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ABSTRACT

The bootstrap, the jackknife, and classical methods are compared
through their confidence intervals for the proportion of affected fetuses in a

common type of animal experiment. Specifically, supposc that for the ith
of M pregnant animals, there are z; affected fetuses out of n; total in the
htter. The conditional distribution of z, given n; 1s sometimes modeled as
binormal (n;, p:), where p; is a realization from some unknown continuous
density. The p; are not observable and it is of interest in some toxicologi-
cal experinents to find confidence intervals for E(p). Theory suggests that
the proposed parametric bootstrap should produce higher order agreement

between the nominal and actual coverage than that exhibited by the usual
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nonparametric bootstrap. Some sunulation results provide additional evi-
dence of this superiornity of the modified paramctric bootstrap over the jack-
knife and classical approaclies. The proposed resampling is flexible enougls

to handle a more general model allowing correlation between p; and n;.

1. INTRODUCTION

Some investigators commonly carry out a toxicological experiment,
where drugs or chemical agents are given to annnals, these animals are
mated, and the endpoint of interest 1s the rate of some effect on the fetuses
or offspring. Usually the aim of such an experiment is to discover the
proportion of fetuses that die or of live offspring that are malformed. Stati-
stical anulysis 1s relatively straaghtforward, but some confusion has oceurred
about the appropriate methods of analysis of the proportion affected: sce
Haseman and Hogan (1975). In the notation of Frangos and Stone (1984), a
treatment is given to M pregnant anunals and the ith annnal has z; affected
fetuses out of n; total in the litter. The conditional distribution of z; given
n; and p; is modeled as binomial (n;, p;), where thie unobservable p; has
a marginal distnbution, ¢(p), with mean pu. For example, ¢ might be a
Beta density with unknown praameters a and b so that 1 = a/(a + b). By

assuming that p; and n; are uncorrelated, the general model is of the form:

E(z|n;) = un;

(1.1)
var(z|n;) = é(n;) ,

for some specific function §(n) of n.

The more general probability model for M independent litters is that
(Xini,pi) i =1,..., M are independent triples from the same population.
The complicating factor is that the p; are not directly observable and arise
fromn densities, ¢, that may differ depending on litter size, 1;. To make this
explicit we write g{pi|n:). This represents a flexible model for litter effect.
For a review of a variety of analyses that have been proposed see Hasernan

and Kupper (1979). Many of these earlier approaches require an assumption
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that the response probabilities, p;, are not dependent upon n;. There are

certainly biological outcomes for which such a rate will be correlated with
litter size. Our proposed resampling incorporates this feature by respecting

the joint of (n;, p;) rather assuming that they are not correlated.

In this article we will be concerned with interval estimation of the
proportion of affected fetuses in the population u = E(x)/E(n). This is
more general than model (1.1), but the definitions of j¢ agree when the
more restrictive assumption is true. Specifically, we compare the classi-
cal large-sample interval estimators with interval estimmators based on re-
sampling methods, particularly the parametric bootstrap mecthod of Efron
(1982, 1987) and the jackknife procedure. For some discussion of classical
approaches in similar contexts, there are obvious relationships to the topic

of estination in survey sampling when the sampling units are obtained from

cluster sampling and the clusters are of random size.

The more challenging problem in this setting 1s to assess the signifi-
cance of dose-response trends. Carr and Portier (1993) review a nuinber of
approaches to this, including a jackknife and a bootstrap. We believe that
progress mn this area will come easier after we have a clear understanding
of inference for the appropriate response rate at a single fixed dose. QOur
proposed bootstrap resampling has several advantages over the ordinary

bootstrap. We discuss tliese in the final section.

2. ‘CLASSICAL' METHODS OF ESTIMATION

We consider two ‘classical” estimators of jt. The pure-binomial esti-
mator 1s denoted by

M Al
ftg = Z:E.‘/N , wlere N = Zn.- : (2.1)
1= 1=1

and the average of rates within each litter by
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1 Al . ) A
1y = * — = DY pi=p. 2.2
MM L TN 2_—;*" ¥ (2:2)

The distinction between fig and j1) is discussed in Frangos and Stone (1984).
If one assumes that there is a single common value of p, then confidence
intervals for g, called C'LS|, may be based on the easily derived result that
(10 — 1)/ 69 1s asymptotically N(0,1) as Af — oo with the n; values bounded,
where 68 = fio{1 — jig)/N. A more general motivation for fig 1s that z/n
results from the plug-in principle. Less restrictively, one may also use the
asymptotic normality of (i, —p) /&, , where 6% = EEI (Pi—p)* /{M(M -1},
to derive alternative approximate confidence intervals that weight litters

equally. These are centered on i) and are denoted by CLS,.

