PRAM.

330

Theorem 2 Shortest path (edge labeling) information in an n-vertex outerplanar graph can be com-
puted either in O(n) sequential time, or in O(log z n) time using O(n) processors on a C R E W PRAM.

It is easy to see why edge labeling is useful for finding any shortest path information. To store shortest
paths or distances with respect to a fixed vertex of a graph to all other vertices it is appropriate to
make use of trees.

Definition 1 A tree is called convergent (divergent} if the edges of the tree point from a node to its
parent (children).

The following lemma has been proved in [6] (sequential version) and in [12] (parallel version).

L e m m a 1 Given edge labeling information in an n-vertex outer'planar graph G, then: i} A conver-
gent or divergent tree of shortest paths rooted at some vertex x can be constructed either in O(n)
sequential time, or in O(log n) time using O(n/ log n) processors on an E R E W PRAM. ii) Let H be
a biconneeted subgraph of Go and let h = IHI. Then in H, a convergent or divergent tree of shortest
paths rooted at some vertex x E H can be constructed either in O(h) sequential time, or in O(log h)
time using O(h/log h) processors on an E R E W PRAM.

Definit ion 2 An outer'planar digraph G = (V, E) is called nice if, (i) for every edge (v, w) C E,
its opposite (w, v) e E, 5i) the undirected version of G is biconnected, (iii) edge costs satisfy the
generalized triangle inequality (i.e. (v,w) is the shortest path from v to w), and (iv) vertices are
named consecutively in clockwise order around the exterior face.

The following has been proved in [6] (sequential version) and in [12] (parallel version).

L e m m a 2 An n-vertez outerplanav graph can be converted into a nice one, either in O(n) sequential
time, or in O(log n) time using O(n) processors on a CREW PRAM.

R e m a r k : The conversion back to the initial graph can be easily done within the same resource
bounds (as it is described in [6, 12]).

3 Finding S h o r t e s t D i s t a n c e s

First we solve efficiently the problem for the class of trees and then use the solutions in the description
of algorithms for outerplanar and planar graphs.

3.1 Shortest distances in trees

The algorithms for trees are simple and make use of results from [13]. Suppose we are given an
ordered (rooted or unrooted) tree T = (VT, Er) with real edge weights. (We require the tree to be
ordered because of the EREW model, i.e. we have to know the relative order of the subtrees of a
node, see e.g. [10], page 306.) Then simple tree functions (like pre- and post-order numbering, level,
number of descendants, etc) of each node can be computed using the Euler tour technique on trees of
[14] and its optimal parallel implementation in [13]. The idea is to reduce the computation of these
functions to weighted list ranking. More specifically we use the following results from [13].

L e m m a 3 Simple tree functions in an n-vertex tree can be computed optimally either in O(n) se-
quential time, or in O(log n) time using O(n/ log n) processors on an E R E W PRAM.

Corol la ry 1 With the appropriate preprocessing (by the previous lemma) the lowest common ances-
tor (LCA) of any two nodes in a tree can be computed in O(1) time using a single processor.

Our algorithm for preprocessing a tree is the following.

331

ALGORITHM P-TREE
(1) compute the necessary tree functions in order to answer LeA queries in O(1) time.
(2) for each node v of the tree compute its weighted distance d(v, r) from the root r.

L e m m a 4 The P-TREE algorithm runs either in O(n) sequential time, or in O(logn) time using
O(n/log n) processors on an EREW PRAM.

Proof : By lemma 3. |
Given any two nodes v, z E VT, the query algorithm for finding their distance d(v, z) is given

below.

ALGORITHM Q-TREE
(* let LeA(v , z) be the lowest common ancestor of v, z and r be the root of the tree *)
(1) find LeA(v , z).
(2) d(v, z) = d(v, r) + d(z, r) - 2d(neA(v, z), r).

L e m m a 5 The Q-TREE algorithm finds the shortest distance between any two nodes of a tree in
O(1) time using a single processor.

Proof'. In the full paper [4]. •
Remark : If concurrent read operations are allowed, then we can answer k queries in O(1) time using
k processors.

3.2 Shortest distances in outerplanar graphs

Let us assume that we are given an n-vertex embedded outerplanar digraph Go (with real edge costs
but no negative cycles).

