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The method of lines is used to transform the initialrooundary-value problem associated with the 
nonlinear hyperbolic sine-Gordon equation, into a first-order, nonlinear, initial-value problem. 

Numerical methods are developed by replacing the matrix-exponential term in a recurrence 
relation by rational approximants. The resulting finite-difference methods are analysed for 
local truncation errors, stability and convergence. The results of a number of numerical experi- 
ments are given. 

Keywords: Sine-Gordon equation; solution wave; method of lines; recurrence rehtion; rational 
approximants; global extrapolation. 
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1. INTRODUCTION 

The sine-Gordon (SG) nonlinear hyperbolic equation has the form 

a2u 2 2 ~  
sinu; L,<x<L, ,  t>t, ,  

2 t2  - 2x2 

The elucidation of equation (1) became important in physics with the evolution 
of the dislocation theory for crystals. Equation (1) also became illnportant in 
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272 A. G. BRATSOS A N D  E. H. TWIZELL 

connection with Josephson junction transmission lines, where sinu is the 
Josephson current across an isolator between two superconductors, the 
voltage being proportional to auldt. Also, it is referred to as the Enneper 
equation and describes in differential geometry the variation of the angle u 
between asymptotic lines on surfaces of constant Gaussian curvature 
K = - I under the assumption that the parameter lines for the description 
of the surface coincide with the curvature lines. 

Initial conditions associated with the partial differential equation (PDE) 
given in (1) will be assumed to have the form 

with initial velocity 

Boundary conditions will be assumed to be of the form 

Equation (1) is a particular case of the Klein-Gordon equation 

where dV(u)/du is a nonlinear function of u chosen as the derivative of a 
potential energy V(u). Equation (5) occurs in a series of physical situations, 
as the propagation of waves in ferromagnetic materials carrying rotations of 
the direction of magnetization and of laser pulses in two-state media. 
For (1) V(u) = 1 - cosu. 

Steady travelling waves are obtained from (1) by putting 

where c is a constant, which leads to the ordinary differential equation 
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METHOD OF LINES 273 

and the constant of integration on the right-hand side of (6) is chosen to be 
zero. The first non-trivial solution of (6) is the solitary wave (soliton) 

where a is an arbitrary constant and c indicates the velocity. The four 
possible sign combinations in (7) lead to kinks if the signs are similar, 
referred from now on as kinks(+, +) or (-, -) and to antikinlks when the 
signs are opposite, referred from now on as antikinks (+, -) or  (-, +). 
Figure 1 shows the corresponding soliton waves at times t = 9,18,108 for 
a = 0 and c = 0.5. 

2. NUMERICAL METHODS AND THEIR ANALYSES 

Following Bratsos [2], to obtain a numerical solution, the so-called method 
of lines will be used: this method transforms the initial/boundary-value 
problem (IBVP) (1)-(4) into a second-order initial-value problem (IVP). To 
this effect the region R = [Lo <x < L,] x [ t  > to] with its boundary 2R con- 
sisting of the lines x = Lo, x = L, and t = to, is covered with a rectangular 
mesh, G:, of points with coordinates (x, t) = (x,, t,) = (Lo + mh, to + nl) with 
m = 0, I ,  . .., N ,  N + 1 and n = 0,1, . . .; clearly h= (L, - L,)/(N i- 1). The sol- 
ution of the SG equation at the typical mesh point (x,, t,) is ul:c,, t,) which 
may be denoted, when convenient, by u", The solution of an approximating 
difference scheme at the same point will be denoted by UL: for the purpose 
of analysing stability, the numerical value of U: actually obtained (subject, 
for instance, to computer round-off errors) will be denoted by 0:. Collec- 
tively, the values U: will be written in vector form as 

T denoting transpose, so there are N + 2 values of the solution to be deter- 
mined at each time step. 

