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Abstract

Writer identi"cation is carried out using handwritten text. The feature vector is derived by means of morphologically
processing the horizontal pro"les (projection functions) of the words. The projections are derived and processed in
segments in order to increase the discrimination e$ciency of the feature vector. Extensive study of the statistical
properties of the feature space is provided. Both Bayesian classi"ers and neural networks are employed to test the
e$ciency of the proposed feature. The achieved identi"cation success using a long word exceeds 95%. ( 2000 Pattern
Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

Handwritten patterns constitute the behavioral part of
biometrics approach towards person veri"cation which is
not invasive in contrast to that of physiological biomet-
rics ("ngerprints or iris characteristics). O!-line writer
veri"cation systems based on signatures have been
studied extensively in the past [1]. A writer veri"cation
system based on handwritten text is expected to provide
discrimination results equivalent to those obtained from
signatures, since text has been reported to comprise rich
and stable information [2]. Furthermore, a handwritten
sentence can be determined and changed by the writer at
will. In high security data systems like those involved in
"nancial transactions, the "rst step towards reaching
a speci"c person's data is usually carried out by means of
the personal identi"cation number (PIN) number. How-
ever, handwritten patterns such as the signature or a
word can be used on a complementary basis to improve
system reliability. In order to increase further the reliabil-

ity of the veri"cation system, many handwritten words
can be used by means of fusion techniques [3].

In general, writer discrimination and veri"cation ap-
proaches based on handwritten text are hardly found in
the literature [4,5]. Security reasons or speci"c law re-
strictions have prevented serious results of signi"cant
importance on the topic from publicity [6]. To the knowl-
edge of the authors few publications are related to writer
discrimination and especially to feature extraction [7,8].
Feature extraction from handwritten text can be carried
out using approaches that resemble those of signature
veri"cation. However, features which contain informa-
tion of the trace of each word are usually preferable.

In this work a writer identi"cation method is pro-
posed, which is based on the use of a single word. The
image of the word is properly preprocessed and projected
onto the horizontal direction. Projection functions have
been used widely in the literature for contour feature
extraction [9,10], signature analysis [11,12] and recogni-
tion of handwritten characters (Latin, Chinese, etc.) and
numerals [13,14]. A projection is a global shape descrip-
tor which provides a kind of line image coding [10]. The
obtained projections are segmented in parts which are
morphologically [15,16] processed in order to obtain the
required feature vector. The morphological processing is
a type of granulometry, i.e. the measure of area reduction
through successive openings [16,17]. Two di!erent types
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Fig. 1. Scanned word samples from the database: (a) English;
(b) Greek word.

of windows are applied on the segments of the projection
functions to control the #ow of information from one
part to the other. The blanks between the letters are also
considered in the formation of the feature vector.

Both the statistical properties of the feature space and
the capability of the speci"c features for writer identi"ca-
tion are extensively studied. This study includes the un-
derlying pdf for the feature vector components as well as
the separability of the clusters in the feature space. For
this purpose a cluster separability measure is proposed
and analyzed. Next, two di!erent classi"cation schemes
are tested. Namely, the Bayesian classi"er and the neural
networks. In the classi"cation procedure, the binary deci-
sion problem (writer veri"cation: is this person he who
claims to be?) and the general classi"cation problem
(writer identi"cation: identify a writer among many
others) are studied. A writer veri"cation error smaller
than 5% is achieved. The error becomes smaller while
increasing feature dimensionality. A database [18] was
created employing 50 writers, while an English and the
equivalent Greek word were used to demonstrate that
the method is language independent.

The paper is organized as follows. In Section 2 the de-
eveloped database is presented. In Section 3 the proced-
ure used for feature extraction is analyzed. In Section 4
the formation of the feature space is explained and cri-
teria for measuring cluster intra-distance and inter-dis-
tance are presented. An extensive study on the statistics
of the feature space is also carried out. Section 5 deals
with the experimental performance of two classi"cation
schemes in the multicategory and the two-category case.
The conclusions are drawn in Section 6.

2. The database and data preprocessing

Data acquisition and preprocessing constitute an es-
sential step towards feature extraction and writer dis-
crimination. Speci"cally, the acquisition stage a!ects the
quality of the image, which in turn determines the relia-
bility of the feature vector and the recognition procedure.
The o!-line procedures dealt in this work give full discre-
tion to obtain good quality images.