Definition 3 A separator edge is called a good separator for Go, if the removal of its endpoints from
Go, divides Go into subgraphs of sizes < ~n for some constant (1/2) < e < 1.

We will make use of the well known fact that a good separator (for ¢ = (2/3)) exists for any tri-
angulated outerplanar graph and that it can be found in O(n) time. Our algorithm for preprocessing
Go is the following.

ALGORITHM P-OUTERPLANAR
Step 1

Convert Go into a nice outerplanar graph G,,. Then triangulate each face of G~ and with each
new edge added associate a weight equal to the corresponding shortest distance between its endpoints
(see [6] and [12]). Let us call the resulting graph H0.
Step 2

Find shortest path (edge labeling) information in Ho.
Step 3

(3.a) Perform a sequence of O(log n) phases building a binary tree of good separators. Let S i
denote the jth good separator of the i ~h phase (i = 0,1, ..., imax (imax = O(log n)), j = 1, 2, ..., 2i).
The root of the tree is the separator S o which divides H0 into two subgraphs Ha1 and Ha2 of sizes
en and (I - ¢)n respectively. Then we find good separators $11 and S] in Hll and H12 respectively.
The separators $I and S] are the children of S °. This process is repeated recursively in each new
subgraph produced. In general, the node Sj will have S~+11 and S~ +1 as its children. With each
node Sj we associate a 4-tuple (/1, I2,/3,/4) where each I,, (m = 1,2, 3, 4) is an interval. Let the
endpoints of Sj be u(Si) and w(Sj). Then the four intervals for Sj are shown in figure 1 (with their
boundary vertices). Now, for S~+_11 we have: bl(S~+_ll) = bl(S~), b2(S~+_11) = u(Ss), b3(S~+_11) = w(Si)
and b4(S~+11) = b4(Sj). For the node S~ +1 we have similarly, bl(S~ +') = u(Sj), b2(S~ +1) = b2(Sj),

332

I,

I
u('_ ,)

,

,,,(s i '_ ,)

h
o

. (s ? ')

/3
o ---- separator

Figure 1: Construction of separator tree.

b3(S~ +1) = b~(S~) and b4(S~ +1) = w(Si). Note that initially (i = 0) the intervals/1 and /4 (and also
the intervals/2 and/3) coincide. Let us call the above tree as the separator tree.

(3.b) For each S i i = 0, ..., imax (imax = O(log n)), j = 1, 2, ..., 2'), create convergent and diver-
gent shortest path trees rooted at u(Sj) and w(S}) and involving only those vertices in [bl(S}), b2(Si) !
and [b3(Sj), b4(S})]. (Therefore, we have 4 such trees and associate this information to the node S~
by creating pointers to the corresponding trees.) Run the algorithm P-TREE to each of these trees,
in order to be able to answer queries (for the trees) in O(1) time.

L e m m a 6 Algorithm P-OUTERPLANAR runs in O(nlogn) time and needs O(nlogn) space. A
parallel CREW PRAM implementation of the algorithm runs in O(log 2 n) time and use.q O(n) pro-
c e s s o ~ * 8 ,

Proof : Go can be converted into a nice outerplanar graph Gn either in O(n) sequential time, or in
O(log n) time using O(n) processors on a CREW PRAM by lemma 2. Also the triangulation d faces
and assignment of appropriate weights on the new edges can be done as follows: in each internal face
of G,~ choose a vertex v to be the starting (and ending) point of a clockwise or counterclockwise walk
around the face. Then find the unweighted clockwise distance Cranking) of any vertex in the face from
v. Do the same but now for the weighted clockwise and counterclockwise distance from v. Suppose
that v has rank(v) = 1. Then for any vertex u such that rank(u) >_ 3 do: (i) add the edge (v,u)
to the graph with weight the minimum between the clockwise and counterclockwise distance from v
to u, (ii) add the edge (u, v) with weight the minimum between the clockwise and counterclockwise
distance from u to v. Note that these distances can be easily computed. For example, the clockwise
distance from u to v is equM to the clockwise distance of the face (the sum of the weights of the
edges of the face) minus the clockwise distance from v to u. Thus the triangulation can be done
sequentially in O(n) time, while in parallel computation can also be easily computed in O(log n) time
and O(n) processors by pointer doubling. In conclusion, step 1 needs either O(n) sequential time, or
O(logn) time and O(n) processors on a CREW PRAM.

