
Optimal Parallel Algorithms for

Grammati E. Pantziou t Paul G. Spirakis 1,2

Sparse Graphs*

Christos D. Zaroliagis 1

(1) Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
Computer Sc and Eng Dept, University of Patras, Greece

(2) Courant Insti tute of Math. Sciences, NYU, USA

Abs t rac t

We present here techniques which exhibit optimM processor-time tradeoff for many im-
portant problems on sparse graphs. These problems include: maximal coloring and maximal
independent set in trees and bounded degree graphs; 7-colora,bility, maximal independent set
and maximal matching in planar graphs; maximum independent set, ma~ximum matching and
Hamiltonian path on rectangular grid graphs. Our techniques are based on the general list rank-
ing problem: given k lists having a total of n elements, find for each element the membership
relation and the rank of the element in its list. We solve this problem in O(logn) time with
n/log n processors on an EREW PRAM. For trees and bounded degree graphs our methods
need O(log n) time and n~ log n processors on an EREW PRAM. t~br planar graphs they need
O(log 2 n) time and n/ log ~ n processors on at1 EREW PRAM using linear space. For the case of
rectangular grid graphs they need O(log n) time with n~ log n processors on a CRCW PRAM,
or on an EREW PRAM (if the embedding is given).

1 I n t r o d u c t i o n

In graph theory, dealing with problems on sparse graphs is of particular importance. The rea~so~l is
that sparse graphs have nice structural properties that help in the design of more efficient algorithms
for a lot of problems. Furthermore, the solution of a problem on sparse g~'aphs is often used as a
subroutine in many Mgorithms, thus improving their efficiency. Some classes d sparse graphs of
particular interest are: trees, bounded-degree graphs, planar graphs and rectangular grid graphs.

In this paper we deal with graph problems concerning the above classes. More precisely, we
examine the pa.rallel complexity of the following problems.

• For trees: find a maximal independent set (i.e. 2-colorability), a maximal dividing set and a
maximal coloring.

• For bounded-degree graphs, with maximum degree A: find a (A + 1)-coloring, and a maximal
independent set.

• For planar graphs: find a 7-coloring, a maximal independent set and a maximal matching.

*This work was partiMly supported by the EEC ESPRIT Basic Research Action No. 3075 (ALCOM) and by the'
Ministry of Industry, Energy and ~'echnology of Greece.

• For rectangular grid graphs: find a maximum independent set, a maximum matching and a
Hamiltonian path.

The heart of our approach is (a) the guler tour technique on trees [11] and especially its optimal
parallel version [10] (using the optimal list ranking algorithm of [i]), and (b) an optimal solution,
that we give, to a fundamental problem in parallel computation. We call it the general list rankir~g
(GLR) problem: given k linked lists ll, t2, ..., lk, such that ~)=1 iliI = n, find for each element the
membership relation (i.e. to which list it belongs) as well as the rank of the element in its list. We
assume that the input is given in an array L[1 :n], and L(i) (for some element i) is the pointer to
the next element in the list of i. We also assume that the heads of the lists constitute a separate
linked list stored in an array HI1 : hi. (This is a reasonable hypothesis, if someone assumes e.g. the
adjacency list representation of a graph.)

We provide here optimal parallel algorithms for alI the above mentioned problems on the CRCW
or EREW PRAM model of computation, More precisely, the following results have been achieved ilt
the gREW PRAM model: (i) O(log n)-time, n / log n-processor algorithms for the GLR problem, anti
for the problems on trees and bounded-degree graphs mentioned above. (ii) O(log 2 n)-time, n~ log 2 n-
processor algorithms for the problems on planar graphs. The GLR algorithm has an immediate (arid
very useful) application to the prefix computation problem on graphs: given a graph G with n vertices
and m edges in its adjacency list representation, perforln any parallel prefix computation on the
elements of the adjacency lists of G optimally in O(tog n) time. The optimat solution of the above
prefix computation problem leads to optimal parallel algorithms on planar graphs. The new result
derived is an optimal parallel algorithm for the maximal matching problem.. We believe that the
GLR algorithm has many applications to a variety of NC algorithms towards optimal speedup.

In the CRCW PRAM model we give O(iog n)-time, n~ log n-processor algorithms for the above
problems on rectangular grid graphs. We must note here that the results on grid graphs depend only
on the complexity of finding the embedding. If the embedding is also provided by the input, then
our algorithms are optimal in the s~me resource bounds on an gREW PRAM.

Our results for trees and bounded-degree graphs improve M1 previous ones for the same problems.
The 2-colorability algorithm has a twofold purpose: First~ it answers the open problem posed by [2],
by giving an optimal solution; and second, it solves the problem in a way that is especially noteworthy
fbr its simplicity ([5] found an algorithm for the above problem in the same time and processor bounds
but on a CREW PRAM). Furthermore, the 2-colorability algorithm can be extended to maximally
color any tree (or forest) within the same resource bounds. The best known algorithms for the above
mentioned problems in bounded-degree graphs have O(log* n) running time using a linear nunrber of
processors [2]. For the MIS problem in bounded-degree graphs, [5] and aJso [3] independently of us:
found an optimal algorithm which runs in O(Iog n) time using n~ tog'n processors. Our algorithm is
simpler compared with that of [5]. The best known algorithm for the maximal matching problem on
planar graphs was due to [2], and runs in O(log 2 n) time using a linear number of processors on an
gREW PRAM. The application of our optimal prefix computation technique to the 7-coloring and
the maximal independent set problems achieves the same resource bounds (as maximal matching)
using linear space. It must be mentioned here that faster (and optimal with respect to time-processor
tradeoff) NC algorithms for these problems have been previously found [3, 4], but they use O(7~ 2)
space. Thus in the above sense our algorithms are spaee-effident in the same nmdel of computatio~
(gREw PaAM).