2.1. The database

The database employed for writer identi"cation was
created so that two di!erent issues are appropriately
addressed. Firstly, a considerable number of samples was
recorded to ensure the validity of the experimental re-
sults. Secondly, the database was constructed using both
an English and a Greek word in order to show that the
applicability of the feature vector is independent of the
language used. Accordingly, a blank page of size A4 is
divided in 45 shells (15 lines]three columns). Each
writer had to "ll in all the shells of the page with the word

&characteristic' and the shells of another page with the
equivalent Greek word (Fig. 1). The only constraint was
that the writer should write down the words inside the
shells. Fig. 1 shows a word sample by a speci"c writer in
a speci"c shell after the scanning process. For each shell
an image "le with dimensions 230 by 70 pixels is created,
with 256 gray levels. A total of 50 writers has been re-
corded in the database which is available to the research
community through Internet [18].

2.2. Preprocessing

The database is "rstly preprocessed so that the derived
features are as far as possible independent of the writing
conditions. Preprocessing is employed to eliminate re-
dundant information caused by the randomness of
scanning, the di!erence between the pens used by di!er-
ent writers as well as the capability of the paper used to
soak up ink. In all the above cases the use of the most
appropriate image enhancement techniques depend on
operators experience. The preprocessing algorithms ap-
plied in this work are image thresholding and curve
thinning. Due to satisfactory image acquisition condi-
tions, these two algorithms are regarded adequate to
reveal the special characteristics of each writers hand-
writing.

Firstly, thresholding was applied to both English and
Greek words of the database. Histogram thresholding is
used in order to separate gray (word) and white pixels.
The threshold used was between 170 and 180 gray value
for all images. A thresholded result (black and white
image) is shown in Fig. 2a accompanied by its thinned
version (Fig. 2b). The thinning process produces the trace
of the thresholded images with only one pixel width. The
algorithm realizes simple morphological transformations
(openings) with four structuring elements of di!erent
orientations applied successively on the image only once.
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Fig. 2. Preprocessing stage: (a) thresholded image; (b) thinned
image.

Fig. 3. The projection function corresponding to the image of
the word &characteristic'.

Fig. 4. Raw projection functions: (a) function containing blanks
between letters; (b) function without blanks.

Fig. 5. Final projection function resampled to 100 bins: (a) pro-
jection function (PF); (b) compressed projection function (CPF).

3. Feature extraction

The feature extraction procedure is described in this
section. The proposed feature vector is obtained by
means of morphologically transforming the projection
functions of the thinned images. The length of the projec-
tions is "rstly normalized. Afterwards, morphological
openings are applied to the segments of the projection for
feature extraction.

3.1. The normalized projection function

The projection function is derived by mapping the
two-dimensional thinned image to a one-dimensional
function. This function contains information about the
spatial pixel distribution of the word trace along the
horizontal direction. More speci"cally, it is formed by
measuring the black pixels contained in each column of
the thinned image [9}14]. In Fig. 3 the thinned image as
well as the corresponding projection function f (x) are
shown. The zeros of the function which correspond to the
blanks between the letters contain signi"cant informa-
tion about the speci"c handwriting. Accordingly, two
versions of the projection function are created as shown
in Fig. 4. Both functions have been shifted to the origin,
whereas in the second function (Fig. 4b) the zero bins are
eliminated. Furthermore, the length of the function is not
constant even for those samples written by the same
writer. In order to make the feature independent of the
word length the functions are resampled so that the total
number of bins is 100, as shown in Fig. 5. Resampling to
a constant length of 100 points incorporates antialising
procedures and is carried out using a special MATLAB
routine. Both functions are invariant under translation
since they are shifted to the origin. Rotation invariance is
assumed to exist since each person writes along the
horizontal line. Hereafter, the normalized in length func-
tion containing the blanks will be addressed as the
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Fig. 6. The morphological opening on the projection function:
(a) initial projection function; (b) opening with line SE of length
3; (c) opening with line SE of length 7.

Fig. 7. Partition of the region of the projection function f (x) for
feature vector extraction. Rectangular windows. The number of
segments is 5.

&projection function (PF)' while the normalized in length
function without blanks as &compressed projection func-
tion (CPF)'.

