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Abstract: - The application of mechanical stress on a rock sample can stimulate electric and electromagnetic 
signal emissions. Such emissions can be detected experimentally. In this work, experiments that show up 
Electric and Electromagnetic signal emissions during the application of mechanical stress with various modes, 
are described. The experimental results manifest that such Electric and Electromagnetic signals can be used as 
precursors of the upcoming failure.  
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1 Introduction 
The phenomena of Electric and Electromagnetic 
(EM) emissions that are met when a material is 
about to fail due to mechanical reasons are most 
interesting. Especially when the material under 
study belongs to the class of brittle geomaterials 
and such phenomena are promising candidates of 
earthquake precursors. During the development of 
the deformation, when a geomaterial suffers 
externally applied stress, various mechanisms 
contribute to the generation of electric signal 
emission. These mechanisms are related to the 
crack generation and propagation processes [1-4]. 
Although important similarities exist between the 
fracture of a pristine rock and an earthquake 
rupture, there are also important differences [5].  
This concept is documented and efforts focus on 
two main paths. Theoretical works have been 
introduced in order to model the underlying 

physical mechanisms that can generate transient 
electric and EM signals [4-9]; while concurrently 
several experimental works  have been performed 
to investigate in detail the characteristics of such 
electric and EM emissions [10-17]. The proposed 
theoretical models implicate various stimulus for 
the currents generated during stress application on 
geomaterials. The piezoelectric and electrokinetic 
effects have been studied theoretically [18,19] and 
experimentally [10,20-22] as potential sources of 
the electric and EM emissions but were not 
applicable for quartz free and low porosity 
materials without physical humidity. The dominant 
theory that is applicable for materials that are met 
in the crust of the Earth concerns electric current 
production from crack opening process. This 
process is best described by a summation of the 
underlying physical mechanisms called Moving 
Charged Dislocations (MCD) model [23-26].  
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Several experimental works were conducted to 
evaluate the proposed theoretical models. A critical 
factor of these experimental works is the selection 
of the material under test. Some of the used 
materials exhibit high quartz content favoring 
piezoelectric effect and others contain in their 
volume many connected pores favoring the  
electrokinetic effect since their viscosity permits 
fluid transportation. Electric emissions from 
materials that exhibit low quartz content and 
porosity can only be interpreted by the MCD model 
[14-17]. 
In the present work experimental results that 
connect the time-varying mechanical stress that 
was applied on rock samples to the emitted electric 
and EM signals are presented.  
 
2 Experimental Techniques and 
results.  
2.1 Electrical Measurements  
This work describes the experimental results when 
marble samples were subjected to stress of various 
modes. The marble was selected as a typical 
metamorphic geo-material that can be characterised 
as quartz-free with extremely low porosity and 
physical water content, thus the influence of 
piezoelectric and electrokinetic effects can be 
neglected. The used marbles were collected from 
Mt. Penteli at Attica, Greece.  
 

 
 

FIGURE 1: The experimental apparatus for 
electrical measurements 
 
The experiments were conducted in a Faraday 
shield to prevent electric noise from affecting the 
recordings. The noise-protected system comprised 
a uniaxial hydraulic load machine (Enerpac–

RC106) that applied compressive stress to the 
marble samples. Each sample was placed between 
two thin teflon plates, in the direction of stress, in 
order to provide electrical insulation. The values of 
the externally applied stress were measured using a 
load cell. A pair of electrodes was attached to the 
marble sample, using conductive paste. The 
electrodes were attached in a direction 
perpendicular to the axis of the applied stress (see 
Figure 1). For electrical measurements a sensitive 
programmable electrometer Keithley 617 was used. 
All the recordings originating from the load cell 
and the electrometer, were stored in a PC through a 
GPIB interface. The recorded weak electric current 
emissions are known as Pressure Stimulated 
Currents (PSC). 
During the experiments the stress were applied with 
two modes. At the first mode the sample suffered 
stress with constant stress rate. These experiments 
were repeated for various stress rates. At the second 
mode the samples suffered stress from low levels 
up to fracture and the stress rate was initially high 
and continuously decreasing until the fracture. PSC 
measurements were conducted during these modes 
of stress application.  

 

 
FIGURE 2. Time recordings of: single variation of 
stress (curve a), the emitted PSC (curve b), the 
corresponding stress rate (curve c).  

 
Figure 2 is a typical recording of PSC emission 

(curve a) during a stress stepwise increase (curve b) 
in low stress levels that correspond to the linear 
deformation range [27]. Curve (c) shows the 
corresponding stress rate which, evidently, has the 
same form with the emitted PSC. A proportionality 
factor γ can be used to describe the relation 
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between the emitted PSC and the applied 
mechanical stress rate as follows:  

( )
max

max

dt
dσ

I
γ=    (1) 

where Ιmax is the peak PSC value and (dσ/dt)max is 
the corresponding peak stress rate. 

A large number of measurements of such PSC 
and stress rate pairs were collected for stress values 
that start from the early stress levels up to the 
vicinity of fracture. This process  allows the 
experimental determination of γ and its variation as 
a function of the applied stress by using Equation 
(1).  
Figure 3 demonstrates the dependence of γ on the 
normalized stress σ/σmax, where σmax is the 
sample’s ultimate compressional stress strength and 
σ is the average stress during the stepwise increase 
and is practically equal to the instantaneous stress 
at the time when the maximum stress rate (dσ/dt)max 
is exerted. Figure 3 clearly demonstrates that when 
the applied stress is lower than 0.6σmax, the value of 
γ remains practically constant. According the the 
stress-strain curve of the used marble type, as long 
as the normalised applied stress σ/σmax is lower than 
0.6 the deformation is linearly related to the stress 
and in this range the the material behaves 
elastically and the Young’s modulus remains 
constant. 