The results for rectangular grid grapl!s ea'e completely new. We are not aware of any other parallel
algorithm for the same problems on grid graphs.

2 Def in i t ions and N o t a t i o n
Throughout this paper we employ simple, undirected graphs G = (IqE) with n nodes. A coloring
of a graph G is an integer function C : V ~ N. A coloring is 'valid if no two adjacent nodes hav~,
been assigned the same color. Given G = (V,E) and a coloring C : V + C,,, we say that C is a
maximal coloring (MC) of G if C is valid, and if v is not assigned a color then each color in C~ must
be a~signed to at least one neighbor of v. A subset of nodes I C V is called an independent set if

Vv, u E I : {v, u} ~ E. A maximal independent set (MIS) is an independent set I such that /3I', I '
is an independent set and I ' D I . An independent set is called maxi'mum if it has the maximum
cardinality among the all possible MIS in G. A MIS I in a tree T is called a maximal dividing set
(MDS) if the removal of the nodes of I dissects T into trees of O(1) height. Note that the MIS
problem is a special case of the MC problem, where C~ = {Cl}. The set of vertices colored c~ is a
MIS. The (A + 1) vertex coloring problem ((A + 1)VC) is another special case of the Me problem
where C~ : {cl, c2, ..., can+l}.

A fiat forest of a graph G = (V, E) is a forest T' = (V, E') such that E' C E and each tree in F has
height at most 1. Any zero-degree node in G is a zero-degree node in F , too. Given an undirected
graph G = (V, E) , a matching is a set of edges M C E in which no two edges share the same node. A
matching is maximal if it is not properly contained in any other matching. A matching is maximum
if it has the maximum cardinality among the all possible maximal matchings of G. A Itamilto'nia~
path between two nodes s , t of a graph G is a simple path starting on s, visiting all the remaining
nodes exactly once, and ending to t.

A grid graph is a finite node-induced subgraph of the infinite grid G °°. The node set of G °° consists
of all points of the plane with integer coordinates. Two nodes are connected iff their Euc[idem~
distance is equal to 1. A grid graph is completely specified by its node set. A grid graph R('m, n) is
called reetangularifits node set V(R(m,n)) = {v: 1 < 'v~ < m, 1 _< vy _< n}, where v~ and v~ are the
x and y coordinates of v respectively. A node that has degree 2 or 3 is called a boundary node. The
tbur nodes of degree 2 are called corners. A node v is called even if v= + v u - 0 (mod 2); otherwise
it is called odd. Then R(m, n) can be considered as a bipartite graph (V0, I/1, E), where V0(V1) is the
set of even (odd) nodes, V(R(m,n)) = 14 O V1 and either iV0[= IVli or tV0l = t%1 + 1. We can also
consider the nodes of the graph as colored by tx~o,,, cotors. AII nodes in t/0 are colored white and all
nodes in V1 are colored black. Furthermore, R(m, n) is called even (odd) if m x n is even (odd). In
the sequel with the term grid graph we shall denote a rectangular grid graph.

The model used in this paper is the PRAM model of computation where each processor may
have access to a shared-memory (or to its local memory) and may execute simple word and bit
operations in constant time (see [12]). By allowing or disallowing simultaneous access by more ~.1~,~
one processor to the same memory location, we get a lot of variants of the PRAM model. In this
paper we use the CRCW PRAM (which allows simultaneous access to the same memory location for
read or write purposes by more than one processor) and the EREW PRAM (which does not allow
simultaneous access to the same memory location by more than one processor).

3 The Basic Algor i thms

In this section we give optimal Mgorithms, (i) for the 2-coloring of a tree (and thus an optimal
algorithm for finding a MIS, a MDS, and a MC of a tree), and (ii) for the GLR problem and the
prefix computation problem on graphs. All the algorithms in this section are based on the Euler tour
technique of [11] and especially on its optimal parallel version [10].

The Euler tour technique provides an easy way to compute simple tree functions as pre- and
post-order numbering of nodes in a tree, the level and the number of descedants of each node, etc.
The idea is to reduce the computat ion of these functions to weighted list ranking. Because of the
EREW model the tree must be ordered. (That is, we have to know the relative order of the subtrees
of a node, see e.g [7] page 306.) The tree may be rooted or unrooted. We briefly describe here the
Euler tour technique for the unrooted case. (The rooted case is similar.) Given an unrooted tree T,
we can convert it into an Eulerian digraph TE as follows: replace each edge {u, v} with two directed
arcs (u, v) and (v, u). (We assume also that a pointer is created fl'om each (u, v) to its reversal (v, u).)
Then in O(1) time with n processors we can find an Euler tour in TE as follows. The Euler tour is
represented into a vector E, where Ve E To., E(e) will have the succesor edge of e in the tour. For
each edge (a, b) C 5f), its next edge in E is the edge next to its reversal (b, a) in the adjacency lis" of
b. (The adjacency lists in TE can be easily obtained since T is ordered.) If (b, a) is the last edg~e in the
adjacency list, then its next edge will be the first edge of the adjacency tist. We pick any edge (u,v)
to be the first edge of the Euler tour (and this implies that u is the root of T). Then E represents
a depth-first search of T s~,arting at u. Now, we can use list ranking to determine the parent<hild

relationship as well as to compute the tree functions. (We make the correction E(w,u) := null
where w is the last child of the root u.) To establish the parent-child relationship we have only to
observe that each undirected edge {a, b} appears twice in E (once as (a, b) and once as (b, a)). If
(a, b) preeeeds (b, a) then a is the father of b. Otherwise b is the father of a.