Step 2 needs either O(n) sequential time, or O(log 2 n) time using O(n) processors on a CREW
PRAM, by theorem 2.

In step 3, the discovering of the appropriate separators is facilitated by the naming of the vertices
in H0. For example suppose we want to find S o in H0. Since we have O(n) edges we can find it
in O(n) sequential time. Note that the naming of the vertices and the triangulation of the faces
guarantees that we can find a good separator. To do this in parallel, we associate a processor with
each edge of H0. Then on a CREW PRAM we need O(log n) time to find $1 °. We proceed similarly
for the other separators. The depth of the separator tree is O(log n) and in each level we need
either O(n) sequential time, or O(log n) time and O(n) processors in order to find the separators.
Thus, step (3.a) is implemented either in O(n log n) sequential time or in O(log 2 n) time using O(n)
processors on a CREW PRAM. Also the time and processor bounds to implement step (3.b) are the
same as those of (3.a). This is because for each level of the tree we build convergent and divergent

333

shortest path trees which (by lemma 1) need either O(n) sequential time, or O(log n) time and O(n)
processors for the whole graph.

Finally for the space needed by the algorithm one can easily observe that all steps need O(n)
space except for step (3.b) which needs O(n log n) space. II

Given any two vertices v, z the query- algorithm for finding their shortest distance is as follows.

ALGORITHM Q-OUTERPLANAR
(1) search the separator tree (starting from the root) to find a node S~ such that

(v 6 I1 V v • / 4) A (z • 12 V z • I3) (or vice versa).
(* let el~ e2 be the endpoints of the separator found *)
(2) d(v, z) = min{d(v, el) + d(el, z), d(v, e2) + d(e2~ z)}

L e m m a 7 Algorithm Q-OUTERPLANAR finds the shortest distance between any two vertices in
an outerplanar digraph in O(log n) time using a single processor.

Proof : We first establish the correctness. Let us assume that v, z are the two vertices and we want
to compute d(v, z). Note that it is enough to find a good separator such that v belongs either to
I1 or /4 and z belongs either to I2 or to I3 (or vice versa). In such a case the shortest path from v
to z would go through one of the endpoints of the separator. Let el,e2 be these endpoints. Then
d(v, z) = min{d(v, el)+d(el, z), d(v, e2)+d(e2, z)}. Therefore the approach followed by the algorithm
Q-OUTERPLANAR correctly determines the shortest distance between v and z.

Now, for the resource bounds we have that steps 1 and 2 need O(log n) time (the time needed
to search a binary tree of depth O(log n)). Step 3 needs O(1) time, because the distances d(v, el),
d(el, z), d(v, e2), d(e2, z) can be computed in O(1) time from the convergent and divergent shortest
path trees constructed during the preprocessing phase. |

T h e o r e m 3 Given an n-vertex outerplanar digraph Go, we can preprocess Go in O(n log n) space
and either in O(nlog n) sequential time, or in O(log 2 n) time using O(n) processors on a CREW
PRAM. This preprocessing enables us to answer queries requesting the shortest distance between any
two vertices in O(log n) time.

Proof : Immediate consequence of lemmas 6 and 7. |

3.3 Shortest distances in planar graphs

The preprocessing algorithm here is based on the hammock decomposition technique and on the
algorithms of the previous section. Given an embedded planar digraph G with a face-on-vertex cov-
ering of cardinality q, the preprocessing algorithm is the following.

ALGORITHM P-PLANAR
Step 1

Find a hammock decomposition of G into O(q) hammocks. For each vertex of G store a pointer
to one of the hammocks it belongs to.
Step 2

Run the algorithm P-OUTERPLANAR in each hammock.
Step 3

Find all shortest distances and paths between the attachment vertices of the hammocks. This
can be done by first compressing each hammock into an O(1) size graph and then compressing G
into a planar graph of size O(q).
Step 4

Construct convergent and divergent trees of shortest paths rooted at each attachment vertex of
a hammock.