The resulting projection functions are of too large
dimensionality to be considered as features for discrim-
ination. It is well known that large dimensionality is the
curse of every pattern recognition technique. In this
work, the information content of both the PF and CPF is
further compressed by means of morphological trans-
formations.

3.2. Morphological transformation and the feature vector

Mathematical morphology [15] is based on set
theory and deals with the interaction of one set called
the structuring element (SE) with the set to be trans-
formed. Information on the characteristics of a binary
object can be obtained by various transformations with
di!erent SE [16,17]. The two basic operations in mor-
phology are erosion and dilation. Erosion (>) of a set
X by a SE B is a shrinking operation de"ned as follows
[15]:

X>B"Y
b|B

X
~b

, (1)

while dilation (=) is an expanding operation

X=B"Z
b|B

X
`b

, (2)

where the subscript denotes geometric translation.
On the other hand, the morphological opening (") is
de"ned as an erosion followed by a dilation with the
same SE

X"B"(X>B)=B. (3)

After an opening operation the original object X has
been smoothed from those details which the structuring
element B does not "t in [17]. This fact can be used to
measure the loss of information when gradually increas-
ing the size of the structuring element. In case of one-
dimensional function, morphological transformations
operate on the umbra [15] of the function f (x) regarding
it as a set. Assuming that the SE g(x) is a line segment
with length ¸ and zero valued in the domain it is de"ned,
erosion and dilation are expressed respectively as

( f>g)(x)" min
z|D

z~x|G

M f (z)!g(z!x)N" min
z|D

z~x|G

( f (z)) (4)

and

( f=g)(x)"max
z|D

z~x|G

M f (z)#g(z!x)N"max
z|D

z~x|G

( f (z)) (5)

where D is the domain of f (x) and G is the domain of g(x).
The morphological opening f " g of the function f by the
SE g is de"ned according to (3). The measurement of the
gradual reduction in the area using openings is called
granulometry or pattern spectrum [16,17] and is used, in
this work, to give the feature vector for writer discrimina-
tion. The di!erences between successive openings denote
the amount of information that is removed by the in-
creasing in size structuring element. In Fig. 6 are shown
graphically the results when successive openings are ap-
plied to the PF f (x) with line SE g (x) of length ¸"3,7,
respectively.

The "nal feature vector is created merely by partition-
ing the projections into a number of segments and
measuring the relative amount of area that the two SE
(with lengths 3 and 7) reject in each block. Fig. 7 shows
the case of segmenting the region of f (x) into "ve sub-
blocks, thus extracting a 10-dimensional feature vector.
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Fig. 8. Partition of the region of the projection function f (x) for
feature vector extraction. Five trapezoidal windows are used.

Generally, the components of the feature vector p are
de"ned as follows

p
i
"C

Mes( f )!Mes( f " g
3
)

Mes( f ) D
i

for i"1 ,2, m (6)

and

p
i`m

"C
Mes( f " g

3
)!Mes( f " g

7
)

Mes( f ) D
i

for i"1 ,2, m(7)

where g
3
and g

7
denote the line SE with length ¸"3 and

7 respectively, Mes(.) is the area under the function in the
argument, i stands for the ith segment of the region of
the function f (x) and m is the partition cardinality. The
feature vector p is similar to the pattern spectrum de-
scribed in the literature [16,17]. Each component p

i
of

the feature vector p describes the pixels allocation along
the trace of the word in each segment. Actually, p

i
de-

scribes the "ne details of the trace while p
i`m

describes
the coarse distribution of the pixels in each segment.
Speci"cally, if the "rst m p

i
's are large enough they reveal

a tendency of the writer to persist in vertical lines. Where-
as, if the rest p

i
's are quite large smoother distribution of

the lines into both directions is expected.
The feature vector components corresponding to the

same segment (i.e. p
i
and p

i`m
) are somewhat correlated.

This will be examined in the next section where
covariance matrix properties are analyzed. Furthermore,
some kind of correlation is expected between neighbor-
ing components p

i
and p

i`1
. This is due to the fact that

information near the edge of the segment is prone to
moving towards the next segment owing to both hand-
writing variations and the resampling procedure. Par-
titioning the functions with overlapping trapezoidal seg-
ments a new feature vector q is derived which is more
stable to information shift. Fig. 8 shows the way the
above idea is implemented in case of partitioning into
"ve segments. Speci"cally, for the evaluation of the area
of a function (Mes(.)) in a speci"c segment, part of the
area of the adjacent segment is considered multiplying by
a trapezoidal instead of a rectangular window. The feature
vectors p and q have been extensively tested as far as the
achieved separability in the feature space is concerned.