The method of lines semi-discretizes the IBVP by replacing the space 
derivative in the SG equation (1) by the familiar second-order central- 
difference approximant 

i'2u(x, t )  
- h-'[u(-u - h, t) - 2u(x, t )  + U ( X  + h, t)] + O(h2) as' h -t 0. (9) C7u2 
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METHOD OF LINES 275 

Equation (1) with (9) is applied to all N + 2  mesh points of Gi at time level 
t = t, with n = 0,1,. . . . This, with the boundaries subject to (4) giving 
U\ = U>nd U",,, = U;, leads to an IVP of the form 

where D2 = diag{d2/dt2) is a diagonal matrix of order N + 2, 

Gn  = G(U(t,,)) = [sin Ui, sinU;, . . . , sinU;+ ,I7 

is a vector of order N  + 2  and A is the tri-diagonal matrix of order N  + 2  
given by 

which has real, non-positive eigenvalues. 
Using the relations 

U(t + 1) = exp (1D) U(t) 

U(t - I) = exp ( - ID) U(r) 

where D = diag{d/dt) is a matrix of order N t 2 ,  leads to the following 
three-time level recurrence relation for solving (I) 

Numerical methods will be developed by replacing the matrix-exponential 
term in the recurrence relation (12), by rational approximants of the form 

in such a way that there will be no need to evaluate DU(t). 
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276 A. G. BRATSOS AND E. H. TWIZELL 

Method I The (O,2)  Pad6 Approximant 

Replacing the parameter values in (13) with a ,  = bl = 0, el = 1 and dl = 112 
equation (12) gives 

with D2U(t) given by (10). Let r = l /h, then applying (14) to the mesh point 
(x,, t,), gives the following five-point three-level explicit scheme 

for m = 0, 

for m = 1,2, . . . , N and 

f o r m = N + l .  
The local truncation error of Method I arising from (14) is 

where the first term on the right-hand side in (16) is the principal part, which 
tends to zero as h, 1 +O simultaneously, so Method I is consistent with (1). 

For the stability analysis of the method consider equation (15) written as 

where the last term on the right-hand side is Maclaurin's expansion of the 
term sinu. Let Zk = U i  - p,, then 
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METHOD OF LINES 

where 

after linearization of the term in square brackets, and U ,  is a typical value 

of U y o r  m=O,l ,  ..., N + l . N o w  let Z;=ea"eirnphwherei= + ,,6,&isa 
complex number and 0 is real. Then (18), after cancelling by e""'eimph, leads 
to the stability equation 

where ( = e" is the amplification factor. Equation (19) is a particular case 
(A = 1) of the following equation 

which will have roots c,, t2 with modulus less than or equal to unity for 
every 5 if 

Condition (21) for (19) gives 

The first inequality leads to 

and the second to 
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278 A. G. BRATSOS A N D  E. H. TWIZELL 

Now, (23) gives the following restriction for the time step 

Inequality (22) is always satisfied when cosU, 3 0, while for cosU, < 0 it 
gives the following restriction for the space step 

For the convergence analysis of the method consider equation (17), in 
which let U", ein*eime, where $ is a complex number and Q is a real 
number. Then equation (17), after cancelling both sides by ein%ime, finally 
gives the following convergence equation, 

Then lsin2$/2/ 6 1, 
following condition 

that is $ is a real number, the last equation gives the 
for convergence 

I 1 +r - + - C  --- 
h2 4 k = 0  (2k + I)! I- 

The condition imposed by (27) is more restrictive than that imposed by (24) 
and is therefore the condition to be used with (25). 

Method 11 The (1 , l )  Pad6 Approximant 

Replacing the parameter values in (13) with a, = - 112, b ,  = dl = 0 and 
c, = 112, equation (12) gives 

l 2  l 2  l 2  
U ( t + l ) - - A U ( i + 1 ) + ~ ~ ~ + ~ = 2 U ( t ) +  4 4 -AU(t)--G1 

2 2 

with D2U(t) given by (10). Using a similar argument to that for Method I 
for the mesh point(xm, t,), equation (28) will give the following three-level, 
nine-point implicit scheme 
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METHOD O F  LINES 279 

for m = 0. 

