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Healthcare economic evaluation is an analytical tool used with increasing frequency
to assist decision making in the choice and financing of interventions and
technologies in the healthcare system. The objective of this article is to analyze
the different methods of handling with sampling uncertainty in healthcare cost
effectiveness evaluations when patient level data are available. The aim of this
article is to focus on the strengths and the weakness of each method in order to
facilitate the tasks of those who must base their choices on studies of this kind.

Keywords Healthcare evaluation; Sampling uncertainty; Stochastic cost
effectiveness analyses.

Mathematics Subject Classification Primary 92B15.

1. Introduction

Healthcare economic evaluations have been used with increasing frequency in recent
years for the following reasons: (1) the population is aging; (2) the number and the
type of the professionals in the health sector increase; (3) the medical techniques in
every field develop; (4) the financial limitations impose the control of health expenses.

In particular, there is a considerable interest from health providers world-
wide in assessing the cost effectiveness (CE) of new treatments. Pharmacoeconomic
analyses are being used increasingly as the basis for reimbursement of the costs
of new drugs. Reports of these analyses are often published in peer-reviewed
journals. However, the analyses are complex and difficult to evaluate and very little
guidance is given to researchers on exactly how the assessment of the implications
of uncertainty should be done and how the results of the analysis should be
presented. The problem is more serious for the stochastic evaluations (evaluations
using exclusively patient level data). Although there is an increasing trend towards
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Handling Uncertainty in Healthcare Evaluations 1225

conducting evaluations alongside clinical trials, only a small proportion of all
economic evaluations (almost 6%) in the last decade have used exclusively patient–
level data (Briggs, 2001). Nevertheless, the quality criteria laid down by clinical
epidemiologists for clinicians consider randomized trials as the best way to offer
estimates of treatment effects (efficacy).

On the other hand, pragmatic clinical trials are strongly recommended by health
economists to increase external validity and generalisability of the results. So, it is
considered very interesting to focus our study on handling the sampling uncertainty
in the case of cost effectiveness (CE) stochastic evaluations, this type of evaluations
being more frequently used by the researchers than other types of evaluation, such as
cost utility and cost benefit analysis (Pritchard, 2004). In Sec. 2 the general model of
evaluation and the different types of uncertainty that can arise in cost effectiveness
analysis are briefly presented. In Sec. 3, the methods of handling the sampling
uncertainty in stochastic cost effectiveness analysis are discussed when uncertainty is
limited to the III quadrant of the CE plane (estimation of confidence intervals around
Incremental Cost Effectiveness Ratios–ICER’s) and when the uncertainty covers
the more than one quadrant (alternative decision methods based on CE ratios).
A supplementary distinction has been used for the methods according to: (1) the
methods based on the assumption of normality; and (2) the nonparametric and the
Bayesian methods. We will focus our analysis on the most widely used methods.1

Section 4 offers a discussion of the issues raised in the article.

2. The General Model of Evaluation, the CE Plane
and the Types of Uncertainty

2.1. The General Model of Evaluation in Healthcare

We define as general model of evaluation, concerning a subject of evaluation the
quintuplet [S�D�(�i� Ei�>i�i=1�����p� X�·��>D� (Auray et al., 1991) as:

S is the total of situations to evaluate�

D is the observer,

p is the number of �i criteria selected to describe the situations,

Ei is the total of the modalities of the criteria,

�i�>i is a relation of preference complete, reflexive and transitive defined on Ei�

X�·� the descriptor of the S� that is an application of S to

X�·� = �X1�·�� � � � � Xp�·���
E1x · · · xEp�>D is the relation of preference on S constructed by D�

The classical methods (Table 1) for building the preference > D are cost
effectiveness analysis (monetary units/natural units), cost utility analysis (monetary
units/healthy years), and cost benefit analysis (monetary units/monetary units).
Table 2 presents a brief summary of real examples using cost effectiveness analysis
in healthcare evaluations.

