Optimal Parallel Algorithms for Sparse Graphs*

Grammati E. Pantziou ! Paul G. Spirakis 2 Christos D. Zaroliagis®

(1) Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
Computer Sc and Eng Dept, University of Patras, Greece

(2) Courant Institute of Math. Sciences, NYU, USA

Abstract

We present here technigues which exhibit optimal processor-time tradeoff for many im-
portant problems on sparse graphs. These problems include: maximal coloring and maximal
independent set in trees and bounded degree graphs; 7-colorability, maximal independent set
and maximal matching in planar graphs; maximum independent set, maximum matching and
Hamiltonian path on rectangular grid graphs. Our techniques are based on the general list rank-
ing problem: given k lists having a total of n elements, find for each element the membership
relation and the rank of the element in its list. We solve this problem in O(logn) time with
n/logn processors on an EREW PRAM. For trees and bounded degree graphs our methods
need O(logn) time and n/logn processors on an EREW PRAM. For planar graphs they need
O(log? n) time and n/ log? n processors on an EREW PRAM using linear space. For the case of
rectangular grid graphs they need O(logn) time with n/logn processors on a CRCW PRAM,
or on an EREW PRAM (if the embedding is given).

1 Introduction

In graph theory, dealing with problems on sparse graphs is of particular importance. The reason is
that sparse graphs have nice structural properties that help in the design of more efficient algorithms
for a lot of problems. Furthermore, the solution of a problem on sparse graphs is often used as a
subroutine in many algorithms, thus improving their efficiency. Some classes of sparse graphs of
particular interest are: trees, bounded-degree graphs, planar graphs and rectangular grid graphs.

In this paper we deal with graph problems concerning the above classes. More precisely, we
examine the parallel complexity of the following problems.

o For trees: find a maximal independent set (Le. 2-colorability), a maximal dividing set and a
maximal coloring.

e For bounded-degree graphs. with maximum degree A: find a (A + 1}-coloring, and a maximal
independent set.

o For planar graphs: find a 7-coloring, & maximal independent set and a maximal matching.

*This work was partially supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the
Ministry of Industry, Energy and Technology of Greece.

e For rectangular grid graphs: find a maximum independent set, a maximum matching and a
Hamiltonian path.

The heart of our approach is (a) the Euler tour technique on trees {11] and especially its optimal
parallel version [10] (using the optimal list ranking algorithm of [1]}, and (b) an optimal solution,
that we give, to a fundamental problem in parallel computation. We call it the general list ranking
(GLR) problem: given k linked lists Iy, 1y, ..., I, such that "% | |11 = n, find for each element the
membership relation (i.e. to which list it belongs) as well as the rank of the element in its list. We
assume that the input is given in an array L[l :n}, and L(z) (for some element 7) is the pointer to
the next element n the list of i. We also assume that the heads of the lists constitute a separate
linked list stored in an array H{1:k]. (This is a reasonable hypothesis, if someone assumes e.g. the
adjacency list representation of a graph.)

We provide here optimal parallel algorithms for all the above mentioned problems on the CRCW
or EREW PRAM model of computation. More precisely, the following results have been achieved in
the EREW PRAM model: (i) Ologn)-time, n/ log n-processor algorithms for the GLR problem, and

for the problems on trees and bounded-degree graphs mentioned above. (i) O(log? n)-time, n/ log? n-
processor algorithms for the problems on planar graphs. The GLR algorithm has an immediate {and
very useful) application to the prefix computation problem on graphs: given a graph G with n vertices
and m edges in its adjacency list representation, perform any parallel prefix computation on the
elements of the adjacency lists of G optimally in O(logn) time. The optimal solution of the above
prefix computation problem leads to optimal parallel algorithms on planar graphs. The new result
derived is an optimal parallel algorithm for the maximal matching problem. We believe that the
GLR algorithm has many applications to a variety of NC algorithms towards optimal speedup.

In the CRCW PRAM model we give O{logn)-time, n/logn-processor algorithms for the above
problems on rectangular grid graphs. We must note here that the results on grid graphs depend only
on the complexity of finding the embedding. If the embedding is also provided by the input, then
our algorithms are optimal in the same resource bounds on an EREW PRAM.

Qur results for trees and bounded-degree graphs improve all previous ones for the same problems.
The 2-colorability algorithm has a twofold purpose: First, it answers the open problem posed by [2],
by giving an optimal solution; and second, it solves the problem in a way that is especially noteworthy
for its simplicity ([5] found an algerithm for the above problem in the same time and processor bounds
but on a CREW PRAM). Furthermore, the 2-colorability algorithm can be extended to maximally
color any tree (or forest) within the same resource bounds. The best known algorithms for the above
mentioned problems in bounded-degree graphs have O(log” n% running time using a linear number of
processors Eﬁ%} For the MIS problem in bounded-degree graphs, [5] and also [3] independently of us.
found an optimal algorithm which runs in O(logn) time using =/ logn processors. Our algorithm is
simpler compared with that of [5]. The best known algorithm for the maximal matching problem on
planar graphs was due to [2], and runs in O(log®n) time using a linear number of processors on an
EREW PRAM. The application of our optimal prefix computation technique to the 7-coloring and
the maximal independent set problems: achieves the same resource bounds (as maximal matching)
using linear space. It must be mentioned here that faster (and optimal with respect to time-processor
tradeoff) NC algorithms for these problems have been previcusly found [3, 4], but they use O{n?)
space. Thus in the above sense our algorithms are space-efficient in the same model of computation
(EREW PRAM).