 
FIGURE 3: Scaling factor γ with respect to the 
normalized stress. 
 
When the normalized stress exceeds 0.6 the 
material gradually enters the plastic deformation 
range where the Young modulus is continuously 
decreasing with respect to the increasing stress. 
According to the MCD model the emitted PSC can 
be describedby the following law:  

dt
d

Y
1I
eff

σ
⋅∝     (2) 

where Yeff is the effective value of the Young’s 
modulus. and from Equations (1) and (2) it is 
evident that  

γ ∝ 
effY
1

,  

Figure 4 represents the temporal behaviour of the 
PSC when a marble sample is compressed 
uniaxially at a constant stress rate of 20kPa/s up to 
the fracture while the inset diagram show the 
variation of the PSC with respect to the normalized 
stress. The PSC signal was recorded when the 
normalised stress exceeded a value of 
approximately 0.7. At this stress range irreversible 
structural changes occur due to plastic behaviour of 
the material. This observation has been verified 
repeatedly [14, 29-31] since at approximately such 
stress values correspond to the beginning of the 
non-linear range of the material where changes in 
structure are irreversible due to microcracks taking 
place [32-33]. In this range Yeff  is gradually lower 
than Y0. The normalised stress curve at values 
exceeding 0.7 exhibit a smooth ascending 
(according to Equation 2), and it seems to reach a 
maximum value slightly before fracture. The peak 
is not clear because the process develops quickly as 
the stress increase rate is high and the time elapse 
corresponding to the range 0.9<σ/σmax<1.0 is 
relatively short.  
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FIGURE 4: PSC with respect to time, when stress 

at a constant rate is applied. The inset diagram 
shows the PSC vs. normalized stress.  

 
In order to show the peak in detail during the 
fracture process, uniaxial compression at constant 
deformation rate was applied. Figure 5 depicts the 
temporal recording of PSC when the marble sample 
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is subjected to an increase of the uniaxial 
compression at a constant deformation rate of 
0.5 s/mμ . In the same diagram the temporal 
variation of the normalized stress s is represented 
too. When the material enters the non-linear 
deformation range (σ/σmax>0.7) the stress rate 
continuously decreases, and diminishes at σ=1, 
when the sample fails. As can be seen in Figure 5 
the PSC peak at fracture is clearly distinguished. 
The emitted PSC acquires a maximum value and 
consequently decreases; this corresponds to a 
decrease of the PSC rate which becomes 
continuously smaller and slightly before fracture 
(σ/σmax ≈ 0.98) the PSC gets to a maximum and an 
abrupt decrease follows. 
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FIGURE 5: Detailed representation of the 

temporal variations of both PSC (curve a) and 
normalized stress applied on a marble sample 
(curve b) while the deformation rate is kept 
constant. 

 
 
2.2 Electromagnetic Measurements 
 

During these experiments [34-37] the 
electromagnetic emission by rock samples was 
measured from 14 different lithologies: among 
these limestone, lava, granite, metamorphic rock 
and even concrete.  

The samples, all cut in parallelepiped shapes of 
uniform dimensions and fixed height (x,y,z: 
10,10,10 and 8,8,10 cm), have been subjected to 
uni-axial (z) compression up to material fracture by 
means of a hydraulic press operated in regime of 
constant force over time.  
To detect the electric part of the EM field an active 
antenna that operates on the VLF band (0.8 – 12 
kHz) was used. It was positioned at a fixed distance 
of 20 cm from the samples centre, protected by a 
plastic shield from rock debris. The press 

movement was indirectly monitored by a 
capacitance meter acting on a condenser built on 
the press moving plate (see figure 6). This value, 
together with audible sound from rock and VLF 
signals were synchronously recorded by multi-
channel digital sampler. 

A typical VLF–audio measure is reported in 
figure 7: From a qualitative point of view, all 
measured signals are short pulses or pulse clusters 
(section a) that on a larger timescale define the 
observed complex time behaviour (section b). 
 

 
 
FIGURE 6: The experimental apparatus for VLF 
electromagnetic  measurements.  
 

The VLF signals observed can be qualitatively 
categorized in two main classes: Orderly and  
Disorderly Impulsive sequences. (OIS and DIS). If 
we normalize the events time measures with the 
time-to-rupture in a timeline ranging from 0 to 
100%, the OIS usually appear in the first half (0-
50) of the timeline and seem to consist of ordered 
packets of high frequency pulses arranged in time-
repeating patterns. Figure 8 shows a typical OIS 
sequence. The upper half shows the detailed 
structure of the packets that appear almost regularly 
for the entire sequence (lower part). 
The DIS are usually seen in the second part of the 
timeline (from roughly 40-50% on) and seem to be  
random distributed over time with the tendency of 
creating crowded clusters of increasing density 
while approaching to failure. These are the typical 
peaks seen in the above time graphs of figure 7a. In 
part b of the same figure is seen how the DIS peaks 
amount grows up to the reaching of the so called 
“paroxysmal” sequence that precludes to sample 
rupture. Figure 9, finally, shows where usually DIS 
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and OIS signal are located in the measured 
timeline, in both amplitude and frequency domain. 
 

 
 

 
 
 
FIGURE 7: Typical DIS pattern of signals 
observed during the stress of the rock. 
 

 
 
FIGURE 8: A typical OIS sequence 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
FIGURE 9: Time chart of DIS and OIS signal appears in both amplitude and frequency domains  
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3. Concluding Remarks. 
In the above described experiments it was observed 
that rock samples respond to compressional stress 
emitting electric and VLF electromagnetic signals. 
The electric signals support the ideas of MCD 
model while the VLF electromagnetic ones present 
a structure that enables the classification in two 
categories, the so called OIDs and DIS.  
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