1Other methods that are rarely used, such as Bonferonni, Angular Transformations, and
Bayesian (nonparametric) bootstrap, are not discussed in this article.
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1226 Carayanni

Table 1
The classical methods for building the preference >D

Nomenclatures Techniques

Monetary criteria-ONE Cost effectiveness
non monetary criterion

Monetary criteria-and Cost utility (construction of a
non monetary criteria utility function)

ALL criteria are monetary Cost benefit

To construct an evaluation model, the four following concepts will be used.

1. Utility deviation between the situations s and s′ in reference to a criterion.
Given two situations, s and s′ of S, we name utility deviation in reference to �i the
quantity �s� s′� i� defined by:

��s� s′� i� = �ui�s�− ui�s
′��� (1)

where ui is a cardinal utility function.

2. Cost of s in reference to s′. Given two situations, s and s′ of S,

C�s� s′� = ∑
i∈X−�s�s′�

��s� s′� i�� (2)

where X−�s� s′� is the total of criteria for that s′ is preferred than s.

3. Benefit of s in reference to s′. Given two situations, s and s′ of S, is named
utility deviation in reference to a criterion �i the quantity �s� s′� i� defined by:

B�s� s′� = ∑
i∈X+�s�s′�

��s� s′� i�� (3)

where X+�s� s′� is the total of criteria for that s is preferred than s′.

4. Gains of s in reference to s′. If we have two situations, s and s′, is named
gain of s in reference to s′ the quantity G�s� s′� defined by:

G�s� s′� = B�s� s′�− C�s� s′�� (4)

2.2. The Cost Effectiveness Aggregation and the Cost Effectiveness Plane

There are three types of aggregation for the cost effectiveness analyses.

1. Paretian aggregation. A situation s is preferred globally than a situation s′

if the monetary gain procured by the passage of a situation of reference ŝ to s is
better than the gain for s′ and s is more effective than s′:

s >D s′ ⇔ Ĝ�s� ≥ Ĝ�s′� and s �iE s′� (5)

In general, the Ĝ�s� and Ĝ�s′� are negative gains. In this case, it is evident that
the >D isn’t generally a complete relation.
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1228 Carayanni

2. Cost minimization aggregation. We suppose that all situations of S are
equivalents about their effectiveness and we compare monetary gains, that is,

∀s� s′ ∈ S s �iE s′ and s′ �iE s −→ s ≈IE s′� (6)

In this case, the >D is generally a complete relation.

3. Incremental cost effectiveness aggregation and the cost effectiveness plane.
Suppose that we are comparing a new pharmaceutical therapy with an existing
therapy (or control therapy) which represents the better ratio cost effectiveness.
Additionally, suppose that we know the true mean cost 	CN and the true health
outcome 	EN of the new therapy versus the existing therapy (	CS and 	ES ,
respectively). O’Brien et al. (1994) identified four situations that can arise in relation
to the incremental cost and health outcome of therapies:

1� 	CN − 	CS < 0
 	EN − 	ES > 0


situation of dominance for the new therapy. (7)

2� 	CN − 	CS > 0
 	EN − 	ES < 0


situation of dominance for the existing therapy. (8)

3� 	CN − 	CS > 0
 	EN − 	ES > 0


Trade off, according to the paretian aggregation. (9)

4� 	CN − 	CS < 0
 	EN − 	ES < 0


Trade off according to the paretian aggregation. (10)

The proposed model for Cases 3 and 4 is the aggregation incremental cost
effectiveness which, by definition, is:

ICER = 	CN − 	CS

	EN − 	ES

= 	�C

	�E

� (11)

These situations are equivalent to the four quadrants of the cost effectiveness plane,
presented in Fig. 1.

If the new therapy is situated in the quadrant III, the choice of the decision
maker depends on the maximum cost effectiveness ratio that he is inclined to pay
in order to pass from the standard therapy to the new therapy, that is to say from
the maximum sum that he is willing to pay to obtain a supplementary unit of
effectiveness by using the new therapy. Let it be noted RIII is the value.