These intervals and resampling intervals will be compared i a simu-
lation in Seetion 7. The jackknife methods are explained in the next section.

Several bootstrap mtervals are deseribed in Sections 4 through 6.

3. JACKKNIFE METHODS OF ESTIMATION

Using the estimator (2.1) as an initial estimator of ji, Gladen (1979)

investigates the jackknife estimator

T,

M

~ .

o) — E I’L,‘*‘"l ; (31)
=1

where

M
K. = ad + (M - l) ol i 1y
N M N —n; N,1 N —mn;
J:
Confidence intervals for i may be based on the familiar result that the
statistics
(foj —n1)/G0;  or  (jig — p1)/6y, (3.2)
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are asymptotically N(0,1) as M — oo, where go; 18 the jackknife esti-
mator of the standard deviation of either jto or fry;. The 100(1 - 2a)%
confidence limits of the form ftoj 2,095 and fig X 2,6y, are denoted by
JIK Ny, which was called “G” in Frangos and Stone (1984}, and JK N, re-
spectively. Results liere and in previous studies indicate that the confidence
intervals JAN, and JK'N; are almost identical with respect to coverage
and expected length.

Hinkley and Wei (1984) apply an Edgeworth expansion to studentized
parameter estimates when the standard error has been computed by the
Jackknife method. In this way they improve the normal approximation for
an estimate 8 of a paraineter 8. In the context of the present problem these
inproved jackknife confidence limits can be described as follows. Consider
the estimator fig of y, and denote by jio,—i(t = 1,2,... M), the same
estimator calculated from the sample with (i, ;) omitted. The jackknife

estimate of the standard error for fig 1s

[
M 2

§ = [Z T2/ {M(M — 1)}] | (3.3)

1=

"y

where I; is a finite sainple estimate of the influence function of fio at the

point (z;,n;), given by
L= (M~ 1)(jio — fio,—i), {(i=1,2,... Af). (3.4)
If V = MS?, then the unproved jackknife (1 ~ 2«) confidence intervals are

(o — 21_aS, fio—12385), (3.5)

wliere

* -1/ s 1 y
2o = 21—a + M & {ﬂn‘f'g'g:i:e(zf-u‘—l)} y

i = - Zfﬁ/‘/ﬁ*" %(M_l fo +2M~* Zngkaik)/f’:’”

1 i t#EX
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Gyz = —(2M ™" fo + M 2 ZZ f;'f;.-@u;)/l:’”"’

Ak

and

Qe = M{M iy — (M = 1)(jio,—i — frg, 1)+ (M ~=2) - jio iy} (1 #1%).

Beran (1984) finds the first-order Edgeworth expansion for the distri-
hution of H]ﬁ(é ~ ). He then estimates the coeflicients of this expansion Ly
jackknifing and obtamns the interesting result that the Edgeworth expansion
15 asymptotically equivalent to the corresponding bootstrap distribution
estimate of 8, to be defined in Section 4. Hencee, he suggests some correc-
tions for skewness and bias to confidence limits for 8. Considering fig as the
estimate of g, Beran’s results lead to 100(1 — 2a)% confidence intervals of

the form
jio = MT{BIAS; + §;SKEW,(22 -~ 1)/6} + M~Y25, . 2., (3.0)

where

|

BIAS; = M™! Y Fi S = M7HM -1)"! S E?,

M= PR+ 3M (M - 1)V S SRR,

. A7 —— -
SKEW, (M =357, FE3/ |

Fi = (M +1)*(jio. 41 — juo) ,
Fij = (M +2)jio (i) — fru} ~ Fi — Fj
F}zFi—R,-/E, and F;jZF,'j—(}’ﬁ,'-i*fﬂj)/ﬂ*f.