f o r m =  1,2, ..., N and 

form=: N + 1. 
This scheme forms the nonlinear algebraic system 

where the vector U(t, + I )  = Un+'  can be determined by solving (32) either 
by fixed point iteration or by Newton's method. The Jacobian matrix J for 
Newton's method is a tri-diagonal symmetric matrix of order 1"J + 2. 
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280 A. G. BRATSOS AND E. H. TWIZELL 

The local truncation error of Method I1 is 

so the method is consistent with (1). 
Using a similar approach to that used for method I, it can be shown that 

the stability equation of method I1 is 

where coso, = Cz$O ( -  l)k (OG)2k/(2k)!, with OG a constant typical value of 
un-1 , U D n d  U",' ' for m = 0,1, . . . , N + 1. Equation (34) is of the form (20), 
so condition (21) gives 

ph l2 I 2 .  2Bh l2 - 
-[I + r2sin2- + -cosOG G 1 - r sin - - -cosUG 

2 4 2 4 

The left-hand side of (35) is always satisfied, while the right-hand side leads 
to (22) and ultimately to (25). 

The convergence equation of Method I1 is 

1 2 + *  (-l)k r ( n + l ) $ 1 i m 8 2 k  i$ ( I  + r2sin2:) sin2: = r2sin2-+ - 1 -- 
2 8,=,(2k+ l ) !  {Ce' e 1 e 
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METHOD OF LINES 28 1 

So, whenever Jsin2$/21 < 1, that is $ is a real number, the above equation 
gives 

1 2  + m  1 
1 - --sin2- sin - < r2 + - 2 --- I (  ) t i  2,=,(2k+ I)! 

< 1, 

so the restriction for the time step is 

Method I11 The (1,2) PadC Approximant 

Replacing the parameter values in (13) with a, = - 113, b ,  = 0, c ,  = 213 and 
d l  = 116 equation (12) gives 

which, when applied to the mesh point (x,, t,) gives a scheme analogous to 
(31) and finally a nonlinear algebraic system of the form (32). 

The local truncation error of Method I11 is 

so the method is consistent with (1). 
The stability equation of Method 111 is 
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282 A. G. BRATSOS A N D  E. H. TWIZELL 

which is also of the form (20), so condition (21) gives 

Then the right-hand side of (41) leads to inequality (22) and ultimately to 
(25), while the left-hand side to the following restriction for the time step 

The convergence equation of Method 111 is 

So, whenever lsin2$/21 < 1, that is $ is a real number, the above equation 
gives 

12 + %  1 
1 - -sin2- sin - < r2 + - C --- I (  ) 'ti 4 ,= , (2k+l ) !  6 1, 

which leads to the restriction (27). The condition in (27) is more restrictive 
than that in (42) and is therefore the condition to be used with (25). 

3. GLOBAL EXTRAPOLATION 

Let L: denote the global error of a convergent method at time 
t = T < 1 m. Then L: has, in general, the form 
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METHOD OF LINES 283 

where the quantities e ,  k ,  for i = 1,2,. . . , v are independent of h, 1 and t. In 
what follows, only the case p = q will be examined. 

Global Extrapolation in Time 

Suppose that the time interval of integration is divided into r n subinter- 
vals, where zl  = 2,3, . . . , each of width l / z l  giving a discretization G;' con- 
sisting of the n z ,  + 1 points t,,, = to + ml/z ,  for m = 0, 1, ..., z1n  while the 
discretization in space remains the same. The application of a convergent 
method to find the solution at the point T = z l n  of G;1, which. when p # q, 
gives the global error 

Using a similar argument, it is possible to define the discretization G;2, where 
T ,  = 2,3,. .. and T ,  # r,,  consisting of the nz,  + 1 points t,,, = t,  + m l / ~ ,  for 
m = 0, 1, ... , T,n and generally the discretization G;, where T ,  == 2,3, .. . and 
z ,  # z ,  for every i = 1,2, . . . , v - 1 consisting of the n z ,  + 1 points 
t,., = t o  + m l / ~ ,  for m = 0, 1, .. ., z,n. Consider the approximatio~l 

U ,  = z,U> + ... + a,U? + xlU;l + [l -( a,+. . .  + a 2  + a l ) ] U : ,  (46) 

and the associated global error 

L ,  = r ,L> + ... + a,L;i + r l L 7  + [I -(a, + ... + a ,  + a , ) ] L ~  

Then 

L E - - a,(z;P/Pel + T , ' p + 2 ) / p + 2 e  2 + ... + T - ( ~ + 2 ' ) l ~ + 2 v e  2~ + h4/, l )  + ... 