The results for rectangular grid graphs are completely new. We are not aware of any other parallel
algorithm for the same problems on grid graphs.

2 Definitions and Notation

Throughout this paper we employ simple, undirected graphs G = (V, E} with n nodes. A coloring
of a graph & is an integer function €' : ¥V — N. A coloring is valid if no two adjacent nodes have
been assigned the same color. Given G = (V, F) and a coloring C : V. — C,, we say that C is a
mazimal coloring (MC) of G if C is valid, and if v is not assigned a color then each color in C, must

be assigned to at least one neighbor of v. A subset of nodes / C V' is called an independent set if

Vo,u € I: {v,u} ¢ E. A maximal independent set (MIS) is an independent set [such that A, [’
is an independent set and I' 3 /. An independent set is called mazimum if it has the maximum
cardinality among the all possible MIS in G. A MIS I in a tree T is called a mazimal dividing set
(MDS) if the removal of the nodes of I dissects T into trees of O(1) height. Note that the MIS
problem is a special case of the MC problem, where C, = {¢;}. The set of vertices colored ¢; is a
MIS. The {A + 1) vertex coloring problem ({A + 1)VC) is another special case of the MC problem
where Cv = {C], Coyvvny CAFIS

A flat forestof a graph G = (V, E) is a forest F' = (V, E’) such that E' C E and each tree in F has
height at most 1. Any zero-degree node in G is a zero-degree node in F, too. Given an undirected
graph G = (V, E), a maiching is a set of edges M C E in which no two edges share the same node. A
matching is mazimal if it is not properly contained in any other matching. A matching is mazimum
if it has the maximum cardinality among the all possible maximal matchings of G. A Hamiltonian
path between two nodes 5,7 of a graph G is a simple path starting on s, visiting all the remaining
nodes exactly once, and ending to .

A grid graph is a finite node-induced subgraph of the infinite grid G*°. The node set of G* consists
of all points of the plane with integer coordinates. Two nodes are connected iff their Euclidean
distance is equal to 1. A grid graph 1s completely specified by its node set. A grid graph R(m,n) is
called rectangularif its node set V(R(m,n)) = {v:1 < v, <m,1 < v, <n}, where v, and v, are the
@ and y coordinates of v respectively. A node that has degree 2 or 3 is called a boundary node. The
four nodes of degree 2 are called corners. A node v is called even if v, +v, =0 (mod 2); otherwise
it is called odd. Then R{m,n) can be considered as a bipartite graph (Vy, V1, E), where Vp(V}) is the
set of even (odd) nodes, V(R(m,n)) = V5 U V; and either {Vo| = [Vi]| or Vo] = |V4] + 1. We can also
consider the nodes of the graph as colored by two colors. All nodes in V; are colored white and all
nodes in Vj are colored black. Furthermore, R(m,n) is called even (odd) if m x n is even (odd). In
the sequel with the term grid graph we shall denote a rectangular grid graph.

The model used in this paper is the PRAM model of computation where each processor may
have access to a shared-memory {or to its local memory) and may execute simple word and bit
operations in constant time (see [12]). By allowing or disallowing simultaneous access by wore thay
one processor to the same memory location, we get a lot of vanants of the PRAM model. In this
paper we use the CRCW PRAM (which allows simultaneous access to the same memory location for
read or write purposes by more than one processor) and the EREW PRAM (which does not allow
simultaneous access to the same memory location by more than one processor).

3 The Basic Algorithms

In this section we give optimal algorithms, (i) for the 2-coloring of a tree {and thus an optimal
algorithm for finding a MIS, a MDS, and a MC of a tree), and (ii) for the GLR problem and the
prefix computation problem on graphs. All the algorithms in this section are based on the Euler tour
technique of [11] and especially on its optimal parallel version [10].

The Euler tour technique provides an easy way to compute simple tree functions as pre- and
post-order numbering of nodes in a tree, the level and the number of descedants of each node, etc.
The idea is to reduce the computation of these functions to weighted list ranking. Because of the
EREW model the tree must be ordered. (That is, we have to know the relative order of the subtrees
of a node, see e.g [7] page 306.} The tree may be rooted or unrooted. We briefly describe here the
Euler tour technique for the unrooted case. (The rooted case is similar.) Given an unrooted tree T
we can convert it into an Eulerian digraph Tz as follows: replace each edge {u,v} with two directed
arcs (u,v) and (v,u). (We assume also that a pointer is created from each (u, v) to its reversal (v,u).)
Then in O(1) time with n processors we can find an Euler tour in T as follows. The Euler tour is
represented into a vector E, where Ve € Ty, E(e) will have the succesor edge of e in the tour. For

-each edge (a,b) € T, its next edge in E is the edge next to its reversal (b, a) in the adjacency list of
b. (The adjacency lists in Tg can be easily obtained since T is ordered.) If (b, a) is the last edge in the
adjacency list, then its next edge will be the first edge of the adjacency list. We pick any edge (v,)
to be the first edge of the Euler tour {and this implies that v is the root of T'). Then F represents
a depth-first search of T starting at u. Now, we can use list ranking to determine the parent-child

relationship as well as to compute the tree functions. (We make the correction E(w,u) := null
where w is the last child of the root u.} To establish the parent-child relationship we have only to
observe that each undirected edge {«,b} appears twice in E (once as {a,b) and once as (b,a)). I
{a,b) preceeds {b, ¢} then « is the father of b. Otherwise b is the father of a.