If the ICER is of lesser value than RIII, then the new therapy is considered as
better than the standard therapy.

If the new therapy is situated in the quadrant IV, the choice of the decision
maker depends on the minimum cost effectiveness ratio which he is inclined to gain
to pass from the standard therapy to the new therapy, that is of the minimum sum
he agrees to pay at the expense of losing a unit of effectiveness by using the new
therapy. Let it be noted RIV is the value.

If the ICER is superior to the ratio RIV, then the new therapy is considered as
if it were better than the old therapy.

It is evident that this rule supposes that we know the real values of the mean
costs and effectiveness used in formula (11). In practice, these values are not always
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Handling Uncertainty in Healthcare Evaluations 1229

Figure 1. The cost effectiveness plane.

known but estimations of the real values can be obtained through the representative
samples.

In fact, we work with the ratio

ICER = ¯̄	CN − ¯̄	CS

¯̄	EN − ¯̄	ES

= ¯̄	�C

¯̄	�E

� (12)

where ¯̄x expresses the point estimation of parameter x.
In what follows, through abuse of the notion but to facilitate the flow of the

writing, we note with the same fashion the parameter in search of estimation and
its estimator.

The point estimation of the standard error in costs and the difference in
effectiveness is given by: √

s2CN
nN

+ s2CS
nS

and

√
s2EN
nN

+ s2ES
nS

(13)

where s2CN , s
2
EN are the estimated variances of the costs and the effects of the new

therapy s2CS , s2ES are the estimated variances of the costs and the effects of the
standard therapy for the samples sizes, nN and nS , respectively.

2.3. Sources of Uncertainty

The next crucial stage for a strength economic evaluation is to handle with the
uncertainty.

We can relate (Table 3) the different approaches concerning the different sources
of sampling uncertainty: similar taxonomies have been described by Briggs (2001), the
US Panel on Cost Effectiveness (Gold et al., 1996; Spiegelhalter et al., 2000).

The first source of uncertainty is the methodology used. This uncertainty concerns
the analytical methods used and the methods selected to value the resource and health
consequences. The use of a reference case of methods in combination with one-way
sensitivity analysis has great appeal in cost-effectiveness analysis, where results of a
study only have meaning in comparison to the results of other studies.
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1230 Carayanni

Table 3
Methods for handling uncertainty in stochastic analyses

Sources of uncertainty Handling uncertainty

Methodology Reference case methods/
deterministic sensitivity analysis

Setting of the study Probabilistic sensitivity analysis
Sampling variations Statistical analysis
(second order uncertainty)

Surrogate outcomes/ Modelling
short term observation

The second source of uncertainty is the setting of the study because that can be
very specific (i.e., a study that was undertaken in a university hospital can include
both higher costs and outcomes than a typical hospital). Consequently, this event
will affect the transferability/generalizability of the results. The use of sensitivity
analysis can be useful for handling this uncertainty. Probabilistic sensitivity analysis
is the more appropriate method if our sample is representative, because we have
parameters that could in principle be estimated from sample data.

The third source of uncertainty concerns the cases where clinical trials collect
information only on surrogate points (i.e., mm Hg blood pressure reduction) and are
observed in the short term rather than on the ultimate health outcomes of interest
(i.e., death, illness). Different types of modelling (i.e., duration models, longitudinal
models, etc.) can be used for these purposes.

Finally, it is evident that, for stochastic CE analyses, the sampling variation
constitutes a source of uncertainty. For handling this uncertainty different statistical
methods have to be used that we will see in Sec. 3.

3. The Methods for Handling the Sampling Uncertainty

3.1. The Methods of Construction of Confidence Intervals Around ICER’s

Here, the methods to handle the sampling uncertainty are discussed when
uncertainty is limited to the III quadrant of the CE plane A supplementary
distinction has been used for the methods according to: A. The methods based on
the assumption of normality. B. The nonparametric and the Bayesian methods.