334

L e m m a 8 Algorithm P-PLANAR runs in O(n log n + q~) sequential time and needs O(n log n + q2)
space. A parallel CREW PRAM implementation runs in O(log 2 n) time and uses O(n + M(q))
processors.

Proof: Step 1 requires (by theorem 1) either O(n) time, or O(log: n) time using O(n) processors.
Step 2 takes (by theorem 3) either O(n log n) time, or O(log 2 n) time using O(n) processors. The
implementation of step 3 is described in [6] and [12], and needs either O(q 2) time (by [5]), or O(log 2 q)
time using M(q) processors (where M(q) is the number of processors required to multiply two q x q
matrices). Finally step 4 takes (for all hammocks) either O(n) time, or O(tog n) time using O(n)
processors. For the space needed by the algorithm we have that step 1 needs O(n) space, step 2
needs O(n log n) space (by lemma 6) and step 3 needs O(q 2) space. II

The query algorithm for finding the shortest distance between any two vertices v, z is the following.

ALGORITHM Q-PLANAR
(* let H, H r be the hammocks with attachment vertices hi, 1 < i < 4 and a~, 1 < i < 4,
respectively, such that v is in H and z is in H t *)
if H = H I (* i.e. both v, z belong to H *) then

(1) run the Q-OUTERPLANAR algorithm in H and let dH(v, z) be the output of that
algorithm

(2) dij(v, z) = mini,j{d(v, hi) + d(ai, aj) + d(aj, z)}
(3) d(o, z) = min{d~(v, z), d~j(,, z)}

else (* H ~ H ' *)
t t

d(v, z) = rrfinid{d(v, hi) + d(ai, aj) + d(aj, z)}

Lemma 9 Algorithm Q-PLANAR finds the shortest distance between any two vertices in a planar
digraph (with real edge weights but no negative cycles) in O(log n) time using a single processor.

Proof." We first establish the correctness of the algorithm. If v, z do not belong to the same hasnmock,
then the correctness is obvious. If v,z belong to the same hammock H, then the shortest path
between v and z does not necessarily stay in H. Let dn(v, z) be the shortest distance between v
and z corresponding to the shortest path (between v, z) that stays in H. Let also dlj(v, z) be the
shortest distance between v, z corresponding to a path that leaves H at one attachment vertex ai
and reenters H at another attachment vertex aj (and this is the shortest one for all pairs of i , j) .
Then dearly the shortest distance d(v, z) is the minimum between dH(v, z) and dij(v, z).

It is not difficult to show that the else part takes 0(1) time, since it involves finding the minimum
aznong 16 weights. The time of the if part is dominated by the running time of algorithm Q-
OUTERPLANAR which is O(logn) by lemma 7. (All other steps obviously need O(I) time.) II

Theo rem 4 Given an embedded n-vertex planar digraph with a face-on-vertex covering of cardinality
q (with real edge weights but no negative cycles), we can preprocess it in O(n log n + q2) space and
either in O(n log n + q2) sequential time, or in O(log 2 n) time using O(n + M(q)) processors on
a CREW PRAM. This preprocessing enables us to answer queries requesting the shortest distance
between any two vertices in O(log n) time.

Proof : Immediate consequence of lemmas 8 and 9. II

4 F i n d i n g S h o r t e s t P a t h s

In this section we show how to answer on-line queries requesting the shortest path between any
two vertices in trees, outerplanar and planar graphs by doing modifications in the preprocessing
algorithms presented in the previous section. In the sequel, let SP(v, z) denote the shortest path
between v and z and let SPn(v, z) denote the shortest path between v and z in a connected subgraph
H of the input graph.

335

4 .1 T r e e s

Here the preprocessing algorithm remains the same. Given any two nodes v, z of a tree the query
algorithm for finding their shortest path (SP(v, z)) is the following.

ALGORITHM Q'-TREE
(1) find LeA(v, z)
(2) find SP(v, LeA(v, z)) and SP(LCA(v, z), z) and join them.

L e m m a 1{} Algorithm Q" TREE finds the shortest path between any two nodes of an n-vertex tree in
O(L) sequential time, where L is the length of the path. A parallel implementation finds the vertices
of the shortest path in O(1) time and uses O(n) processors on an EREW PRAM.