The quantities fiy 4; and jig 4 ;) are estimates of 1 based on all the ob-
servations mcluding additional observations (i, n;) and {(zi 1), (x5,n;)],
respectively. The confidence hmits given by (3.5) and (3.6) are called HW J
and JN Ny, respectively.
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4. THE PERCENTILE PARAMETRIC BOOTSTRAP METHOD

Let (z,,n;), (1 = 1,2,... , M} be a random sample from the general
probability model described in Section 1. From this random sample draw a

bootstrap sample parametrically as follows:

Let (z},n}), (: = 1,2,..., M), be a random sample with replacement
from (z;,n;), (i =1,2,... ,M). Draw a samnple (z}*,n*), where n}* = n?
and z;* is distributed according to the binomial DB(n},p;) with p! = 27 /n?,

(:=1,2,... ,M). From the bootstrap sample (23*, nyt), ... (237,137 ), one

il = Z:r:-"/Zn:-” . (4.1)

finds the estimate

‘The above procedure is repeated independently B times and the bootstrap

histogram of the estimates fig, f15s- - o 22 is constructed. Note that an

important feature of this bootstrap resampling is that the piuring of (n;, p;)
Is retained. By not imposing a model for n,p or their joint behavior, this
resampling scheme still has a strong nonparametric flavor even though it

involves the binomial for conditioning x; on n;.

~ Confidence intervals for u are derived by the percentile method using
the 100a and 100(1 — «) percentiles of the bootstrap histogram of i3, (b=
1,2,...,B). This yields the 1 — 2« central confidence inte: val (BPC)

p€[GNa), GT' (1 -a)], (4.2)
where
: #{jig < t)
G(t) = ——F=— (4.3)

1$ the estiinated bootstrap distribution function.

o. THE ACCELERATED BOOTSTRAP METHQD

Efron (1987) introduced an improved version of the bias-corrected
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bootstrap, called BC,, that incorporates both a bias and skewness correc-

tion. In this section we define the method and some variations of it and
construct three B(C, confidence limits for u. For more explanation and il-

lustrations of the method see Chapter 14 of the recent monograph by Efron

and Tibshiram (1993).

We resample parametrically, as in Section 4, B bootstrap samples
(::::'J'-", n:‘;‘) (:=12,... ,M),(j =1,2,...,B), fromthe original data (2, 1),
(t = 1,2,...,M). The central 100(1 — 2a)% confidence iuterval for p# by

the BC, method 1s given by

e {G7H(@(z[a])) , G (P(2[1 - al))} (5.1)
where .
zla) = zg + - _(zu: a) 2y = 45—1[(:,'(] )} 0.2
l—a(zu-—zﬂ) ) { Ho )y, ( -~)
and
1 .
a = ESh EW,=;,(8,) . (5.3)

Here SKEW,_;(X) is the skewness at § = 8 of a random variable X, and

statistic fig.

Efron (1987), approximates a by

1 {4y
6 (S )7

a =

(5.4)

where I; is the influence function of jip at the point (x;,n;). He further

suggests approxumating I; by the infinitesimal jackknife

i = lim (1 —e)F + eda;] — t(F)

¢ —{) €

, (5.5)

where 8 = t(£) is the estimate of 8 = ((F), F is the cumulative distribution

function, F'is the empirical distribution function and éz, is the degenerate

distnibution at the point ..
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In the simulation study of Section 7 we investigate confidence limits,
called BC,,, which are derived from (5.1) using, as an estunate of I;, the
negative jackknife

I = (M — 1) {(jio ~ fto,~:) - (5.6)

Simnilarly, confidence mtervals, denoted by BC\,,, use (5.1) and the positive
jackknife

Ly = (M4 D(jio.4: — fio) - (5.7)

By analyzing the estimate 8 in an expansion for differentiable statisti-
cal functions, von Mises (1947), one can find a higher-order approximation

of I,. Thus,

6 ~0+M™' Y L+27'MEY N Iy, (5.8)
1 ' A

J

where I; and I;; are the first and second-order influence functions of @ at

x; and (;,z4) respectively. From Hampel (1974)

d!