+ r 2 ( T ; P l P e ,  + T ; ( ~ + 2 ) / P + 2 e 2  + . . . + T ; ( P + ~ ~ ) / P + ~ ~ ~  2~ + hqkd 

+ cc,(z;PIPe, + ~ , ( ~ ' ~ ' l ~ ' ~ e ~  + ... + T ; ( P + ~ ' ) I P + ~ ' ~ , ~  + h4kl)  

+ [l -(xu+ ... + r 2  + r l ) ] ( lPe l  + + ... + lP+2'e2v  +hqk l ) ,  

D
ow

nl
oa

de
d 

by
 [

T
E

I 
of

 A
th

en
s]

 a
t 1

2:
03

 0
5 

Ju
ne

 2
01

5 



284 A. G. BRATSOS AND E. H. TWIZELL 

so the v terms on the right hand-side vanish when the following system holds 

System (47) can be written in matrix-vector form as 

Tar = i, 

a = [ a l , n  ,,..., %,IT, i = [ l , l ,  ..., 1lT and 

with det (T) # 0, so system (48) has a unique solution. This global extrapo- 
lation which uses the v + 1 discretizations G:, G;', . . . , G> has produced an 
approximation U ,  defined by (46) which is of order p + 2v + 2 in time. 
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METHOD OF LINES 285 

Global Extrapolation in Space 

Suppose now that the space interval is divided into i , ( N  + 1) subintervals 
each of width h l i , ,  where A ,  = 2,3, . . . , giving the discretization Gf,, while 
the discretization in time remains the same. Then the solution at the point 
T = t <: + cc of Gl,, when p # y, gives the global error 

Using a similar argument as before, it is possible to define the d~scretization 
Gi2, where i2 = 2,3, . . . with 1, # I,, and generally the discre.ization G:>, 
where A,, = 2,3, ... with i, # i, for every i = 1,2, ..., v- 1. Consider the 
approximation 

and the associated global error, 

where this global extrapolation which uses the v +  1 dLiscretizations 
G:, G:,, .. ., G:, will produce an approximation U ,  defined by (45) which 
will be of order q + 2v + 2 in space provided 

which can be written in matrix-vector form as 
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286 A. G.  BRATSOS AND E. H. TWIZELL 

T where y=[yl,y2 ,..., y,] , i=[1,1, ..., 1IT and 

with det (A) # 0, so system (51) has a unique solution. 
This is a generalization of the work by Twizell and Khaliq [4], who used 

.r = 2 = 2. 

Global Extrapolation in Both Time and Space 

Suppose now that the interval of integration is divided into np, subintervals 
each of width l/pl, where p, = 2,3, ... and the space interval into p,(N + 1) 
subintervals each of width hip, giving the discretization G;:. The applica- 
tion of a convergent method to find the solution at the point T = t < + as 
of G;:, which, when p # q, leads to the global error 

Similarly, it is possible to define the discretization G;:, where p, = 2,3, ... 
with p, # , ~ i ,  and generally the discretization G;:, where p,, = 2,3, . . . with 
p, # pi for every i = 1,2, . . . , v - 1. Consider the approximation 

and the associated global error, 

This global extrapolation which uses the discretizations Gi,  Gi , ,  . . . , Gf will 
produce an approximation U ,  defined by (52) which will be of order 
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METHOD OF LINES 

q + 2v 4- 2 in space, provided 

which can be written in matrix-vector form as 

with det (M) # 0, so system (53) has a unique solution. 