Proof: The sequential implementation is straightforward. For the parallel implementation we
associate a processor with each edge (u,w) (the edges are directed towards the root). Denote
M = {w]w E SP(v,z)} = {wl(w = LeA(v ,z))V ((LeA(v,w) = w)@ (LCA(z,w) = w))}. (Here
"@" denotes the "exclusive-or" operation.) Therefore M can be determined in O(1) time. |

4 . 2 O u t e r p l a n a r g r a p h s

First note that if in the input graph Go (]Gol = n) the generalized triangle inequahty is satisfied we
have nothing to do for the preprocessing of the graph. Also the shortest path can be easily found
using the Q-OUTERPLANAR algorithm and the algorithm Q'-TREE (working in the convergent
and divergent shortest path trees rooted at the endpoints of the separator found).

To handle the case where the generalized triangle inequality is not satisfied we modify the P-
OUTERPLANAR algorithm. The new algorithm is as follows.

ALGORITHM P" OUTERPLANAR
Step 1

Find shortest path (edge labeling) information in Go.
Step 2

(2.a) Execute step (3.a) of algorithm P-OUTERPLANAR, but in the case where we can not
find a good separator (since such a separator does not exist), we take the separator minimizing the
difference of the sizes of the resulting subgraphs. Note that the corresponding separator tree is still
of depth O(log n).

(2.b) Execute step (3.b) of algorithm P-OUTERPLANAR.
Step 3

We proceed in phases. During phase i, i =,0,1, ..., imax (imax = O(log n)), we do the following:
for each Sj, j = 1, 2, ..., 2 i, we find and keep the shortest path (and distance) between its endpoints
u(Sj) and w(Sj). This is done by using the information of the convergent and divergent shortest
path trees rooted at these endpolnts and the shortest paths between bl(S~) and b4(Sj) (endpoints of
S~) and also between b2(S}) and b3(S~) (endpoints of S~). (See figure 1.) Note that these shortest
paths have been computed in a previous phase.

L e m m a 11 Algorithm P" OUTERPLANAR ~ns in O(n log n) sequential time and needs O(n log n)
space. A parallel implementation on a CREW PRAM needs O(log 2 n) time and uses O(n) processors.

Proof." Step 1 needs O(n) sequential time (by [6]) or O(tog 2 n) parallel time using O(n) processors
(by [12]). In step 2, if there is not a good separator, then let x, y be a pair of vertices that separate
Go into two subgraphs of size < en, (1/2) < e < 1. Add the dummy-edges (x, y) and (y, x) with
weight co. Obviously, this pMr of edges constitutes the good separator we are looking for. But
nothing changes if instead of doing this, we choose between the ~neighbouring" separators (that
really exist left and right of the dummy-edges) that one which minimizes the difference of the sizes
of the subgraphs of Go. Therefore, step 2 needs the same resource bounds as those of step 3 in

336

Uk

H1

w

U~ Z Um

H: S 7

Wi Wm

Figure 2: Computation of SP(ui, wi).

algorithm P-OUTERPLANAR. Let us discuss in more detail how to implement step 3 of the above
algorithm efficiently. Consider figure 2 with some abuse of notation. SP(u{, w{) either stays in
//1 U//2 (denoted in the sequel as H12), or (since the generalized triangle inequality is not satisfied)
leaves at one endpoint of S~ and reenters at the other, or leaves at one endpoint of S~ and reenters
at the other. Thus,
SP(ui, wl) = min{ SPH12(ui, wi),
min{Spm~(u,, u~) + Sp(u~, win) + sp,~l~(wm, wO, SPH12(~,, w~) + SP(wm, u~) + SP.l~(~m, wd},
min{SPH,2(ui, uk) + SP(uk, wk) + SPg12(wk, w,), SPm2(ui, wk) + SP(wk, uk) + SPm2(uk, w,)}}

Here (and in the sequel) "rain" denotes minimum in distance and "+" denotes path aAdition
(i.e. concatenation). Using a similar expression we can find SP(wi, ui). If SP(ui, wl) stays in
H12 then we keep the entire path (using the convergent and divergent shortest path trees). If, for
example, SP(u~, wi) leaves H12 at um and reenters H12 at wm then we keep the paths SPH~2(Ui, u,n)
and SPH12(wra,wi) (from the shortest path trees) and create a pointer to the path SP(um,wm)
(determined in a previous phase). Thus in each phase of step 3 ~e need O(1) time to decide which
is the shortest path (recall the expression giving SP(ui, wi)) and O(IH11 + IH2[) sequential time and
space to find and keep the path(s) that stay in H12 (by lermna 10) which gives O(n) time and space
for the whole graph. In parallel (by lemma 10) we need O(1) time and 0([11i I + IH21) processors to
find and keep the paths. |

The query algorithm for finding the shortest path between any two vertices v and z is the following.