702 (1 — €)F + G =0 = /./I.'j(.l:,y)dci(u:)d(:r'}(y) , (5.9)

where Gi(z) is the degenerate distribution at the point x;. A detailed

analysis of 8 and 8_; using all the terms given i (5.8) gives

2M 3y Falzi za) ~ MIu(zi2) - 5, ¥4 L 5.10
OM(M — 1) o - B0

I'=1I1+

Using the definition of I;; in (5.9) and the approach of Hinkley and Wei

e

(1984), we find the estimate I;; of the second-order influence function for

-

8 = jip, and substitute it together with I; from (5.6) in (5.10). Hence, we find
a second-order approximation of I; and thus a sccond-order approximation
for @ in (5.4). Substituting this in (5.1) produces the confidence intervals

BC,3 which are second-order corrected by means of influence functions.
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6. BOOTSTRAP CONFIDENCE INTERVALS USING A STUDENTIZED
PIVOTAL QUANTITY

It has been shown by Abramovitch and Singh (1985), that bootstrap-

ping statistics of the form 7' = (é — H)/\/uﬁr(é), improves the normal

- . r * - - " * .
approximation. ‘Therefore, it 1s of interest to examine confidence intervals

for ;¢ which are of the form

[ftv — G‘s_l(l — “’)\/“E;;(ﬁﬂ) Y é:](”)\/vﬁ:?;—(ﬁu)] , (6.1)

where G,(2) is the estimated distribution of a studentized pivotal quantity

The distribution of T' is estimated by the bootstrap method. Generate I3

bootstrap samples, as in Section 4, and calculate the quantities

~ b -
T-b _ -_\u'ﬂ' AL,

Joar(id) b

Hence the distribution of T is estimated by G,(t) = #{T*® < t}/B. The

variance of jig 1s estimated by var(fio) = 3, I?/ﬂffz, where [; = I; from (5.6)

or I; = I, from {5.7). Thercfore the 100(1 — 2a)% studentized bootstrap
confidence intervals, (BST) are given by (6.1). If Var(jig) is estimated with

-
—

I;, the confidence intervals are called BST), and if it is estimated with Iy,
the confidence intervals are called BST,.

7. SIMULATION COMPARISONS
Using the IBM 3081-D and the IMSL library (as well as the Con-

vex computer with NAG routines), random samples were generated for a
variety of combinations. To conserve journal space only one is presented.

The general patterns of the results are essentially the same for the others.

Specifically, we exanine
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(1) sample sizes M =15, 20, 30,
(11) each value of n is equiprobably 5, 10, 15,

(i) given n, each z i1s binomial (n, p) with p independently from a Beta

(a, b) distribution with @ = 0,5, b = 5, and
(iv) a run of 1000 independent samples for each of the three sample sizes.

For each of the bootstrap confidence intervals, the same B = 1000 bootstrap

replications were used to estimate each of the relevaut percentiles, following

the general guidelines in Efron and Tibshirani (1993) ( pages 162, 188, 275).

In designing the study we were interested in practical sample sizes.
The hitter sizes (n) were set at an extreme case of a diserete uniform over
nonadjacent values. Comparable results were obtained for n chosen from
(8, 10, 12). Initially, we ran the experiment with larger litter sizes, but
reduced them at a referee’s suggesticn that they could be more realistic.
The patterns in the current table are more pronounced than for the larger
n’s. The specific beta density is monotone decreasing with an expected
value near .09. We were interested in rates away .50, but not approaching
Poisson hmiting cases either. The beta (.5, 5) has adequate variability
to yield noticeably different results from the more simplistic model with
constant p. Comparable results were obtained for expected values of .077
and .067. Naturally, we recommend that one investipates combinations

that differ markedly from these, rather than assuming that our findings
extrapolate to those experiments.

For each sample, the confidence intervals CLS,, CLS,, JKN,, JKN,,
JEKNy, HWJ, BPC, BC,,, BC,;, BC.3, BST,, BSTy, were calculated.
The obscrved coverage and the average length for some of the above confi-
dence intervals are shown in Table 1 for 1 — 2a = 0,90. The patterns are
almost 1dentical for 95% and 99% and therefore they are not reported here.
‘The validity of the nominal confidence coefficient is our primary criterion.
An interval that has actual coverage closer to the nominal will be judged
better. It may be of interest to know at what cost the interval is better
in terms of average length. A reasonable secondary consideration might be

variability of these lengths.
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TABLE I

Approximate Confidence Intervals for Expected Proportions
Estimates of the actual coverage in percent are on the first line and

the average length of intervals are indented on thie second line.