3.1.1. The Method Based on the Assumption of Normality.

3.1.1.1. The confidence box. O’Brien et al. (1994) showed that the cost
effectiveness plane can be used to present the confidence limits for the estimate of
incremental cost effectiveness (Fig. 2).

The following hypotheses are accepted:

1. Cs, CN , Es, EN are distributed according to the normal function.
2. The sample sizes are >30.
3. 	�C and 	�E are independent.

The area of the shaded box represents the combined area of confidence for a
theoretical example (difference in cost = �15�000, differences in effectiveness = 10
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Handling Uncertainty in Healthcare Evaluations 1231

Figure 2. The confidence box.

lives saved). Im and IM define, respectively, upper and lower limits for the
incremental cost effectiveness ratio (Briggs, 2001).

The principal advantage of this method is its simplicity. One of the principal
disadvantages are assumptions about the normality and of the independence of 	�C

and 	�E .
Additionally, under the assumption of independence, the tangents cover less

than �1− a�100% of the joint probability (Briggs, 2001; Polsky et al., 1997).
A similar approach has been used by Wakker and Klaassen (1995) who have

proposed a modified box method to be used when the difference in the effects
of two therapies differs significantly from zero. Although the method does not
make potentially restrictive assumptions in reference to normality or symmetry, it
implicitly assumes the independence of �E and �C. This method seems to perform
better than the original approach in the case when correlation coefficient between
�E and �C is modest (Briggs and Fenn, 1998).

3.1.1.2. The Taylor theorem. According to the Taylor theorem, it is the ratio
of cost effectiveness that follows a normal distribution well defined.

The approximation of uncertainty by the use of Taylor series has the advantage
that we can estimate the covariance between nominator and denominator.

The Taylor formula in the case of ICER (O’Brien et al., 1994) is presented as:

Var�ICER� ≈ ICER
2
[
Var��	C�

�
2

	C

+ Var��	E�

�
2

	E

+ 2
Cov��	C��	E�

�	C
�	E

]

 (14)

or, according to the definition of the coefficient of variation CV(X) of a random
variable X, and of the linear correlation coefficient ��X� Y� of two random variables
X and Y :

Var�ICER� ≈ ICER
2[
CV��	C�

2 + CV��	E�
2 + 2�CV��	C�CV��	E�

]
� (15)

Then, the knowledge of the variance of the ICER estimator permits to determine
quite classically the confidence interval of the ICER.
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1232 Carayanni

This method appears the more promising in any cases of large samples
(>100) very close to the normal distribution (LASS, 2003) with modest correlation
coefficient between costs and effects. Nevertheless, the assumption of the normality
of the ratio constitutes the mean weakness of the method, particularly in the case
where the sample size is not very large. Additionally, we do always take into account
the probability that the denominator has a value zero.

3.1.1.3. The confidence ellipse. Van Hout and Gordon (1994) argued that the
joint cost and density function might be elliptical in shape (Fig. 3), that is, the costs
and effects follow a joint normal distribution. They assume that the density function
of the couple (�MC , �ME� has the expression:

f��	C��	E� =
1

2�
�	C

�	E

√
1− �2

exp�Q� (16)

where 
�	C
and 
�	E

are, respectively, the standard deviations of �MC and �ME , � is
the correlation coefficient between 	�C and 	�E , Q is defined by:

Q = 1
2�1− �2�

[
�	�C

− 	̄�C
�2


2
�	C

+ �	�E
− 	̄�E

�2


2
�	E

− 2��	�C
− 	̄�C

��	�E
− 	̄�E

�


2
�	C


2
�	E

]
� (17)

where 	̄�C
and 	̄�E

are, respectively, the means of �	C and �	E . Q = constant that
defines the equation of an ellipse centred at �	̄�C

� 	̄�E
�.