We can compute, for example, the functions preorder(v) and level(v) for each vertex v E T if we
employ the optimal list ranking Mgorithm of Cole and Vishkin [1]: (i) with weights (w;) 1 for the
forward arcs of TE and 0 for the backward arcs (towards the root), for the preorder function, and
(ii) with weights (w~) 1 for the forward arcs and - 1 for the backward ones, for the level function.
Then, preorder(x) = rankp(y, x) + 1 and level(x) = rankz(y, x) where ra~kp (ranks) are subject to
the weights w; (wl). Thus we have the following.

L e m m a 1 The preorder number and the level of each vertex of a tree can be computed optimally in
O(log n) time using 7~ / log n processors iu the E R E W P R A M model of computation,

3.1 Color ing Trees
Assume that we are given a tree and the colors C = {q, c2}. The outline of the 2-coloring algorithm
is the following:

A l g o r i t h m 2-Color-Tree
begin
(1) Compute level numbers, for each node in the tree (using the guler tour technique)
(2) For each node v~ color odd level nodes with one color and even level nodes with

the other
end

T h e o r e m 1 The algorithm 2-Color-~'ee provides a valid 2-coloring of a tree in O(log n) time u~ing
n/ log n. proces.~ors in the E R E W P R A M model of computation.

Proof : The time and processor bounds follow from Lemma 1, since step 2 of the algorithm, imple-
mented with n processors in O(1) time, can be easily simulated to run in O(log n) time using n/log n
processors. The validity of the coloring is obvious. I

Coro l l a ry 1 A MLS" of a tree can be found in O(log n) time using n~ log n processors on an EREW
PRA M:

Coro l l a ry 2 A MDS of a tree can be found in O(log n) time using n/ log n processors on an EREW
PRAM.

The algorithm for 2-coloring a tree T can be extended (in the obvious way) to maximally color
~my tree. Thus we have the following.

Coro l l a ry 3 A ma:rirnal coloring of a tree can be computed in O(log n) time using n~ log n processors
in an E R E W PRAM.

The coloring algorithms presented in this section work also on any forest F. We create a supernode
called super-root and connect each root ra, r2,..., r,~ of the trees of the forest to this node. (We assume
that the roots are connected by a linked list.) Then, we apply the algorithms with the modification
tAlat the edges (r i , , super- root) and their reversals have zero (0) initial weights in the list rauking
algorithm. Thus, we have proved the following:

T h e o r e m 2 Let F be a .t, brest, having a total of 7~ nodes. Then simple tree functions as well as
a maximal coloring of]~' can be computed in time O(log n) using n~ log n processors in the EREW
PRAM model of computation,

3.2 T h e G L R a l g o r i t h m

The Mgorithm for the GLR problem is Mso based on the Euler tour technique. First, recall the
definition of the GLR problem. The k linked lists can be thought of as k trees of speciM kind (long
chains). The edges of such a tree are directed towards the unique leaf of the tree. As we saw', it is
very easv to convert each tree into an Eulerian digraph. Furthermore, the roots (heads of the lists)
are connected by a linked list (recall the array H). Hence, it is like having a forest of k trees with
a total of n nodes. Therefore, theorem 2 applies. The rank of each element (of the k lists) as well
as its membership relation can be computed as follows. We assume that the elements are refered
now by their preorder numbers, and that each element v has two fields: rank(v) (for keeping its
rank in the list) and head(v) (where the pointer to the head of its list is stored). Then, in O(i)
time every processor associated with the node v executes the following: (1) rank(v) = level(v); (2)
h e a d (v) = p r e o r d e r (v) - l e v e l (v) + 1.
R e m a r k . Although the Euler tour technique needs (in general) O(n ~) space for the computation
of the pointers between the reversal edges, here we can create these pointers using only O(n) space.
This is because the trees are of a special kind (long chains).

T h e o r e m 3 The general list ranking problem can be solved in O(log n) time using n~ log n processor,~
on an E R E W P R A M .

Proof : Follows from the above discussion and by theorem 2. |
2['he above theorem has an immediate application to the prefix computation problem on graphs

which is often encountered as a subroutine in many graph algorithms.

T h e o r e m 4 Given a graph G with n nodes and m edges in its adjacency list representation, we can
perform any parallel prefix computation on the elements of the adjacency lists of G in O(log n) time
"rising m / log n processors on an E R E W PRAM.

Proof : From theorem 3, we can find (for every element of the adjacency lists) the rank and the head
of the list (to which it belongs) in O(log n) time using m/ log n processors. Having this information
we can convert the lists into arrays in O(I) time using m processors (each element knows the array
as well as its position in it). Now, we have n arrays, each of length ml, 0 < rni < n, 1 < i < n
and ~]=1 ml = m. Any parMlel prefix computation algorithm can be performed (in such an array)
in O(logm~) time using m~/log rni processors on an EREW PRAM. But the same a.lgorithm can
be performed in O(tog n) (greater) time using rn~/log n (fewer) processors by simulation. Thus, the

n m prefix computation can be done to all the arrays in time O(log n) using E~=~ ~/log n = m/ log n
processors on an EREW PRAM. |

4 Coloring of Bounded-Degree Graphs
In this section we show how to improve the algorithms presented in [2] tbr the (/__k + 1)VC and the
MIS problems in bounded-degree graphs, with the use of our coloring Mgorithms for trees and thus
achieving optimal speedup. We assume that the maximum degree of any node is A (A is a constant)
and that each node has a unique name (id) between 1 a~ad n. The main idea of our algorithm is
similar to that of [2] for the algorithm Color-Constant-Degree-Graph. The difference is that we do
not use the pseudo-forest technique. The algorithm works in two phases. In the first phase a forest is
created and in each iteration we delete its edges from the initial graph G. This phase stops when no
edges remain on G. Then we perform an initial coloring of nodes in 57 (with one color). In the second
phase we iteratively 2-color the nodes of the current forest and return them to G. At the beginning
of ea.ch iteration of the second phase the new edges added make the existing (A + 1)--coloring invMid.
For this reason the iteration terminates with an appropriate recoloring of the nodes with a color
different fl-om the colors of its neighbors. The recolorability can be done in parallel since the nodes
having the same color are independent. A more formal description of the algorithm follows:

Algor i thm Color-Bounded-Degree-Graph(V, E)
(01) E' := E
(o2) ~ : : o
(03) (* first phase ~)
(04) while E' # ¢ do
(05) for all v C V pardo
(06) ~inda~C V =id(~O:=~i~d~d(~dl{'~,'adC E',l < l < ~'}
(07) if id(v) > id(u) t hen Ei := E~ u (v, u)
(08) odpa r
(09) E' := E' - E~ (* E~ are edges of a forest *)
(10) i := i + 1
(11) od
(12) for all v 6 V pardo (* initial coloring *)
i13) c (~) : = I
(14) odpar
(15) (* second phase *)
(16) for i := i - 1 downto 0 do
(17)
(18)
(19)
(2o)
(21)
(2:~)
(23)
(24)
(25)
(%)
(2.7) od
(2s) od

C' :=2-Color-Forest(V, Ei) (* 2-coloring of the current forest *)
E' := E' + Ei

f o r j : = l t o A + l d o
V' := V
for all v 6 V' pardo

if C(v) = j and U'(v) = 2 then begin
c (~) : : ,~a~{ {1,2, ..., zx + 1} - {o (~) t (~ , w) ~ z'} }
v' : : v ' - {v}
end

odpar

Theo rem 5 The algorithm Color-Bounded-Degree-Graph provides a valid (A + 1)-coloring of a
bounded-degree graph with mazimum degree A in O(tog n) time using n~ log n processors in the EREW
PRAM model of computation.

Proof: Correctness follows from arguments similar to those of [2]. Here, we prove the claimed time
and processor bounds. The first phase of the algorithm terminates after at most A iterations and
each iteration takes at most. A time (each processor has to find the minimum among A dements).
Thus, the first phase needs n processors and O(1) time. The same time and processor bounds
hold for the initial coloring. The second phase terminates obviously in at most A iterations. Each
iteration consists of two steps. In the first step we 2-color the current forest in O(log n) time using
n/ log n processors on an EREW PRAM. (From the adjacency list representation of the graph we can
construct the appropriate input to our coloring Mgorithms.) In the second step we have two nested
for-loops. The for-loop of line (19) iterates A + 1 times. The other fordoop of line (22) needs O(A)
time for each iteration because we must find the maximum among at most A + 1 colors. Therefore,
one iteration of the second step needs 7~ processors and O(1) time. Hence, the second step can be
easily simulated to run in O(log n) time using n~ log n processors, thus achieving the same time and
processor bounds for the second phase. A similar simnlation can be applied to the first phase and
t~he initial coloring phase, too. Notice that there are no read or write conflicts. |

It is easy to find a MIS in a bounded-degree graph, if we have a (A + 1)-coloring of the graph.
The Mgorithm works as follows: iterate over all colors, each time taking the nodes of the current
color, adding them to the MIS I and deleting them and all their neighbors from the initial graph,
and continue with the remaining graph. Call the above algorithm Bo'unded-Degree-MlS.

C o r o l l a r y 4 The algorithm Bounded-Degree-MIS provides a MIS of a bounded-degree graph in O(tog n)
time using n~ log n processors in an E R E W PRAM.

5 7-Coloring and Maximal Matching in Planar Graphs
In this section we consider the problems of 7-coloring, finding a MIS and a maximal matching in planar
graphs. We show how to improve the algorithms of [2] for the above problems using the algorithms
presented in the previous sections. Especially 1,he optimM solution of the prefix computation problem
on graphs leads to a faster, optimal algorithm for the maximal matching problem. The application
of this solution to the two other problems leads to optimal algorithms that use onty O(n) space, but
it does not improve the running time of previously known optimal algorithms for the same problems
(see [3, 4]). We shall give first some technical lemmas.

L e m m a 2 In a planar graph, the number of nodes with degree at most 6 is greater than !n
7 "

Proof : Suppose in the contrary that the number of nodes with degree at most 6 are _< ~n. Then
n - -~ nodes have degree at least 7. Let di be the degree of the node i. We have that D = ~i~1 d~ >
(n - ~). 7 = 6n. But from Euter's formula D <_ 6n - 12, a contradiction. Thus the lemma is proved.
|

The Mgorithm for 7-colorability of planar graphs is based on a procedure, called PIanar-LIS, which
finds a large independent set (LIS) of nodes of degree at most 6. The procedure is the following.

P r o c e d u r e PIanar-LtS
begin
(1) Construct a graph G', induced by the nodes of G with degree at most 6.
(2) I :=Bounded-Degree-MIS(G')
end

L e m m a 3 Let I be the independent .set produced by the above algorithm. Then Iit > ~iG't.

Proof : Notice that the application of the Color-Bounded-Degree-Graph algorithm to G' partitions
its nodes into 7 classes. Then the larger class is at least -~tG/I. |

Now, the algorithm for 7-colorabillty works as follows. If the planar graph G has maximum
degree 6, then caU Color-Bounded-Degree-Graph and stop. Otherwise, find a LIS using the Planar-
LIS procedure and delete its nodes from G. Recurse to find a 7-coloring of G - I . Finally, recolor
each node in I to produce a valid 7-coloring. Less informalIy we write the algorithm as follows:

A l g o r i t h m 7-Color-Planar-Graph(G)
begin
(1) GI :=G; I :=O;

if ,~v C G' with dcg(v) > 7 t hen Color-Bounded-Degree-Graph(G ~)
else beg in

I :=Pla.na.r-LIS(G')
G' := G ' - 1
7- Color- Dlanar-Graph(G')

e n d
(2) color each v E I to produce a valid %coloring
e n d

T h e o r e m 6 The algorithm %Color-Planar-Graph provides a valid 7-coloring of a planar graph in
O(log ~ n) time with n~ Iog 2 n processors in the EREW PRAM model of computation using O(n) space.