Saunple Size
Method M =15 A = 20 M =30

CLS, 81 83 86
12 10 08
JIL N, 82 84 86
12 10 ()8
JIN N, 80 82 85
11 10 .08
HWJ 83 85 87
12 .10 .08
DP(C 88 88 92
13 12 .10
BC,, 91 91 02
.14 12 10
DBC 4 91 91 02
14 12 10
DST, 91 92 92
17 .14 10

The standard errors of the tabled percentages are approximately .95.
Tlie results involving the positive and negative jackknife ave virtually iden-
tical and thus JKN,, BC,, and BST, arc not included in the table. The
C'LS, and CLS; methods yield poor results, sece Frangos and Stone (1984).
Only the results for CLS, are reported in Table 1, because CLS, had S1g-

nificantly lower undercoverage.

From Table 1 one sees the parametric bootstrap with “corrections”

and BSTy, which uses studentized pivotal quantities, produce the most

BOOTSTRAP CONFIDENCE INTERVALS 841

trustworthy confidence intervals with respect to coverage and length and
specifically outperform the classical methods. Hence the inferiority of the
original bootstrap relative to classical methods, reported by Frangos and
Stone (1984) in an investigation of this same problem, is not present for more
refined applications of bootstrap methodology. We find, also, that there is
not much difference between the Percentile Bootstrap, BPC, and the two
versions of the “accelerated” Bootstrap, BC,, and BC,,. Furthermore, the
second order influence functions do not appear to mprove BC,; enough
to matter in tlus setting. The exception to this occurred for 95% and
99% confidence intervals where the second-order intervals were significantly

better than BPC,

The classical inethod C'LS; 1s as reliable as the jackknife methods. This is
somewhat surprising since the experiment has relatively less between batch
variability, a situation which usually favors iy over ji;. One possible expla-
nation is that in these skewed cases of practical interest, where j is near 0
or 1, the jackknife 11 other settings has been found to need symmetrizing
transformations. Hinkley and Wei's (HW J) “skewness-adjusted” metliod
represents the most iinproved jackknife confidence intervals. However, they

are not comparable to the parametric bootstrap without corrections, BPC.

It is noteworthy that the average lengths of the BST confidence inter-
vals are slightly greater than those produced by the other mnethods. This is
a reasonable price to pay for bringing the true coverage up to the nominal.
However, the samphing variance of the lengths of the confidence intervals
over simulations is much greater for BST than for the other methods. In
Table 1, its vaniance was around 3 times as great as for all the others, which

were approximately the same.

8. DISCUSSION

It has been shown that reliable confidence intervals for an expected
proportion can be constructed using percentile bootstrap methods. This

represents a substantial improvement over the nonparametric bootstrap of
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a cross-validation combination of fiy and ji;, reported by Frangos and Stone
(1984). For discrete data some adjustient to « in (9.4) may be appropriate.
The theoretical foundation for this value involves Edgeworth expansions for
absolutely continuous distributions. The relevant expansions for Bernoulli
trials yield a Berry-Esseen bound of the same order, but we did not in-
vestigate a different a or whether this might iimprove the coverage of the
BC, methods. Further iinprovements may be achieved by the prepivoting
or iteration that Beran (1987) or Hall {1986) advocate, assunuing that the

greater computing tume is warranted.

The key features of the successful bootstrap here are
1) resampling the full known range of the ry, numnely (0,1,...,n),
2) the percentile method,

3) a studentized pivotal quantity or other second-order corrections.

It is appropriate to question the robustness of the present approach if the
binomial model does not hold. It should be conservative if the conditionil
distribution is hypergeometric, as may well be the case in some SUI'VEeY SaIll-
pling or quality coutrol applications. We reconmend retaining feature (1)

cven if one s reluctant to iimpose the binomial wodel,
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