4. NUMERICAL RESULTS 

In order to include the soliton wave as it travels with velocitj c (see also 
Fig. I), the IBVP (1)-(4) was solved numerically using Methods 1-111, with 
initial time to = 0 and boundary lines Lo = -2, Ll = 58. Two separate cases 
for the initial condition (2) were examined. The first with U(x,O) = 0, 
x E ( - 2,58), and the second U(x, 0) = u(x, 0), x ~ ( -  2,58), that is the numeri- 
cal solution is equal to the theoretical solution for to = 0. For the numerical 
solution at the first time step t = I ,  two separate approximations were exam- 
ined. In the first, the approximation 

D
ow

nl
oa

de
d 

by
 [

T
E

I 
of

 A
th

en
s]

 a
t 1

2:
03

 0
5 

Ju
ne

 2
01

5 



288 A. G. BRATSOS AND E. H. TWIZELL 

was used which, for t = to, gives the solution vector U(tl) z U(t, + l), with 
u(x,t,) = f(x) and the partial derivatives obtained from (7). In the second, 
the numerical solution taken to be equal to the theoretical solution for 
t = t, + 1, denoted from now on as U(x, 1) = u(x, I), was used. Integrating 
from time t ,  to time t,,,, the following three cases for the boundary condi- 
tions are considered 

i) u=O for x = L ,  and x = L , ,  
ii) u = u(L,, t,) and u = u(L,, t,), the theoretical solution at time t = t ,  and 
iii) u = U; and u = U;+ ,, the computed solution at time t = t,. 

It was deduced from the numerical results that the most accurate and 
convergent results for all the cases examined were obtained for the initial 
conditions U(x, 0) = u(x, 0), U(x, 1) = u(x, 1) and boundary conditions (ii). 

Let the error, e = en, be the value of u: - UL with maximum modulus 
(m = 1,2, ..., N) at time level t = nl for n =0,1, ... Let the corresponding. 
percentage relative error be E = E, = en x 100/uL, the mean value of the 
errors be t? = 2, = (Cy= ,e,)/n and let x, denote the x-coordinate of the point 
at which e = en occurs. 

Method I 

The IBVP (1)-(4) was solved for kinks (+, +) and (-, - )  with the theoreti- 
cal parameter a and the velocity c having the values a = 0 and c = 0.5. The 
results are given in Table I, from which the following may be deduced 

i) equal errors, e, were obtained for both the above kinks. In Table I, their 
relative errors are denoted by .&+.+I and E ' ~ , - ' .  

TABLE 1 Results of method I for the kinks (+, + )  and (-, - )  with theoretical parameter 
a = 0 and velocity c = 0.5 
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METHOD OF LINES 289 

ii) from the experiments it was deduced that the accuracy was improved as 
the space step was refined with h~(0 .01 ,0 .1] ,  while, when the time step 
was refined, the accuracy was approximately the same (see also Figure 2, 
where the surface shows the errors e from time t = 0 to t = 18 for kinks 
( + , + ) w i t h  a=O,c=0.5, h=0.1 and 1=0.1). 

iii) accurate results were also obtained for the kinks (+, +) for h ~ [ 2 , 3 ]  
given in Table 11. 

The IBVP (1)-(4) was also solved for antikinks (-, +) and (+, -), with 
the same values of the theoretical parameter a and the ve1ocit:y c, and the 
results are given in Table 111, from which the following may be deduced 

i) equal errors, e, were also obtained for both the above antikinks. Their 
relative errors will be denoted by 6 '  +) and E ' + . ~ ' ,  

ii) there was also an improvement in accuracy as the space step was refined, 
with h ~(0.01,0.1],  which did not happen as the time step was refined. 

To examine the effect of the constant a and of the velocity c on the 
numerical results, the JBVP (1)-(4) was solved using Method I for kinks 
(+, +'I to time t = 36. The results are given in Table IV where it may be 
seen that the method diverges when c tends to unity ("fast sol~ton"), while, 
on the other hand, when a increases, the method becomes more accurate. 