We can compute, for example, the functions preorder(v) and level(v) for each vertex v € T if we
employ the optimal list ranking algorithm of Cole and Vishkin [1]: (i) with weights (w,) 1 for the
forward arcs of Tg and 0 for the backward arcs {towards the root), for the preorder function, and
(il) with weights (w;) 1 for the forward arcs and —1 for the backward ones, for the level function.
Then, preorder(z) = rank,(y,z) + 1 and level(z) = rank(y, z) where rank, (rank;) are subject to
the weights w, (w;). Thus we have the following.

Lemma 1 The preorder number and the level of each vertex of a tree can be computed optimally in
O(logn) time using n/logn processors in the EREW PRAM model of computation.

3.1 Coloring Trees

Assume that we are given a tree and the colors C = {e1, c3}. The outline of the 2-coloring algorithn
is the following:

Algorithm 2-Color-Tree

begin

(1) Compute level numbers, for each node in the tree (using the Euler tour technique)

{2) For each node v, color odd level nodes with one color and even level nodes with
the other

end

Theorem 1 The algorithm 2-Color-Tree provides a valid 2-coloving of u tree in O(logn) tine using
n/logn processors in the EREW PRAM model of computation.

Proof: The time and processor bounds follow from Lemma 1, since step 2 of the algorithm, imple-
wnented with n processors in O(1) time, can be easily simulated to run in O{log n) time using n/logn
processors. The validity of the coloring is obvious. &

Corollary 1 A MIS of « tree can be found in O(logn) time using n/logn processors on an EREW
PRAM.

Corollary 2 A MDS of a tree can be found in O(logn) time using n/ log n processors on an EREW
PRAM.

The algorithm for 2-coloring a tree T' can be extended (in the obvious way) to maximally color
any tree. Thus we have the following.

Corollary 3 A mazimal coloring of a tree can be computed in O(logn) time using n/logn processors
in an EREW PRAM.

The coloring algorithms presented in this section work also on any forest F'. We create a supernode
called super-root and connect each root ry,rq, ..., 7, of the trees of the forest to this node. {We assume
that the roots are connected by a linked list.) Then, we apply the algorithms with the modification
that the edges (r;, super — root) and their reversals have zero (0) initial weights in the list ranking
algorithm. Thus, we have proved the following:

Theorem 2 Let F be a forest, having a total of n nodes. Then simple tree functions as well as
a maxvimal coloring of F can be computed in time O(logn) using n/logn processors in the EREW
PRAM model of computation.

3.2 The GLR algorithm

The algorithm for the GLR problem is also based on the Euler tour technique. First, recall the
definition of the GLR problem. The & linked lists can be thought of as k trees of special kind (long
chains). The edges of such a tree are directed towards the unique leaf of the tree. As we saw, it is
very easy to convert each tree into an Eulerian digraph. Furthermore, the roots (heads of the lists)
are connected by a linked list (recall the array H). Hence, it is like having a forest of & trees with
a total of n nodes. Therefore, theorem 2 applies. The rank of each element {of the k& lists} as well
as its membership relation can be computed as follows. We assume that the elements are refered
now by their preorder numbers, and that each element v has two fields: rank(v) (for keeping its
rank in the list) and head(v) (where the pointer to the head of its list is stored). Then, in 051%
time every processor associated with the node v executes the following: (1} rank(v) = level(v); (2
head(v) = preorder(v) — level(v) + 1.

Remark. Although the Euler tour technique needs (in general) O(n?) space for the computation
of the pointers between the reversal edges, here we can create these pointers using only O(r) space.
This is because the trees are of a special kind (long chains).

Theorem 3 The general list ranking problem can be solved in O(log n) time using nflogn processors
on an EREW PRAM.

Proof: Follows from the above discussion and by theorem 2. N
The above theorem has an immediate application to the prefix computation problem on graphs
which is often encountered as a subroutine in many graph algorithms.

Theorem 4 Given a graph G with n nodes and m edges in its adjacency list representation, we can
perform any parallel prefiz computation on the elements of the adjacency lists of G in Ologn) time
using m/logn processors on an EREW PRAM.

Proof: From theorem 3, we can find {for every element of the adjacency lists) the rank and the head
of the list {to which it belongs) in O(logn) time using m/logn processors. Having this information
we can convert the lists into arrays in O(1) time using m processors (each element knows the array
as well as its position in it). Now, we have n arrays, each of length m;, 0 < m; < n,1 <i < n
and 7% m; = m. Any parallel prefix computation algorithm can be performed (in such an array)
in Oflogm,) time using m;/logm; processors on an KEREW PRAM. But the same algorithm can
be performed in O{logn) (greater) time using m./logn {fewer) processors by simulation. Thus, the
prefix computation can he done to all the arrays in time O(logn) using 3%, m./logn = m/logn
processors on an EREW PRAM. K

4 Coloring of Bounded-Degree Graphs

In this section we show how to improve the algorithms presented in [2] for the (A + 1)VC and the
MIS problems in bounded-degree graphs, with the use of our coloring algorithms for trees and thus
achieving optimal speedup. We assume that the maximum degree of any node is A (A is a constant)
and that each node has a unique name (id) between 1 and n. The main idea of our algorithm is
similar to that of {2] for the algorithm Color-Constant-Degree-Graph. The difference is that we do
not usc the pseudo-forest technique. The algorithimn works in two phases. In the first phase a forest is
created and in each iteration we delete its edges from the initial graph G. This phase stops when no
edges remain on G. Then we perform an initial coloring of nodes in G (with one color). In the second
phase we iteratively 2-color the nodes of the current forest and return them to G. At the beginning
of each iteration of the second phase the new edges added make the existing (A +1)-coloring invalid.
For this reason the iteration terminates with an appropriate recoloring of the nodes with a color
different from the colors of its neighbors. The recolorability can be done in parallel since the nodes
having the same color are independent. A more formal description of the algorithm follows:

Algorithm Color-Bounded-Degree-Graph(V, E)

(1) E':=E

(02)i:=0

{03) (* first phase ™)

(64) while £ # § do

(05) for all v € V pardo

(06) find a v € V 1 1d(u) = min{id(w)|[{v,w} € E',1 £ <A}
(07) if id(v) > id(u) then E; := E; U (v,u)
{(08) odpar

{09) B :=E' — E, {* E; are edges of a forest *)
(10 i=e¢41

{11) od

(12) for all v € V pardo (* initial coloring *)
(13) Clv):=1

(14) odpar

{15} (* second phase *)
(18) for i := ¢ — 1 downto 0 do
(17T) €' :=2-Color-Forest(V, E;} (* 2-coloring of the current forest *)

(18) E :=FE+ L

{19) forj:=1toA+1do

(20) Vi=V

(21) for all v € V' pardo

(22) if C(v) =7 and C'(v) = 2 then begin
(23) C(v) = maz{{1,2,...A+ 1} — {C{w)l(v,w) € E'}}
{24) Vo=V - {v}

(25) end

(26) odpar

{27) od

{28) od

Theorem 5 The algorithm Color-Bounded-Degree-Graph provides a valid (A + 1)-coloring of
bounded-degree graph with mazimum degree A in O{log n) time using n/logn processors in the EREW
PRAM model of computation.

Proof: Correctness follows from arguments similar to those of [2]. Here, we prove the claimed time
and processor bounds. The first phase of the algorithm terminates after at most A iterations and
each iteration takes at most. A time {each processor has to find the minimum among & elements).
Thus, the first phase needs n processors and O(1) time. The same time and processor bounds
hold for the initial coloring. The second phase terminates obviously in at most A iterations. Fach
iteration consists of two steps. In the first step we 2-color the current forest in O(logn) time using
n/log n processors on an EREW PRAM. {From the adjacency list representation of the graph we can
construct the appropriate input to our coloring algorithms.) In the second step we have two nested
for-loops. The for-loop of line (19) iterates A + 1 times. The other for-loop of line (22) needs O(A)
time for each iteration because we must find the maximum among at most A 4+ 1 colors. Therefore,
one iteration of the second step needs n processors and O(1) time. Hence, the second step cau be
easily simulated to run in Olog ») time using n/ logn processors, thus achieving the same time and
processor bounds for the second phase. A similar simulation can be applied to the first phase and
the initial coloring phase, too. Notice that there are no read or write conflicts. B

It is easy to find a MIS in a bounded-degree graph, if we have a (A 4 1)-coloring of the graph.
The algorithm works as follows: iterate over all colors, each time taking the nodes of the current
color, adding them to the MIS [and deleting them and all their neighbors from the initial graph,
and continue with the remaining graph. Call the above algorithm Bounded-Degree-MIS.

Corollary 4 The algorithm Bounded-Degree- MIS provides a MIS of a bounded-degree graph in O{log n)
time using n/logn processors in an EREW PRAM.

5 7-Coloring and Maximal Matching in Planar Graphs

In this section we consider the problems of 7-coloring, finding a MIS and a maximal matching in planar
graphs. We show how to improve the algorithms of [2] for the above problems using the algorithms
presented in the previous sections. Especially the optimal solution of the prefix computation problem
on graphs leads to a faster, optimal algorithm for the maximal matching problem. The application
of this solution to the two other problems leads to optimal algorithms that use only O(n) space, but
it does not improve the running time of previously known optimal algorithms for the same problems
(see [3, 4]). We shall give first some technical lemmas.

Lemma 2 In a planar graph, the number of nodes with degree at most 6 is greater than %n

Proof: Suppose in the contrary that the number of nodes with degree at most 6 are < £n. Then
n — % nodes have degree at least 7. Let d; be the degree of the node i. We have that D = ¥, d; >
{n—2)-7 = 6n. But from Euler’s formula D < 6n — 12, a contradiction. Thus the lemma is proved.
B

The algorithm for 7-colorability of planar graphs is based on a procedure, called Planar-LIS, which
finds a large independent set (LIS) of nodes of degree at most 6. The procedure is the following.

Procedure Planar-LIS

begin

(1) Construct a graph G’, induced by the nodes of G with degree at most 6.
(2) I :=Bounded-Degree-MIS(G")

end

Lemma 3 Let I be the independent set produced by the above algorithm. Then |I} > e

Proof: Notice that the application of the Color-Bounded-Degree-Graph algorithm to ' partitions
its nodes into 7 classes. Then the larger class is at least 1]G’|. W

Now, the algorithm for 7-colorability works as follows. If the planar graph G has maximum
degree 6, then call Color-Bounded-Degree-Graph and stop. Otherwise, find a LIS using the Planar-
LIS procedure and delete its nodes from @. Recurse to find a 7-coloring of G — [. Finally, recolor
each node in [to produce a valid 7-coloring. Less informally we write the algorithm as follows:

Algorithm 7-Color-Planar-Graph(G)
begin
(L@ =G T:=0
if Av € &' with deg(v) > 7 then Color-Bounded-Degree-Graph(G')

else begin
I :=Planar-LIS(G")
G =G -1

7-Color-Planar-Graph(G”)

end
(2) color each v € [to produce a valid 7-coloring
end

Theorem 6 The algorithm 7-Color-Planar-Graph provides a valid 7-coloring of a planar graph in
O(log® n) time with n/log* n processors in the EREW PRAM model of computation using O(n) space.