Proof : The correctness of the algorithm can be easily seen. Here we are concerned only with the
resource bounds. Since I is an independent set, the vertices in I can be colored independently. Thus,
step 2 is implemented in O(1) t ime using n processors. The PIana,~LIS procedure runs in O(logn)
time using n / l og n processors according to corollary 4. In ea.ch iteration we must compact the edge
lists, because of the EREW model. Since the compaction is nothing more than an application of
a parallel prefix computation algorithm, it can be done in O(log n) time using n/log n processors
(according to theorem 4). Obviously fJle edge-list compaction keeps the space linear. There are
O(log n) iterations since procedure Planar-LIS produces a LIS of O(n) size. Therefore, the whole
algorithm runs in O(log 2 n) t ime using n / t og n processors. However, observe that at each iteration
the computation is reduced by a constant factor. In the first iteration the computation is n, in the
second ~n4S (at most, due to Lemmas 2 and 3), etc. Generally, the i-th iteration has computatio,J
e i . n where e < 4s and can be implemented by e i . n / l o g A • n processors in O(log ~ i -n) time. But
notice that the i-th iteration can also be implemented in O(e ~, log 2 n) (greater) time, using n / log 2 n
(fewer) processors (by simulation). This results in a. total time of ~=o~t°g" O(e~. log2 n) = O(log 2 n) for
the whole algorithm, but now using only n/log 2 n processors. |

We cma easily find a MtS in a planar graph after a 7-coloring, in the same way as we did in
bounded-degree graphs. Therefore, we ha.re the following corollary.

C o r o l l a r y 5 A M[S in a planar graph can be computed in O(log 2 n) time by an E R E W PRA'I,I with
~/ tog "2 n processors using linear space.

Now we show how to improve the algorithm of [2] to find a maximal matching in a planar graph.
The main idea. of our algorithm is dmos t the same, but we use a forest (instead of a pseudo-forest)
for the building of a flat forest of a graph. An outline of the algorithm follows.

A l g o r i t h m MM-Planar-Graph
b e g i n
G' := G
r e p e a t

(i) j~nct a ~a~ ./brest 4 C - '
(2) arbitr'arily add one edge_from each tree in the]brest to M
(3) a ' := G' - M

unt i l G' =
e n d

L e l n m a 4 A .fiat forest of a planar graph G can be constructed in O(log n) time using a l lo t ~
processors in an E B E W PRAM.

Proof : To find a flat forest in a planar graph G = (k, E) we proceed as follows. First, we find
a forest P = (V,E') of G in the same way as we did in the first phase of the algorithm Color-
Bouned-Degree-Graph. Note that every node v E V has to select an edge {v,u} and to direct it
outwards if the following are satisfied: (1) id(u) is the smaalest id among the id's of the neighbors
of v, and (2) id(v) > id(u). Thus every node v must know the element with the smallest id ii1 its
adjacency list. To find that elemetlt is nothing more than an application of a parallet prefix mi~
algorithm to the adjacency list of v. According to theorem 4, this can be done in O(log n) time
using n / l o g n processors o~ an EREW PRAM. Thus, the forest P can be constructed iu the same
time and processor bounds in the EREW PRAM model. Second~ find a MIS I of P. The flat forest
F = (V, E") is then constructed as follows:

1. V v ~ I , E" := E" U (v, w), w C 1 a n d (v , w) E E '

2. V node v E I that has no adjacent edges in E" but some adjacent edges in E' , choose one
adjacent edge in E ~ and add it to E"

The graph F induced by the edges in E" is almost a flat forest since each tree has height at most 2.
We can split those trees of height 2 to height 1 trees, to get a flat forest. All operations take O(1)
time using n processors, except for the construction of P and the MIS which need O(logn) time with
n~ log n processors. Thus, we can find a fiat forest in O(tog n) time using n / log n processors in an
EREW PRAM. |

T h e o r e m 7 The algorithm MM-Plauar-Graph pTvduces a maximal matching of a planar graph in
O(log ~ n) time with n~ log 2 n p~vcessors in the E R E W P R A M model of computation using O(n) space.

Proofi Each iteration is dominated by the finding of a fiat forest. Operations (2) and (3) can be run
in O(1) time using n processors. Again, after operation (3) we must compact the edge lists. Thus
each iteration takes O(tog n) time using n / log n processors. There are O(log n) iterations since a flat
forest has at least n/2 edges (see [2]). Ti~ereibre, the algorithm runs in O(log 2 n) time using n~ log n
processors. Again, by observing that the computation reduces by a constant factor (of at least 1/2)
after each iteration and by applying the same simulation as in the proof of theorem 6 (but now with
e < 1/2), we have the desired resource bounds. |

6 A l g o r i t h m s for Grid Graphs

6.1 A Basic Algorithm and its Applications
Assume that a grid graph R(m,n) is given as a set of adjacency lists (R = IV(R(rn, n))l). In
sequential computation it is straightibrward to convert the adjacency list representation into another
one in which every, node v is represented by its , and y coordinates in the plane. We call such a
represei~tation the xy rep~'esentation of a grid graph. The conversion takes time linear on the size
of the graph. The xy representation is very useful in the solution of mmay problems on grid graphs
(see e.g. [6]), and it also is the key to find a maximurn i11dependellt set, a maximum matchil,g and
a Hamiltonian path.