Then it is sufficient to draw the ellipse in such a way as the probability of points
belonging to its interior as equal to 0.95 and to draw the tangents issues from the
origin I ′m and I ′M . The interval [I ′m; I

′
M ] can be considered as a confidence interval

of the ICER. Seldom are the studies that evaluate the performance of this method,
probably because of the relative complexity of obtaining the confidence limits. An
internal report of LASS (Laboratoire d’Analyse des Systèmes de Santé) concludes
that the ellipse method is the second most performant after the Taylor method for
sample size = 100 for each arm and for distributions of costs and effects very close
to the normal distribution. On the contrary, Briggs and Fenn (1998) concluded that
this method outperforms the Taylor method, indeed when cost and effect differences
are almost independent and the coefficient of variation of the denominator is small.

The assumption of joint normality in this case is the principal weakness of the
method. The reason is that healthcare costs follow often skewed distribution.

Figure 3. Confidence ellipse on the CE plan.

D
ow

nl
oa

de
d 

by
 [

T
E

I 
T

ec
hn

ol
og

y 
E

du
ca

tio
na

l I
ns

tit
ut

e]
 a

t 0
0:

13
 1

0 
Ju

ne
 2

01
3 



Handling Uncertainty in Healthcare Evaluations 1233

3.1.1.4. The Fieller’s theorem. The Fieller theorem covers a general situation
in that the nominator and the denominator are dependent with a covariance 
=0.
Then, by dividing with the standard error:

	̄�C
− �ICER�	̄�E√


�	C
+ �ICER�2
�	E

− 2�ICER�cov��	E
�	C

�
∼ N�0� 1�� (18)

By setting this expression equal to Z1− a
2
and by rearranging and solving for ICER

this formula leads to define confidence intervals for the ratio as:

�ICER�
1− z2�/2�cv��	C

�cv��	E
�

1− z2��2cv��	E
�2

±�ICER�

1− z�/2

√
cv��	E

�2 + cv��	E
�− 2�cv��	C

�cv��	E
�

−z2�/2�1− �2�cv��	E
�2cv��	E

�2

1− z2�/2cv��	E
�2

� (19)

The advantage of the Fieller method in reference to the Taylor theorem is that
it takes into account the potential asymmetry of the estimator of the ratio and
consequently cannot symmetrically be positioned around the point estimation. In
the majority of existing researches, Fieller’s method outperforms the Taylor method
in cost-effectiveness applications and produces reasonably accurate confidence
intervals in the majority of the cases considered (Briggs et al., 1999; Heitjan, 2003;
Polsky et al., 1997; Tambour and Zethraeus, 1998). Nevertheless, the assumption
of joint normality of the sample means, because of the non robustness of the
sample mean to skewed data, constitutes the principal weakness of the method.
Additionally, if the ICER denominator isn’t statistically significant (Heitjan, 2003)
this method can produce confidence intervals that they should not be used (i.e., the
exterior of an interval).

3.1.2. The Nonparametric and Bayesian Methods.

3.1.2.1. Nonparametric bootstrap. This bootstrap is particularly valuable
when trying to obtain an interval estimate for a ratio of a non symmetric
distribution (Good and Hardin, 2006).

This method includes the following stages:

1. Simple sampling with replacement from each treated group.
2. Count ICER = ¯̄	CN−¯̄	CS¯̄	EN−¯̄	ES = ¯̄	�C¯̄	�E for these new samples.
3. Repeat this operation B times and we will obtain B independent values of

ICER: ICER1� � � ICERB the histogram of which is an empirical estimation of the
distribution of the ICER estimator.

If we assume that the sampling distribution of the statistic is normal, the
confidence interval is based at the distribution of:

ICERB − ICERb


B

(20)
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1234 Carayanni

where ICERB is the estimate of the parameter by the bootstrap sample and


B = 1
B − 1

B∑
b=1

ICERB − ICERb� (21)

It is evident that this method may be seriously misleading if the sampling
distribution is not normal (Briggs et al., 1997).

Alternatively (Efron, 1987), this estimation permits the definition of a
confidence interval for ICER by the 100��/2) and 100�1− �/2� percentile values
of the bootstrap distribution (for example, the 2, 5th and the 97, 5th percentile
give the limits of a 95% confidence interval). Unfortunately, the percentile method
doesn’t perform all that well: for example, the coverage probability can stray from
the nominal value (Armitrage et al., 2001).