Proof: The correctness of the algorithm can be easily seen. Here we are concerned only with the
resource bounds. Since I is an independent set, the vertices in I can be colored independently. Thus,
step 2 is implemented in O(1) time using n processors. The Planar-LIS procedure runs in Oflogn)
time using n/ log n processors according to corollary 4. In each iteration we must compact the edge
lists, because of the EREW model. Since the compaction is nothing more than an application of
a parallel prefix computation algorithm, it can be done in O(logn) time using n/logn processors
{according to theorem 4). Obviously the edge-list compaction keeps the space linear. There are
O(log n) iterations since procedure Planar-LIS produces a LIS of @(n) size. Therefore, the whole
algorithm runs in O(log? n} time using n/ logn processors. However, observe that at each iteration
the computation is reduced by a constant factor. In the first iteration the computation is n, in the
second %n (at most, due to Lemmas 2 and 3), etc. Generally, the #-th iteration has computation

£ - n where ¢ < % and can be implemented by €' - n/loge® - n processors in O(log ¢! - n) time. But

notice that the i-th iteration can also be implemented in O(e' - log? n} (greater) time, using n/log®n

{fewer) processors {by simulation). This results in a total time of Them O(et - log? n) = O(log® n) for

the whole algorithm, but now using only n/log® n processors. B
We can easily find & MIS in a planar graph after a 7-coloring, in the same way as we did in
bounded-degree graphs. Tlerefore, we have the following corollary.

Corollary 5 A MIS in a planar graph can be computed in O(log® n) time by an EREW PRAM with
n/log? n processors using linear space.

Now we show how to improve the algorithm of [2] to find a maximal matching in a planar graph.
The main idea of our algorithm is almost the same, but we use a forest (instead of a pseudo-forest)
for the building of a flat forest of a graph. An outline of the algorithm follows.

Algorithm MM-Planar-Graph

begin

G =G

repeat
(1) find « flat forest of G
(2) arvbitrarily add one edge from each tree in the forest to M
B =G-M

until G' =9

end

Lemma 4 A flat forest of a planar graph G can be constructed in O(logn) time using nflogn
processors in an EREW PRAM.

Proof: To find a flat forest in a planar graph G = (V, E) we proceed as follows. First, we find
a forest P = (V,£') of G in the same way as we did in the first phase of the algorithm Color-
Bouned-Degree-Graph. Note that every node v € V has to select an edge {v,u} and to direct it
outwards if the following are satisfied: (1) id(u) is the smallest id among the id’s of the neighbors
of v, and (2) id(v) > id(u). Thus every node v must know the element with the smallest id in its
adjacency list. To find that element is nothing more than an application of a parallel prefix min
algorithm to the adjacency list of v. According to theorem 4, this can be done in O(logn) time
using nf logn processors on an EREW PRAM. Thus, the forest P can be coustructed in the same
time and processor bounds in the EREW PRAM model. Second, find a MIS I of P. The flat forest
F = (V, E"} is then constructed as follows:

1. Vogl, B":=FE'U(v,w), weland (v,w)€ F

2. V node v € I that has no adjacent edges in E” but some adjacent edges in E', choose one
adjacent edge in B and add it to £

The graph F induced by the edges in E” is almost a flat forest since each tree has height at most 2.
We can split those trees of height 2 to height 1 trees, to get a flat forest. All operations take O(1)
time using n processors, except for the construction of P and the MIS which need G(logn) time with

n/logn processors. Thus, we can find a flat forest in O(logn) time using n/log n processors in an
EREW PRAM. K

Theorem 7 The algorithm MM-Planar-Graph produces ¢ mazimal maiching of o planar greph in
O(log? n) time with n/ log® n processors in the EREW PRAM model of computation using O(n) space.

Proof: Each iteration is dominated by the finding of a flat forest. Operations (2} and {3) can be run
in O(1) time using n processors. Again, after operation (3) we must compact the edge lists. Thus
each iteration takes O(log n) time using n/ logn processors. There are O(log n} iterations since a flat
forest has at least n/2 edges (see [2]). Therefore, the algorithm runs in O{log? ») time using n/ log n
processors. Again, by observing that the computation reduces by a constant factor (of at least 1/2)
after each iteration and by applying the same simulation as in the proof of theorem 6 (but now with
£ < 1/2), we have the desired rescurce bounds. B

6 Algorithms for Grid Graphs

6.1 A Basic Algorithm and its Applications

Assume that a grid graph R{m,n) is given as a set of adjacency lists (R = |V(R(m,n})}). In
sequential computation it is straightforward to convert the adjacency list representation into another
one in which every node v is represented by its z and y coordinates in the plane. We call such a
representation the zy representation of a grid graph. The conversion takes time linear on the size
of the graph. The 2y representation is very useful in the solution of many problems on grid graphs
(see e.g. [6]), and it also is the key to find a maximum independent set, a waximum matching and
a Hamiltonian path.