ALGORITHM Q" OUTERPLANAR
(1) search the separator tree (starting from the root) to find a node S i such that

(v e / i V v e /4) A (z E Is V z e Is) (or vice versa).
(* let ul, wi be the endpoints of the separator found *)
(2) SP(v, z) = min{SP(v, u,) + SP(u,, z), SP(v, wi) + SP(wi, z)},

where
SP(v, ul) = min{min{SPHx(v, u~), min{SPHl(V, wk) + SP(wk, uk) + SPltl(Uk, ui),
sPn~(~, uk) + SP(uk, wk) + SPn,(wk, ud}}, sPn~(., wd + sP(w. ud}

SP(u,, z) = min{min{SPH2(u,, z), SP(ui, w d + SP~(wl, z)}, min{SP~2(~ti, u,~)
+ SP(u,~, w,~) + SPH2(wm, z), SP~2(u,, win) + SP(wm, urn) + SP~(um, z)}}

(For SP(v, wl) and SP(wi, z) we have similar expressions to those of SP(v, ui) and SP(ui, z) re-
spectively.)

L e m m a 12 Algorithm Q'-OUTERPLANAR finds the shortest path between any two vertices in an
outerplanar graph in O(L + log n) time using a single processor.

337

Proof : The correctness follows from the above discussion. Answering the query involves the compu-
tation of SP(v, ui), SP(u~, z), SP(u, w,), SP(w,, z). But these shortest paths can be easily computed
from the preprocessing of the graph. The distances of those paths are computed in O(1) time for
each level of the separator tree. Thus in O(log n) time we know which path is the shortest one and
in O(L) time we can construct it. |

4.3 Planar graphs

Here the algorithms are almost the same as those for computing shortest distances. If in step
2 of the P-PLANAR algorithm we substitute the call to P-OUTERPLANAR with a call to P "
OUTERPLANAR then we have algorithm P ' P L A N A R . Also in algorithm Q-PLANAR we substitute
the call to Q-OUTERPLANAR with a call to Q ' O U T E R P L A N A R and in each computation of a
distance we compute also its corresponding shortest path. This results to algorithm Q"PLANAR.

Theorem 5 Given an embedded n-vertex planar digraph with a face-on-vertex covering of cardinality
q (with real edge weights but no negative cycles), we can prcprocess it in O(n log n + q2) space and
either in O(nlogn + q2) sequential time, or in O(log2 n) time using O(n + M(q)) processors on a
CREW PRAM. This preprocessing enables us to answer queries requesting the shortest paths between
any two vertices in O(L + log n) time using a single processor, where L is the length of the path.

Proof : In the full paper [4]. |

5 Closing Remarks
If in each step of our P(P') -OUTERPLANAR algorithm we find a separator of size O(v/'~) (rather
than an O(1)-size separator), then we can reduce the sequential preprocessing time and space but
increase a little bit the query time. In this case the separator tree has depth O(log log n). This leads
to the following theorem.

Theorem 6 Given an n-vertex outerplanar (planar) digraph G, we can preprocess G in O(n log log n)
(O(n log log n + q2)) time and space. This preprocessing enables us to answer queries requesting, (i)
the shortest distance between any two vertices in O(log n log log n) time, and (ii) the shortest path
between any two vertices in O(L + log n log log n) time.

Proof: In the full paper [4]. |
Unfortunately this idea does not improve the preprocessing resource bounds in parallel compu-

tation.
We can achieve a trade-off between the query time and the sequential preprocessing time and

space by using separators that separate the outerplanar graph into components of size not exceeding
k(n) (instead of v~) , where k(n) • [2, x/-~]. For instance if k(n) = [log n], then the depth of the
separator tree is O(log n~ log log n) and we have O(n log n~ log log n) preprocessing time and space.
This preprocessing provides O(log n) time per "distance" query and O(L + log n) time per "path"
query.