One other method for confidence interval estimation is the studentized method.
In this case, each bootstrap replicate of the ICER, is transformed into a
standardized variable:

t = ICERb − ICER
sB

� (22)

where sB denotes the standard deviation of the bootstrap sample. An estimate of the
population variance is required to transform the resultant interval into one about
ICER. That is, bootstrap could be nested within a bootstrap (Briggs et al., 1997).
However, even if the standard error were based on a small value of B, (<30) the
total number of bootstrap samples would become very large, typically 20,000–30,000
(Good and Hardin, 2006).

The bias corrected and accelerated method (Efron, 1987) still uses the ordered
set ICER1� � �ICERB but chooses the a1Bth and a2Bth largest values for the limits of
the interval. These values are defined as:

a1 = �

(
w + w + z�/2

1− a�w + z�/2�

)
and a2 = �

(
w + w + z�1−a�/2

1− a�w + z�1−a�/2�

)
� (23)

where � is the standard normal cumulative distribution function and z��/2� is
the 100��/2� point of the standard normal distribution. Two adjustments to the
percentiles are incorporated into the equation: w adjusts the sampling distribution
for the bias; and the quantity � known as the acceleration adjusts for the skewness of
the sampling distribution. If these are both zero, then �1 = � and �2 = 1− �; the bias
corrected and accelerated method (BCa) method reduces to the percentile method
(Davision and Hinkley, 1997; Efron and Tibshirani, 1993). A weakness of this
method is that the bias correction adjustment while not employing distributional
assumptions concerning the sampling distribution of the ICER itself, does make use
of parametric assumptions concerning the distribution of the observed bias (Mooney
and Duval, 1993). Besides, the evaluations of this method are not especially
favorable: Briggs et al. (1999) by using 480 Monte Carlo experiments (they have
sited the underlying data to be log normally distributed), showed that BCa method
performs better than nonparametric methods but is outperformed by Fieller’s
method. Heitjan (2003) found out that coverage probabilities for this method are
less satisfactory than the Taylor series and Fieller’s method and deteriorates very

D
ow

nl
oa

de
d 

by
 [

T
E

I 
T

ec
hn

ol
og

y 
E

du
ca

tio
na

l I
ns

tit
ut

e]
 a

t 0
0:

13
 1

0 
Ju

ne
 2

01
3 



Handling Uncertainty in Healthcare Evaluations 1235

rapidly as the true values of the ICER get closer to the vertical axis. Additionally,
even with these modifications, the use of the nonparametric bootstrap is not
recommended for samples of fewer than 100 observations (Good and Hardin, 2006).

3.1.2.2. The parametric bootstrap. Parametric bootstrapping is used to
consider more realistic scenarios, most frequently to evaluate the performance of
the other methods to computing confidence intervals. This is done by assigning a
prior probability distribution to each parameter of interest. Essentially, this is a
Bayesian approach, with the model parameters being treated as random variables
(Lord et al., 1999). The bootstrap algorithm entails taking a large number (B) of
samples of size ni, with replacement, from the original cost and effectiveness data,
for each group, by using a defined distribution. These samples permit a confidence
intervals estimation of the ICER. Even when we know something about the form
of the population distribution the use of parametric bootstrap to obtain interval
estimates of the mean cost and effectiveness provides more accurate answers than
nonparametric methods. But, we run the risk of introducing error thought, an
inappropriate choice of parametric framework (Good and Hardin, 2006).

In general, under a Bayesian approach an interval estimate for ICER can be
constructed given that it lies in a particular quadrant. By this approach we can avoid
the problems of mixing ratios that lie on opposite sides of the vertical axis. However,
the choice of the prior distribution is important and often controversial because it
influences the posterior distribution.

3.2. The Alternative Decision Methods Based on CE Ratios

Here, the alternative methods to handle the sampling uncertainty are discussed when
the uncertainty covers the more than one quadrant.