However, the parallel conversion to the wy representation is not obvious. We shall give an optimal
parallel algorithm for this problem. The algorithm depends on the complexity of finding the embed-
ding of a planar graph. Two algorithms are known for finding the embedding. The most recent one
[9] 15 optimal for the CRCW PRAM and runs in O(logn) time with n/logn processors. (n is the
size of the graph.) The other one [8] runs in O(log? n) time with n processors on a CREW PRAM.
Note that only the algorithm for finding the embedding prevents our algorithm to be optimal on an
EREW PRAM in O(logn) time.

In the sequel we assume that our input is an embedded grid graph, i.e. each node is associated with
a cyclic list of its neighbors in clockwise order. The algorithm for converting the above representation
into a 2y one is the following (see also fig.1):

Algorithm XY

begin

(1) Construct a linked list of the boundary nodes and find their ranks (assuming as starting point the
node a). This can be done as follows. Let z be any of the boundary nodes {a, b, ¢, d}. Temporarily we
add one pseudo-edge (dashed line} to z and update the embedding (see fig.1}. (This can be done in
O(1) time since the maximum degree in a grid graph is 4.) Now, consider the induced subgraph Gj of
nodes having degree < 3. Then G, contains only the boundary nodes. We first construct a list of edges
as follows. Let uq, vz, ug be boundary nodes (see fig.1). Then next{uy, ug) = nexte{ug, ur) = (us, ug),
where neat, refers to the next edge in the embedding. Note that the constructed list is'a clockwise
one. We can not have a similar counterclockwise list because e.g. neat(us, us) = neat (us, us) = null

10

(since the edge (usz,w) does not exist). The list can be broken by setting next(t, a) = null. Now, we
are ready to execute the optimal parallel algorithm of [1] to find the rank (distance from a) of each
boundary node. Obviously rank{v) = rank(u,v).

2) Associate a processor to each boundary node v. Then execute the following 4 steps sequentially.
2.1} if rank(v) € [rank(a},rank(b)] then (v, v,} = (1,rank(v) + 1)

(2.2) if rank(v) € {rank(b), rank(c)] then (v, v,) = (rank(v) — rank(b) + 1, b,)

(2.3) if rank(v) € (rank(c), rank(d)] then (v,,v,) = (cz, rank(d) — rank{v) + 1)

(2.4) if rank(v) € (rank(a),rank(d)) then (v,,v,) = (rank(t) — rank{v) +2,1)

(3) Construct lists of nodes as follows. Associate a processor with node v. Let u be an adjacent node
of v. Each processor executes the following:
if deg(u) = 4 then next(v,u) = necte(neat(u,v)) else next(v,u) = null.

{4) Consider only the lists whose head h satisfies: ran/c{h% € (rank{a),rank(bh)) or rank(h) €
(rank(a),rank(d)). Apply the GLR algorithm of section 8.2. If a node v belongs to a list such that
rank(h) € (rank{a), rank(h)) then (v, v,) = (rank(v)+1, hy). I rank(h) € (rank(a), rank(d)) then
{0y, vy) = (A, rank(v) +1).

end

Theorem 8 The xy representation of a [vectangular) grid graph can be computed in Oflog R) time
with BJlog R processors on ¢ CRCW PRAM.

Proof: From the above discussion, theorem 3 and the algorithm of [9] for finding the embedding of
a planar graph. ¥

Corollary 6 Given the embedding of a (rectangular) grid graph, we can find the zy representation
in O(log R) time with R[log R processors on an EREW PRAM.

The XY algorithm has immediate applications to the problems of maximum independent set,
maximum matching and Hamiltonian eycle on grid graphs.

The maximum independent set of a grid graph is the set of even (white) nodes {(Vg). Given the
2y representation this can be computed mn O(1) time.

For the maximum matching we have two cases. First, assoclate a processor with every even node
V.
Case 1: n or m is even. Suppose that m is even. Then each processor {associated with an even node
v) executes the following:

ifo,=1 (mod2) then M := MU {v,u}, where v, = v, +1
else M := M U {v,u}, where u, = v, — 1

Case 2: both n and m are odd. Each processor associated with an even node v such that v, <m—1
performs the same as in case 1. If v, = m, then M := M U {v,u} where u is odd and uy = v, 4+ 1.

In a similar way we can find a Hamiltonian cycle (HC) (starting e.g. at some node z € {a, b,c,d}).
For there exists a Hamiltonian cycle one dimension (r or m) must be even. The cycle can be easily
found in O(1) time as fig.2 shows.

Corollary 7 A mazimum independent set, a mazimum maiching and a Hamillonian cycle in o
(rectangular) grid graph can be computed: (1) in O(log R) time with R/ log R processors on o CRCW
PRAM, (i} in O(log R) time with R/log R processors on_an EREW PRAM, if the embedding is
given, and (iii) in O(1) time (with R processors) on an EREW PRAM, if the xy representation is
provided.

6.2 Hamiltonian Paths on Grid Graphs

The problem of finding a Hamiltonian path on a grid graph was first studied in [6]. In that paper
([6]) necessary and sufficient conditions for the existence of a Hamiltonian path are provided, as well

11

as an algorithm is given which finds the Hamiltonian path between any two nodes (if it exists) in
O(R) time. However, the algorithm of [6] does not seem to be easily parallelizable.

Although we adopt some main concepts of the study of the problem from [6] (e.g. definitions,
conditions, etc), we present here a different algorithm for finding a Hamiltonian path between any
two nodes (if it exists) on a grid graph. Our algorithm is easy and amenable to parallelization.