However, the parallel conversion to the zy representation is not obvious. We shall give an optimal
parallel algorithm for this problem. The Mgorithm depends on the complexity of finding the embed-
ding of a planar graph. Two algorithms are known for finding the embedding. The most recent one
[9] is optimal for the C R e W PRAM and runs in O(logn) time with n / togn processors. (n is the
size of the graph.) The other one [8] runs in O(log 2 n) time with n processors on a CREW PRAM.
Note that only the algorithm for finding the embedding prevents our algorithm to be optimal on an
EREW PRAM in O(log n) time.

In the sequel we assume that our input is a.n embedded grid graph, i.e. each node is associated with
a cyclic list of its neighbors in clockwise order. The algorithm for converting the above representation
into a zy one is the following (see also fig.t):

A l g o r i t h m XY
begin
(1) Construct a linked list of the boundary nodes and find their ranks (assuming as starting point the
~aode a). This can be done as follows. Let z be any of the boundary nodes {a, b, c, d}. Temporarily we
add one pseudo-edge (dashed line) to z and update the embedding (see fig.l). (This can be done in
O(1) time since the maximum degree in a grid graph is 4.) Now, consider the induced subgraph Gb of
nodes having degree <__ 3. Then Gb contains only the boundary nodes. We first construct a list of edges
as follows. Let a~, ~12, u:~ be boundary nodes (see fig.l). Then next(u1, uy) -- next¢(uy, ul) = (u;, u3),
where next~ reters to the next. edge in the embedding. Note that the constructed list is a clockwise
one. We can not have a similar counterclockwise list because e.g. ~ext(ua, u2) = ne:ct~(uy,a,) = w~ll

10

(since the edge (u2, w) does not exist). The list can be broken by setting next(t, a) = null. Now, we
are ready to execute the optimal parallel algorithm of [1] to find the rank (distance from a) of each
boundary node. Obviously rank(v) = rank(u, v).
(2) Associate a processor to each boundary node v. Then execute the following 4 steps sequentially.
(2.1) if rank(v) • [rank(a), rank(b)] t h e n (v~, vy) = (1, rank(v) + 1)
(2.2) if rank(v) • (rank(b), rank(e)] t h e n (v~, %) = (rank(v) - rank(b) + 1, b~)
(2.3) if rank(v) • (rank(c), rank(d)] t h e n (v~, vy) = (e~, rank(d) - rank(v) + 1)
(2.4) if rank(v) • (rank(a), rank(d)) t h e n (vx, v~) = (rank(t) - rank(v) + 2, 1)
(3) Construct lists of nodes as follows. Associate a processor with node v. Let u be an adjacent node
of v. Each processor executes the following:
if deg(u) = 4 t h e n next(v, u) = next~(nexte(u, v)) else next(v, u) = null.
(4) Consider only the lists Whose head h satisfies: rank(h) • (rank(a),rank(b)) or rank(h) •
(rank(a), rank(d)). Apply the GLR algorithm of section 3.2. If a node v: belongs to a list such that
rank(h) E (rank(a), rank(b)) then ('v~, %) = (rank(v) + 1, hy). If rank(h) • (rank(a); rank(d)) then
(v~:, %) = (h~,rank(v)+ 1).
end

Theorem 8 The xy representation of a (rectangular) grid graph can be computed in O(log R) time
with R~ log R processors on a CRCW PriAM.

Proof: From the above discussion, theorern 3 and the algorithm of [9] for finding the embedding of
a planar graph. |

Corollary 6 Given the embedding of a (rectangular) grid graph, we can find the xy rep~vsentation
in O(Iog R) time with R/Iog R processors on an E R E W PRAM.

The XY algorithm has immediate applications to the problems of maximum independent set,
maximum matching and Harniltonian cycle on grid graphs.

The maximum independent set of a grid graph is the set of even (white) nodes (Vo). Given the
xy representation this can be computed in O(1) time.

For the maximum matching we have two cases. First, associate a processor with every even node
V.

Case 1: n or m is even. Suppose that m is even. Then each processor (associated with an even node
v) executes the following:

i fv~- :_ t (rood2) then M : = M t O { v , u } , w h e r e u ~ = v ~ + l
else M := M U {v,u}, where ux = v~: - 1

Case 2: both n and m are odd. Each processor associated with an even node v such that v~ < m - 1
performs the same as in case 1. If v~ = m, then M := M u {v,u} where u is odd and uy = 'vy + 1.

In a similar way we can find a Hamiltonian crete (HC) (starting e.g. at some node z E {a. b, c, d}).
For there exists a t tamiltonian cycle one dimension (n or m) must be even. The cycle can i)e easily
found in O(1) time as fig.2 shows.

C o r o l l a r y 7 A maximum independent set, a maximum matching and a Harnittonian cycle in a
(rectangular) grid graph can be computed: (i) in O(]og R) time with R~ log R processors on a CRCW
PRAM, (ii) in O(logR) time with / g / togR processors on an E R E W PRAM, if the embedding is
given, and (iii) in O(1) time (with R processors) on an E R E W PRAM, if the xy representation is
provided.

6 .2 H a m i l t o n i a n P a t h s o n G r i d G r a p h s

The proMem of finding a Ha mittonian path on a grid graph was first studied in [6]. In that paper
([6]) necessary and sufficient conditions for the existence of a Hamiltonian path are provided, as well

11

as an algorithm is given which finds the biamiltonian path between any two nodes (if it exists) in
O(R) time. However, the algorithm of [6] does not seem to be easily parallelizable.

Although we adopt some main concepts of the study of the problem from [6] (e.g. definitions,
conditions, etc), we present here a different algorithm for finding a Hamiltonian path between any
two nodes (if it exists) on a grid graph. Our algorithm is easy and amenable to parallelization.