3.2.1. The Net Benefit (NB) Framework. More recently, a number of researchers
(Claxton and Posnett, 1996; Stinnett and Mulahy, 1998; Tambour and Zethraeus,
1998) proposed a rearrangement of the cost-effectiveness decision rule in order to
overcome the different problems associated with ICER’S. For example, the cost-
effectiveness trade off represented by the ratio of two positive differences is not
necessarily equivalent to the trade off represented by an equal ratio of negative
differences.

In this case, the rule is rearranged as follows:

ICER = 	CN − 	CS

	EN − 	ES

= 	�C

	�E

≤ RM 0 ≤ RM	�E − 	�C� (24)

Or, under the assumption that RM 
= 0:

0 ≤ 	�E − 	�C

RM

� (25)

If we note, respectively, NMB, NHB, the point estimations of random quantities
situated on the right side of the inequalities (24) and (25), the result is:

NMB = RM
¯̄	�E

− ¯̄	�C
(26)
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1236 Carayanni

NHB = ¯̄	�E
−

¯̄	�C

RM

� (27)

The advantage of this formulation is that the calculations of the variances of
estimators becomes simple. In detail, we have:

Var�NMB� = R2
MVar�	�E

�+ Var�	�C
�− 2RMCov�	�E

� 	�C
� (28)

Var�NHB� = Var�	�E
�+ Var�	�C

�

RM

− 2
Cov�	�E

� 	�C
�

RM

� (29)

A second advantage is that it is possible to prove that the estimators NMB and
NHB are approximately normally distributed (Briggs, 2001).

Consequently, it is simple to count a confidence interval of NMB and NHB
in function of RM . It is clear that there are relations between NB and Fieller’s
theorems. However, as cost data are often highly skewed and as efficacy data
may not be normally distributed, it can be problematic to fit suitable parametric
models (Hahn and Whitehead, 2003). Löthgren and Zethraeus (2000) proposed two
approaches. The first is based on the assumption that the estimator of NB follows a
normal distribution, but the cost and effectiveness data are not specifically modeled.
The second is based on the bootstrap method and it permits avoiding distributional
assumptions. In a Bayesian approach, the net benefit parameter is treated as random
variable, and that has a joint probability distribution specified prior to observation
of data. The updating of the prior distribution in the light of data, governed by
Bayes’s theorem, leads to the posterior distribution.

Bayesian inference is based on the posterior distribution. From it can be
calculated a 95% Bayesian probability interval for the Net Benefit, given a threshold
value RM . One problem with the net benefit parameter is that it is dependent on RM ,
which is usually not known. One solution to this problem is the cost effectiveness
acceptability curve (Briggs and Fenn, 1998).

3.2.2. Acceptability Curves. Cost Effectiveness Acceptability Curves (CEAC’s),
summarize the evidence in favour of the intervention being cost effective for all
possible values of the RM . That is, this curve measures the probability that the CE
ratio-resulting from a trial is acceptable in comparison to a predefined CE ratio for
all positive values of RM . Under a frequentist perspective (Fig. 4), the acceptability
curve can be estimated by using the NB approach or the ICER approach.

The frequentist approach also can be based either on a parametric or a
nonparametric method.

1. Frequentist approach under ICER. It gives the probability that ICER will be
below the given line price, under parametric:

CEAC�RM� =
∫ +


−


∫ RM�	E

−

f
�	c�	E

��	C� �	E�d�	Cd�	E� (30)

where f�	C�	E
��	C� �	E� denotes the bivariate normal distribution of ��	C� �	E�,

or nonparametric approach, that uses bootstrap replicate of the ICER:

CEAC�RM� =
1
B

B∑
b=1

I�ICER
b

< RM��
b
	E > 0�+ I�ICERb > RM��

b
	E < 0�� (31)
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Handling Uncertainty in Healthcare Evaluations 1237

Figure 4. Acceptability curves on CE plane (frequentist approach).

where I�A� denotes the standard indicator function; that is, 1 if statement A is
true and 0 otherwise.