First recall some definitions from [8]. A Hamiltonian path problem HP(R(m,n),s,t) between
two nodes s,¢ is called color compatible if (a) R{m,n) is even and s,t have different colors, or (b)
R{m,n) is odd and both s,t are white. We say that HP(G,s,t) is forbidden if one of the following
is satisfied:

1. G is of the form R{m,1) and either s or ¢ is not a corner.

2. G is of the form R(m,2) and {s,t} is not a boundary edge.

3. HP(G,s,t) is isomorphic to HP(G', s, t') which satisfies the following:
(a) G' = R(m,3) where m is even.
(b} & is colored differently from ¢t and the left corners of G'.
(¢) s, <t,—1,0r (s, =2and s, <£).

A Hamiltonian path problem is called acceptable if it is color compatible and not forbidden. The
following theorem has been proved in [6].

Theorem 9 Accepiability is a necessary and sufficient condition for HP(R(m,n),s,t) to have a
solution.

In the sequel, without loss of generality we assume that s, < ¢, and s, > {,. The main idea
of our algorithm for finding a Hamiltonian path in a grid graph is the following. (We assume that
HP(R(m,n),s,t) 15 acceptable.) Reduce the initial problem to HP(R(m1,n1).s,t) such that one of
the following is satisfied:

(Plys. €2, 8y 2m —1,t, 2my—1land t, <2
(P2) s, <3,5, 2n5 ~2,t, > my — 2, t, <3, and either (ny = 5 and m; is even) or (ny is even and
my = 5).

Split HP{R(m;,n,),s,t) into two subproblems HP(S, s,11) and HP(T, s1,t) where {#;, 51} will be an
edge of HP(R(m,n),s,t). Solve these subproblems and merge their solution using the edge {t;,s;}.

The reduction of the initial problem consists of the following four steps (see fig.3).

{1} Consider the subgraph R; of R such that V(R,) = {v : v, < 24 where 24 < s, ~ 1 and =z is the
maximum value such that R; has a HC and HP(R — Ry, s,t) is acceptable}. Let R = R — R,.

{2) Consider the subgraph R, of B’ such that V(R,) = {v : v, > zo where 2y >, + 1 and zg is the
minimum value such that R; has a HC and HP(R' — Ry, s,t) is acceptable}. Let ' = R’ — R,.

(3) Consider the subgraph R3 of R such that V{Rs) = {v : v, > yo where yo > s, + 1 and y is the
minimum value such that Rs has a HC and HP(R' — Ra, s,t) is acceptable}. Let B = R’ — R,.

{4) Consider the subgraph Ry of R’ such that V{R,) = {v: v, < yo where yg < ¢, — 1 and yo is the
maximum value such that Ry has a HC and HP(R' — Ry, s,t) is acceptable}. Let R = R’ ~ Ry with
dimensions mq, ny.

Note that some R;, 1 < ¢ < 4 may be empty. One can easily see that HP(R' s,t) satisfies
{P1) or {P2). The HC in each R, can be found as it was explained in the previous section. Hence
it remains to show how HP(R'{mq,n:),s,t) can be found. (For if we find the Hamiltonian path
HP(R(my,n,),s,t), we can merge it with the HC of each R; as fig.4 shows.)

Suppose that HP{V,s,t) satisfies (P1). We have four cases depending on the parity of my,ny
{odd or even).

Case P1.1: both my,ny are even. We split HP(R'(my,m),s,t) into HP(S,s,t) and HP(T, s;,1)
where {21,351} is an edge of HP(R(m,n),s,). The subgraph S of B is defined by V(5) = {v : v, <

12

my — 2}. Then T' = R’ — S. The edge {t;, s} is determined as follows.
{a) if (52, 5) € {(1,m1),(2,m1 — 1)} then (t1,,8,) = (m1 — 2,m) and (s1,,51,) = (m1 — L,m)
(b) if (35,8,) € {(2,n1),(1,ny — 1)} then (41,,11,) = (m1 —2,n; — 1) and (5y,,61,) = (mq —1,ny — 1)
That is, each of HP(S,s,t;) and HP(T, s1,1) must be color compatible.
Case P1.2: both my,n; are odd. We split H P(R'(mq,n,1),s,t) into two subproblems (as above) such
that V(S) = {wv:v, <my; —3} and T = B’ — S. (We assume that m; > 3. If my = 3, there is no
split. We shall see the solution for this case later.) Again both HP(S,s,t;) and HP(T, s;,1) must
be color compatible, i.e. since (s;,s,) € {(1,n3),(2,ny — 1)} we have that (#1,,1;,) = (my — 3,n1)
and {Slx')sly) = (m1 - 2, nl).
The other two cases are similar to the first case.

Lemma 5 Both HP(S,s,t1) and HP(T, $1,t) are acceptable.

Proof: Observe that they are color compatible by construction. Consider the subgraph 57 of S
defined by either V($)) = {v : 1 < v, < my —2and 1 < v, < ny — 2} (case P1.1}, or by
ViSi)={v:1<v,<my—3and 1 <v, <ny—2} (case P1.2). Let 55 = 5§ — 5; (see fig.5). From
the construction of S we have that either my — 2 (my — 3) or ny or hoth are even. Therefore the
subgraph $; has a HC. The subgraph S is of the form Sp(my — 2,2) {or Sa{m; — 3,2)) and there is
no case such that {s,#;} is a nonboundary edge. Thus HP(S,, s,?;) is not forbidden.