First recall some definitions from [6]. A Hamiltonian path problem H P (R (m , n) , s , t) between
two nodes s , t is called coIo'~" compatible if (a) R (m , n) is even and s , t have different colors, or (b)
R(m, n) is odd and both s, t are white. We say that H P (G , s, t) is forbidden if one of the following
is satisfied:

1. G is of the form R(m, 1) and either ~s or t is not a corner.

2. G is of the form R(m, 2) and {s, t} is not a boundary edge.

3. H P (G , s, t) is isomorphic to HP(G' , s', t') which satisfies the following:

(a) G' = R(m, 3) where m is even.

(b) s' is colored differently from t' and the left corners of G'.
t t f / (c) .s x < t~ - 1, or (sy = 2 and s~ < t~).

A Hamiltonian path problem is called acceptable if it is color compatible and not forbidden. The
following theorem has been proved in [6}.

T h e o r e m 9 Acceptability is a necessary and suJficient condition for H P (R(m, n) ,s , t) to have a
solution.

In the sequel, without loss of generality we assume that s~ < t~ aud sy > tv. The main idea.
of our algorithm for finding a Hanailtonian path in a grid graph is the following. (We assume tha.t,
H P (R (m , n), s, t) is acceptable.) Reduce the initial problem to H P (R (m I , n~), s, t) such that one of
the following is satisfied:

(P1) s~ < 2, sv _> nl - 1, t~ >_ m~ - 1 and ty < 2.
(P2) s~ <_ 3, s~ >_ na - 2, t~ >_ ml - 2, tv < 3, and either (nl = 5 and ml is even) or (nl is even and
~ 1 = 5) .

Split H P (R (m l , nl) , s, t) into two subproblems H P (S , s, i l) and H P (T , 81, l) where {tl, sl } wilt be an
edge of H P (R (m , n), s, t). Solve these subproblems and merge their solution using the edge {tl, s~}.

The reduction of the initial problem consists of the following four steps (see fig.3).
(1) Consider the subgraph R1 of R such that V(R~) = {v : vx < xo where x0 < sx - I and xo is tb¢,
maximum value such that R1 has a/HC and H P (R - R1, s t) ~ acceptable}. Let R ~ -- R - R1.
(2) Consider the subgraph R2 of R such that V(R2) = {v : v~ > xo where x0 > t , + I and x0 is the
min imum value such that Re has a HC and H P (R ' - R2, s , t) isacceptable}. Let R' = R ' - R2.
(3) Consider the subgraph Ra of R' such that V(Ra) = {v : v~ > Yo where Y0 >_ sv + 1 and Y0 is the
min imum value such that R3 has a HC and H P (R 1 - R3, s, t) is acceptable}. Let R ~ = R' - R3.
(4) Consider the subgraph R4 of R ~ such that V(R4) = {v : vy _< Yo where Y0 _< ty - t and Yo is the
maximum value such that R4 has a HC and H P (R ~ - R4, s, t) is acceptable}. Let R' = R' - R4 with
dinaensions rn~, n~.

Note that some Ri, 1 < i < 4 may be empty. One can easily see that H P (R q s , t) satisfies
(P1) or (P2). The HC in each Ri can be found as it was explained in the previous section. Hence
it remains to show how H P (R q m ~ , hi) , s, t) can be found. (For if we find the I-Iamiltonian path
l t P (R ' (m l , n l) , s , t) , we can merge it with the HC of each Ri as fig.4 shows.)

Suppose that H P (R ~, s, t) satisfies (P1). We have four cases depending on the parity of ml, nl
(odd or even).
Case P l . l : both m~, nl are even. We split H P (R ' (m l , nl), s, t) into H P (S , s, tl) and t I P (T , s~, t)
where {t~,s~} is an edge of H P (R (m , n) , s , t) . The subgraph S of R' is defined by V(S) = {v : v~. <

1 2

ml - 2}. Then T = R' - S. The edge {tl, sl } is determined as follows.
(a) if (s~,ay) 6 {(1,nl) , (2,nl - 1)} then (t~,,tl,,) = (m l - 2, n l) and (e l ~ , s ~) = (rn~ - i ,n~)
(b) if(s~,s~) 6 {(2, n ~) , (1 , n ~ - 1)} then (t~,.,t~) = (n h - 2 , n ~ - 1) and (s~,,s~) = (m~- 1,n~-1)

That is, each of HP(S, s, t~) and HP(T, s~, t) must be color compatible.
Case P1.2: both m~, n~ are odd. We split HP(R'(ml, n~), s,5) into two subproblems (as above) such
that V(S) = {v : v~ < m~ - 3} and T = R ' - S. (We assume that m~ > 3. If rnt = 3, there is no
split. We shall see t l ~ solution for this case later.) Again both HP(S,s,t~) and HP(T, sx,t) must
be color compatible, i.e. since (s~,sv) ~ {(1, n~), (2, n~ - 1)} we have that (t~,, t~) = (m~ - 3, n~)
and (s l~ , s~) = (ml --2, n~).

The other two cases are similar to the first case.

L e m m a 5 Both HP(S, s, tl) and HP(T,.sl, t) are acceptable.

Proof i Observe that they are color compatible by construction. Consider the subgraph & of S
defined by either V(S~) = {v : 1 _< v~. < m ~ - 2 and 1 _< % _< n l - 2} (case Pl.1), or by
V(S~) = {v : 1 _< v~ _< rn~ - 3 and 1 < v~ < n~ - 2} (case Pt.2). Let Sz = S - S~ (see fig.5). From
the construction of S we have that either m t - 2 (ml - 3) or nl or both are even. Therefore the
subgraph $t has a HC. 2he subgraph S2 is of the form $2(ml - 2, 2) (or $2(ml - 3, 2)) and there is
no case such that {s, h} is a nonboundary edge. Thus HP(S2, s, t~) is not forbidden.