4. Feature space statistics and properties

The statistical characteristics of the derived four types
of features are exploited in this section and conclusions
are drawn about their classi"cation capabilities. The ex-
tent of the clusters into the feature space is examined by
means of the eigenvalues of the cluster covariance ma-
trices. Information on the correlation of the features can
also be obtained from these covariance matrices. Next,
the pdf of the features is exploited using the K}S "t test.
The Gaussian pdf is found to be a good candidate for

one of the types of the features employed. For the same
feature, maximum cluster separability in the feature space
is observed. A cluster separability measure is introduced
and analyzed theoretically. This measure is used to assess
writer separability.

4.1. Class covariance matrices

The covariance matrix of a population is a means of
measuring the variance of each component in the feature
space as well as the correlation between the feature com-
ponents. It also provides, in case we are confronted with
high dimensionality data sets, a measure for the intrinsic
dimensionality. Thus, diagonalization procedures pro-
vide the principal components of the orthogonal features
which lie along the eigenvectors of the covariance matrix.
The ability of the above procedure to make apparent the
most dominant components, leads to reduction of the
original feature space.

Evaluating the covariances for every feature type and
for a partition range of 5}10 segments, the maximum
number of dominant eigenvalues is found to be smaller
than eight. The small intrinsic dimensionality of the fea-
ture space results in the following. Firstly, the number of
samples per writer is considered adequate for feature
vector mean and covariance estimation with reduced
bias, thus giving consistent error probabilities. Secondly,
the use of distance as a similarity measure, which is
a mapping to a one-dimensional space, causes small
distortion to the classi"cation information since the
intrinsic dimensionality of the original space is small. The
eigenvalues of the covariance matrix corresponding to
the "rst writer and for a speci"c partition level are given
in Table 1. Additionally, working out the covariances of
all data sets it was found that the eigenvectors corre-
sponding to the minimum eigenvalues di!er from writer
to writer. Consequently, there is not a common base in
the feature space which could be used for simultaneously
rotating all clusters in order to reduce the dimensionality
of the feature space and decorrelate the features.
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Table 1
Eigenvalues of the covariance matrix for writer No.1. The features were extracted using "ve trapezoidal windows

0.0003 0.0005 0.0006 0.0018 0.0032 0.0036 0.0048 0.0069 0.0091 0.0134

Table 2
Correlation coe$cients for features from trapezoidal windows without blanks and compressed projection function

1.0000 0.1078 0.3882 0.3409 !0.3434 0.1286 !0.3043 0.0492 0.1060 0.2510
0.1078 1.0000 !0.0049 0.5087 !0.1226 0.0481 !0.3393 0.0912 !0.0493 !0.0959
0.3882 !0.0049 1.0000 0.1224 0.2385 0.1026 0.0099 !0.1267 !0.1192 0.0631
0.3409 0.5087 0.1224 1.0000 !0.0427 0.6019 !0.0695 0.2438 0.2664 !0.0951

!0.3434 !0.1226 0.2385 !0.0427 1.0000 !0.0825 0.7678 !0.2553 0.2318 !0.1416
0.1286 0.0481 0.1026 0.6019 !0.0825 1.0000 0.0570 0.4989 0.1640 0.0408

!0.3043 !0.3393 0.0099 !0.0695 0.7678 0.0570 1.0000 !0.3006 0.3297 !0.0867
0.0492 0.0912 !0.1267 0.2438 !0.2553 0.4989 !0.3006 1.0000 0.0556 0.4705
0.1060 !0.0493 !0.1192 0.2664 0.2318 0.1640 0.3297 0.0556 1.0000 !0.2697
0.2510 !0.0959 0.0631 !0.0951 !0.1416 0.0408 !0.0867 0.4705 !0.2697 1.0000

A measure of feature correlation can be obtained by
examining the non-diagonal elements of the covariance
matrix. If we de"ne the covariance matrix of a data
cluster C

i
and its elements c

ij
as

c
ij
"EM(x

i
!m)(x

j
!m)tN (8)

where x and m are the feature vector and the sample
mean, respectively, for a speci"c writer, then the compo-
nents r

ij
(correlation coe$cients) of the correlation

matrix R emanate from the relation

r
ij
"

c
ij

Jc
ii

c
jj

. (9)

The above correlation coe$cients were evaluated for the
features extracted using rectangular and trapezoidal win-
dows. Next, the same calculations were carried out for
both the PF and the CPF, respectively. It is concluded
that features are less correlated when rectangular win-
dows are employed. This result was expected since using
trapezoidal windows, neighboring feature components
(e.g. p

3
and p

4
) share a common amount of information.