Our results hold for the more general class of nonplanar sparse graphs as considered in [7, 8], but
in order to omit a large introductory part we described our techniques for the class of planar graphs.

It will be interesting to provide lower bounds relating the preprocessing and query times for the
problems considered in this paper.

Acknowledgments : We axe grateful to Paul Spirakis for his help in many technical discussions.

R e f e r e n c e s

[1] G. Ausiello, G.F. Italiano, A.M. Sp~caxaela, U. Nanni, "Incremental algorithms for minimal length
paths", Proc. of ACM-SIAM SODA, 1990, pp.12-21.

338

[2] D. Beinstock, C.L. Monma, "On the complexity of covering faces by vertices in a planar graph", SIAM
J. Comp. , Vol.17, No.l, Feb. 1988, pp.53-76.

[3] B. Berger, J. Rompel, P.W. Shor, "Efficient NC-algorithms for set cover with applications to learning
and geometry", Proc. 30th IEEE Symp. ou FOCS, 1989, pp.54-59.

[4] It. Djidjev, G. Pantziou, C. Zaroliagis, "Computing Shortest Paths and Distances in Planar Graphs",
CTI TR-90.10.26, Computer Technology Institute, Patras, October 1990.

[5] G.N. Frederickson, "Fa~t Algorithms for Shortest Paths in Planar Graphs with Applications", SIAM
,1. Comp. , VoL16, 1987~ pp.1004-1022.

[6] G.N. Frederickson, "Planar Graph Decomposition and All Pairs Shortest Paths", TR-89-015, ICSI,
Berkeley~ March 1989. A preliminary version was appeared as "A new approach to all pairs shortest
paths in planar graphs", Proc. 19th ACM STOC, New York City, May 1987, pp.19-28.

[7] G.N. Frederickson "Using Cellular Graph Embeddings in Solving A~ Pairs Shortest Paths Problems",
CSD-TR-897, Purdue University, August 1989. A preliminary version was appeared in Proc. 30th IEEE
Syrup. on FOCS, 1989, pp.448-453.

[8] G.N. Frederickson, R. Janardan, "Designing Networks with Compact Routing Tables", Algorithmica,
3 (1988), pp.171-190.

[9] M.L. Fredman, R.E. Tarjan, "Fibouacci heaps and their use in improved network optimization algo-
rithms"~ J. ACM, 34(1987), pp.596-615.

[10] D. Knuth, "The Art of Computer Programming", Vol.1, Fundamental Algorithms, 2nd ed. Addison-
Wesley, 1973.

[11] A. Lingas, "Efficient parallel algorithms for path problems in planar directed graphs", Proc. of SI-
GALgO, LNCS, Vol.450, pp. 447-457.

[12] G. Pantziou, P. Spirakis, C. Zaroliagis, "Efficient Parallel Algorithms for Shortest Paths in Planar
Graphs", CTI TR-90.01.02, Computer Technology Institute, Patras~ September 1990 (revised ver-
sion). A preliminary version has appeared as Proc. of the 2nd Scand. Workshop on Algorithm Theory
(SWATgO), Bergen, Norway, 11-14 July, 1990, LNCS, Vol. 447, pp.288-300, Springer-Verlag.

[13] B. Schleber, U. Vishkin, "On finding lowest common ancestors: simplification and parallelization", Proc.
3rd AWOC88~ Corfu, Greece, July 1988, LNCS Vol. 319 (ed. J.H. Reif), pp.111-123, Springer-Verla~.

[14] R.E. Tarjan, U. Vishkin, "An efficient parallel biconnectivity algorithm", SIAM J. Comp., 14 (1985),
pp. 862-874.

[15] J. van Leeuwen, R.B. Tan, "Computer Networks with compact routing tables", in The Book of L, G.
Rozenberg and A. Salomaa (eds.), Springer-Verlag, New York (1986), pp.259-273.

[16] J.C. Wyllie, "The Complexity of Parallel Computation", PhD Thesis, TR 79-387, Dept of Computer
Science, Cornell University, Ithaca, NY, 1979.