2. Frequentist approach under Net Benefit. It gives the probability that NB(RM ) is
positive under parametric:

CEAC�RM� =
∫ +


0
f
NB�RM�

[
NB�RM�dNB�RM�

]
� (32)

or nonparametric approach, that uses, respectively, the B bootstrap replicates of
the NB statistic:

CEAC�RM� =
1
B

B∑
b=1

I�NB
b

�RM� > 0� = 1− F�0�� (33)

Under a Bayesian framework, CEAC’s give the probability that an intervention is
cost effective, under ICER or NB approach.

It has been argued that (Briggs, 1999; Briggs and Fenn, 1998; O’Hagan et al.,
2000; Sendi and Briggs, 2001) a Bayesian approach provides a more intuitive
and natural framework for decision making. The prior distribution provides a
framework for incorporating into the analysis information which is additional to
the data from the clinical trial. The main disadvantage is always that it requires the
specification of prior distributions for unknown parameters. However, acceptability
curves can be used by assuming an uninformative prior distribution but, we must
underline that, the precise form of the prior distribution stays important for the
small sample sizes.

The advantage of cost-effectiveness acceptability curves over the approach
of confidence intervals around ICERs is that they unambiguously quantify the
probability an intervention is cost-effective for different RM and they directly
address the study question . The fundamental problem is that important information
about the size of the programme is being lost by using a one-dimensional measure
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1238 Carayanni

of outcome, the RM , to summarize a two-dimensional object, namely the joint
distribution of incremental costs and effects (Sendi and Briggs, 2001).

4. Discussion

The methods of handling uncertainty are in plain evolution during recent years.
However, very little guidance is given to analysts on exactly how this should be done
and how the results of any analysis of sampling uncertainty should be presented.

In the majority of existing researches (but not for the entirety), Fieller’s and
bootstrap methods outperform the Taylor method the confidence ellipse and the
box method and produce reasonably accurate confidence intervals. It seems that the
form of the data as well as the degree and the direction of the correlation coefficient
between differences in costs and effects play an important role to the performance
of these methods. It is evident that normal theory methods are inappropriate and
produce misleading conclusions even when the data are highly skewed.

On the other hand, the fact that a procedure is non-parametric does not
guarantee that it will be robust (O’Hagan et al., 2000). Nonparametric bootstrap
will fail if the sample size is small which is frequently the case in randomized clinical
studies. Parametric bootstrap can be more accurate if we know something about
the population distribution in advance. Nevertheless, we run the risk of introducing
error by an inappropriate choice of parametric framework (Good and Hardin,
2006).

Alternative decision models, such as Net Benefit approach, give statistical
inferences less problematic than inferences on ICER. One problem with the net
benefit parameter is that it is dependent on RM , which is usually not known. One
solution to this problem is the cost effectiveness acceptability curve that summarize
the evidence in favor of the intervention being cost effective for all possible values
of the RM . It has been argued that (Bala and Mauskoff, 1999; Briggs, 1999; Briggs
and Fenn, 1998; Heitjan et al., 1999; Jones, 1996; O’Hagan et al., 2000; Sendi and
Briggs, 2001) a Bayesian approach provides a more intuitive and natural framework
for decision making.

In general, Bayesian approaches are considered as most appropriate in the
context of economic evaluation by a significant number of authors (Bala and
Mauskoff, 1999; Briggs, 1999; Jones, 1996; O’Hagan et al., 2000).

The problem of subjectivity concerning the choice of prior distribution can be
handled by the choice of a non informative prior. However, we must underline that,
the precise form of the prior distribution stays important for the small sample sizes.

The conclusion that can be drawn from the above is that the most significant
factor is to formulate each time the appropriate models on the data and the
information that are available to us. Simple nonparametric methods are not
automatically robust and there is always a chance that they maybe proved
misleading, in relation to the form of the data and the sample size.
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