Also HP(T(c,ny),81,t) (where ¢ = 2 or ¢ = 3) is not forbidden since {sy,t} is not a nonboundary
edge (¢ = 2) or n; is odd (¢ = 3). Thus the lemma is proved. &

From the above it is obvious that in order to find a solution for HP(R/(m1,n1),s,t) it is enough
to find a HC in $; and solve HP(S,,s,t1) and HP(T,s,t), and merge the solutions. Finding a
solution for H P(Sy,s,t1) is the same as finding a solution for HP(R(m,2),s,1,) where s, < 2 and
t;, = m. For a solution to exist it is enough for s,1; to be differently colored. Then the path is
constructed easily {one case is shown in fig.6.a). The solution of HP(T(c,n1), 51,1} where 5;, =1
and ¢, < 2, is similar to the above if ¢ = 2. In the case where ¢ = 3 a Hamiltonian path can be also
easily constructed. {Fig.6.b shows one case.)

Suppose now that HP{R',s,t) satisfies (P2). In this case we provide the solution for ny = 5
aud iy is even. {The other case is similar.) If (s;,3,) € {{1,5),(1,4),(2,5),(2,4)} and (t,,t,) €
{(my— 1, 1), (my ~ 1,2), {my, 1), (my,2)}, then we follow case (P1). Hence it remains to examine the
cases where s, = 3 and either ¢, = 2 or ¢, = 3. The solutions can be easily obtained and illustrated
in fig.7-8.

The cases where s, = 2 and t, = 3 are similar.

Theorem 10 A Hamiltonian path (if it exists) between any two nodes of a (rectangular) grid graph
can be computed: (i) in O(log R) time with R/ log R processors on a CRCW PRAM, (i) in Oflog R)
time with R/ log R processors on an EREW PRAM, if the embedding is given, and (1) in O(1) time
(with R processors) on an EREW PRAM, if the xy representation is provided.

Proof: Follows from the above discussion. K

7 Acknowledgements

We are greatful to Lefteris Kirousis for his essential help in many technical discussions and to Christos
Papadimitriou for his careful reading of a preliminary version of this paper and his encouragment.

13

References

[1] R.Cole, U.Viskin, “Approximate and Exact Parallel Scheduling with applications to list, tree
and graph problems”, Proc. 27th IEEE Symp. on FOCS, 1986, pp. 478-491.

[2] A.Goldberg, S.Plotkin, G.Shannon, “Parallel Symmetry-Breaking in Sparse Graphs”, Proc. of
the ACM 19th STOC (Symp. on Theory of Computing}, 1987, pp. 315-324.

(3] T.Hagerup, “Parallel Algorithms on Planar Graphs”, Ph.D. Thesis, University of Saarlandes,
Saarbriicken, 1988.

[4} T.Hagerup, M.Chrobak, K.Diks, “Parallel 5-coloring of planar graphs”, Proc. of the 14th ICALP,
pp. 304-313, LNCS, Vol. 267, Springer-Verlag.

[3] H.Jung, K.Mehlhorn, “Parallel Algorithms for Computing Maximal Independent Sets in Trees
and for Updating Minimum Spanning Trees”, Information Processing Letters 27, pp. 227-236,
April 1988.

[6] A.ltai, C.H.Papadimitriou, J.L. Szwarcfiter, “Hamilton Paths in Grid Graphs”, SIAM Jour. on
Comp., Vol.11, No.4, November 1982, pp.676-686.

[7] D.E.Knuth, “The Art of Computer Programming”, Vol.1, Fundamental Algorithms, 2nd ed.
Addison-Wesley, 1973.

(8] P.Klein, J.H.Reif, “An Efficient Parallel Algorithm for Planarity”, Proc. 27th IEEE Symp. on
FOCS, 1986, pp.465-477.

{9] V.Ramachandran, J.H.Reif, “An Optimal Parallel Algorithm for Graph Planarity”, Proc. 30th
IEEE Symp. on FOCS, 1989, pp.282-287.

{16] B.Schieber, U.Viskin, “On Finding Lowest Common Ancestors: Simplification and Paralleliza-
tion”, Proc. of 3rd Aegean Workshop on Computing (AWOC 88), Corfu, Greece, June/July
1988, pp. 111-123, LNCS 319, ed. J.H Reif, Spriger-Verlag.

[11] R.E.Tarjan, U.Vishkin, “An Efficient Parallel Biconnectivity Algorithm”, SIAM Jour. on Comp.,
Vol.14, No.4, November 1985, pp.862-874.

{12] J.C.Wyllie, “The Complexity of Parallel Computation”, Ph.D. Thesis, TR 79-387, Dept of
Computer Science, Cornell University, Ithaca, NY, 1979.

14

b
N\
N
\
Uz
Ug
Uy
7
Fd
7
Cd
a t

d

Figure 1: A rectangular grid graph. (a.,a,) = (1,1)

b O
* 0]
s]
L] ”

a

C * f
.

Figure 2: A Hamiltonian cycle

%

p

15

Ry

Rs

Ry

R,

o——o—0 o
L L]
]

e O

Figure 4: Merging of a Hamiltonian cycle with a Hamiltonian path

Figure 3: Reduction

Ot

S2

Figure 5: B'(mq,n4)

L)

16

S

Figure 7: Case P2.1. 3, =3,1t, =3

17

Figure 8: Case P2.2. 5, = 3, ¢, = 2. (One case. The other cases are similar.)