Also HP(T(c, nl), al, 5) (where c = 2 or c = 3) is not forbidden since {s,, t} is not a nonboundary
edge (c = 2) or nl is odd (c = 3). Thus the 1emma is proved. |

From the above it is obvious that in order to find a solution for HP(R'(m~, n~), s, t) it is enough
to find a HC in $1 and solve HP(S2, s ,h) and HP(T, sl , t) , and merge the solutions. Finding a
solution for tIP(S.~, s, tt) is the same as finding a solution for HP(R(m, 2), s,t ,) where s~ < 2 and
tt~ = m. For a solution to exist it is enongh for s,51 to be differently colored. Then. the path is
constructed easily (one case is shown in fig.6.a). The solution of HP(T(c, nl), sl, t) where ~ , = i
and 5y < 2, is similar to the above if e = 2. In the case where c = 3 a Hamiltonian path can be also
easily constructed. (Fig.6.b shows one case.)

Snppose now that HP(R' , s , t) satisfies (P2). In this case we provide the solution for nl = 5
and ,nl is evem (;i~he other case is similar.) If (s~, su) C {(1,.5), (1,4), (2~ 5), (2, 4)} and (5~., 5y) 6
{(ml - 1, 1), ('ml - 1, 2), (ml, I), (mr, 2)}, then we follow case (P1). Hence it remains to examine the
cases where s~ = 3 and either 5~ = 2 or tu = 3. The solutions can be easily obtained and illustrated
in fig.7-8.

The cases where sy = 2 and ty = 3 are similar.

T h e o r e m 10 A Hamiltonian path (if i5 exists) between any two nodes of a (rectangula~ 9 grid graph
can be computed: (i) in O(log R) time with R~ log R processors on a CRCW PRAM, (ii) in O(log R)
time 'with R~ log R processors on an EREW PRAM, if the embedding is given, and (iii) in 0(t) 5im~
(with R processors) on an EREW PRAM; if the xy representation is provided.

Proof : Follows from the above discussion. Ill

7 Acknowledgements
\¥e are gre~tful to Lefteris Kirousis for his essential help in many technical discussions and to Christos
Papadimitriou for his careful reading of a preliminary version of this paper and his encour~gment.

13

R e f e r e n c e s

[1] R.Cole, U.Viskin, '~Approximate and Exact Parallel Scheduling with applications to [is~, :tee
and graph problems", Proc. 27th IEEE Syrup. on EOCS, 1986, pp. 478-491.

[2] A.Goldberg, S.Plotkin, G.Shannon~ "Parallel Symmetry-Breaking in Sparse Graphs", Proc. of
the ACM 19th STOC (Symp. on Theory of Computing), 1987, pp. 315-324.

[3] T.Hagerup, "Parallel Algorithms on Planar Graphs", Ph.D. Thesis, University of Saarlandes,
Sa~arbriicken, 1988.

[4] T.Hagerup, M.Chrobak, K.Diks, "Parallel 5-coloring of planar graphs", Proc. of the 14th ICALP,
pp. 304-313, LNCS, Vol. 267, Springer-Verlag.

[5] H.Jung, K.Mehlhorn, "Parallel Algorithms for Computing Maximal Independent Sets in Trees
and for Updating Minimum Spanning Trees", Information Processing Letters 27, pp. 227-236,
April 1988.

[6] A.Itai, C.H.Papadimitriou, J.L. Szwarcfiter, "Hamilton Paths in Grid Graphs", SIAM Jour. on
Comp., Vol.ll, No.4~ November 1982, pp.676-686.

[7] D.E.Knuth, "The Art of Computer Programming", Vol.1, Fundamental Algorithms, 2nd ed.
Addison- Wesley, 1973.

[8] P.Klein, J.H.Reif, '"An Efficient Parallel Algorithm for Planarity", Proc. 27th IEEE Syrup. on
EOCS, 1986, pp.465-477.

[9] V.Ramachandran, J.H.Reif, "An Optimal Parallel Algorithm for Graph Pla.narity", Proc~ 30th
IEEE Syrup. on FOCS, 1989, pp.282-287.

[10] B.Schieber, U.Viskin, "On Finding Lowest Common Ancestors: Simplification and Paralleliza-
tion", Proc. of 3rd Aegean Workshop on Computing (AWOC 88), Corfu, Greece, June/July
1988, pp. 111-t23, LNCS 319, ed. J.H Reif, Spriger-Verlag.

[11] R.E.Tarjan, U.Vishkin, "An Efficient Parallel Biconnectivity Algorithm", SIAM Jour. on Comp.,
Vol.14, No.4, November 1985, pp.862-874.

[12] J.C. ylhe, ~I he Complexity o1 ParalIel Cornputatlon , Ph.D. Thesis, TR 79-387, Dept of
Computer Science, Cornell University, Ithaca, NY, 1979.

14

b J

I t 3

tt2

Ul

% J

W

, J

J %

a t d

Figure 1: A rectangular grid graph. (a~,%) = (1, 1)

b . - - C

I

• -(3 ~ 0
a " d

Figure "2: A Hamittonian cycle

15

R1

Ra

R,

//,t

Figure 3: Reduction

O

C

Iii S

! o

O

S

Figure 4: Merging of a Hamiltonian cycle with a Hamiltonian path

$2

$1
T

Figure 5: R'(ml, nt)

C~

H

t~

~i
 ~

O
'm

m
m

tD
~

I
v

l --

v

1

17

!lii!
Pigure 8: Case P2.2. sy = 3, t,~ = 2, (O n e case. T h e o t h e r cases are s in~lar .)