0 0 

FIGURE 2 Errors for kmks (+, +)  uslng Method I wlth a = 0, c = 0.5, h = 0. i and 1 = 0.1. 
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A. G. BRATSOS AND E. H. TWIZELL 

TABLE I1 Results of method I for the kinks (+, +) with theoretical parameter 
a =  0 and velocity c = 0.5 

TABLE 111 Results of method I for the antikinks (-, +) and (+, -) with parameter a = 0 
and velocity c = 0.5 

TABLEIV Results of method I for the kinks (+, +) with 
h = 0.05, 1 = 0.01 and t = 36 

The results of the global extrapolation method for the kinks (+, +) 
subject to the stability and convergence restrictions are given in Table V. It 
is obvious that global extrapolation in space gives a significant improvement 
in accuracy when h is refined h/A times, ( 2  = 2,3, ..., 8) and this division 
gives zero remainder. From the experiments it is confirmed that the three 
types of global extrapolation give an improvement in accuracy of a numeri- 
cal method, within intervals of k and/or 1, if the non extrapolated results 
show an improvement in accuracy as h and/or 1 are refined in those 
intervals. 
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METHOD O F  LINES 

TABLE V Results of method I for the kinks (+ ,  +) when a == 0, 
c = 0.5, h = 0.1,1= 0.01 at time t = 36 - 
Grids e / ~  Grids el& 

TABLE VI Results of method I1 for the kinks (+, +) and (-, - )  with a = 0, c = 0.5 and 
H = 2  

I e &+ +) I h t .Ye e 

0.01 0.1 18 0.470D-03 14.80 0.749D-02 -0.953D+01 0.115D-02 
36 0.109D-02 17.30 0.651D-01 -0.237D-01 0.117D-02 

108 0.782D-03 53.20 0.517D-01 -0.164D-01 0.122D-02 

18 0.126D-03 8.50 0.614D-02 -0.296D-02 0.393D-04 
0.01 36 0.130D-03 17.40 0.703D-02 -0.2951)-02 0.863D-04 

108 0.135D-03 53.45 0.694D-02 -0.312D-02 0.118D-03 

TABLE VII Results of method I1 for the kinks (-, +) and (+, -)  with a =: 0, c = 0.5 and 
H = 2 

TABLE VIII Results of method 111 for the kinks (-, - )  with a = 0, c = =  0.5 and 
H = 3  

I t e & + . + I  h x,, 1, 
-- 

0.01 0.1 18 -0.120D-23 57.90 0.999D+02 -0.1 1 ~ID-24 
36 -0.391D- 19 57.90 0.999D002 -0.18!)D-20 

108 -0.442D -01 57.90 O.999D + 02 -O.7l?.D -03 

18 -0.113D-23 57.95 0.996D+02 -O.lO!,D-24 
0.01 36 -0.368D- 19 57.95 0.996D+02 -0.1:'XD-20 

108 -0.416D-01 57.95 0.996D+02 -0.67OD-03 

D
ow

nl
oa

de
d 

by
 [

T
E

I 
of

 A
th

en
s]

 a
t 1

2:
03

 0
5 

Ju
ne

 2
01

5 



A. G. BRATSOS AND E. H. TWIZELL 292 

Methods 11-111 

The IBVP (1)-(4) was solved using Methods 11-111 with the parameter 
values u = 0 and c = 0.5. The results are given in Tables VI-VII, in which H 
indicates the number of iterations necessary for the iterative method used to 
give accuracy of M = for starting value the theoretical value was used 
at each time level. It may be deduced from Tables VI-VII that 

Method I11 has given inferior results to Method 11. More precisely, 
Method 111 has a similar behaviour for the antikinks (-, +), while for 
kinks (+. +) and antikinks (+, -) has given a numerical solution equal 
to zero, 
Method I1 shows an improvement in accuracy as the space step was 
refined with h~(0.01,0.1],  while that did not happen as the time step 1 
was refined. 
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