However, even in the case of trapezoidal windows the
correlation of the features seldom exceeds 0.3, a value
which can be considered to represent weak correlation.
Finally, correlation coe$cients remain almost the same
when the features are coming from functions with or
without blanks between letters. Tables 2 and 3 show the
correlation coe$cients between rectangular and trap-
ezoidal windows for one writer.

4.2. Statistical behavior of the proposed features

The statistics of the feature components and their
agreement with the normal density is examined by means
of the statistical "t tests [20], and especially the Kol-

mogorov}Smirnov (K}S) test [21]. Speci"cally, we have
to disprove, to a certain required level of signi"cance, the
null hypothesis H

0
that a data set follows a predeter-

mined distribution function. Disproving the null hypo-
thesis in e!ect we prove that the data set comes from
a di!erent distribution. On the other hand, proving
the null hypothesis shows that the data set is consis-
tent with the considered distribution function. Other
methods found in the literature for inspecting the form of
a distribution are the Parzen windows and the K-nearest
neighbors [22].

In order to examine the similarity between two
cumulative functions we de"ne D as the maximum
observed value of their absolute di!erence as shown in
Fig. 9:

D" max
~=:x:=

DS
N
(x)!P(x)D (10)

where S
N
(x) is the cumulative function of the sample data

and P(x) is a known distribution function. Under certain
conditions and given that hypothesis H

0
is true, the

Kolmogorov}Smirnov statistic D follows the cumulative
distribution [21]

F
D
(D)"1!2

=
+
j/1

(!1) j~1e~2j2j2, (11)

where j"(JN#0.12#0.11/JN)D and N is the num-
ber of data samples used. We must reject H

0
if D is larger

than a constant c. This constant is determined in terms of
the signixcance level a [20]:

a(c)"PMD'cDH
0
N

"1!PMD(cDH
0
N

"1!F
D
(c) (12)
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Table 3
Correlation coe$cients for features emerging from rectangular segments without blanks and compressed projection function

1.0000 0.1178 0.1286 0.2756 !0.2234 0.2001 !0.3361 !0.0701 0.1524 0.2739
0.1178 1.0000 !0.1017 0.2624 !0.0314 0.0387 !0.3671 0.1033 0.0414 !0.1651
0.1286 !0.1017 1.0000 !0.0616 !0.0765 0.1204 !0.0593 !0.0772 !0.1302 0.0528
0.2756 0.2624 !0.0616 1.0000 0.0510 0.2293 !0.0198 0.0905 0.5343 !0.3166

!0.2234 !0.0314 !0.0765 0.0510 1.0000 !0.1891 0.4613 0.1166 0.3905 !0.1579
0.2001 0.0387 0.1204 0.2293 !0.1891 1.0000 0.1450 0.1656 0.0887 0.1128

!0.3361 !0.3671 !0.0593 !0.0198 0.4613 0.1450 1.0000 !0.3532 !0.0082 0.0637
!0.0701 0.1033 !0.0772 0.0905 0.1166 0.1656 !0.3532 1.0000 0.2982 0.0383

0.1524 0.0414 !0.1302 0.5343 0.3905 0.0887 !0.0082 0.2982 1.0000 !0.3551
0.2739 !0.1651 0.0528 !0.3166 !0.1579 0.1128 0.0637 0.0383 !0.3551 1.0000

Fig. 9. Kolmogorov}Smirnov statistic D.

From Eq. (12) we can determine c for a speci"c signi"-
cance level a. Accordingly, F

D
(c)"1!a veri"es our

con"dence about the validity of H
0
. In practice, for an

observed value D
1

this con"dence is expressed as the
probability D

1
can be of the smallest values of D, i.e.

P(D
1
(D)"1!P(D(D

1
)"1!F

D
(D

1
) (13)

In our experiment a data set of n"45 points (number of
words) was available for each writer and each feature
component for the K}S test to be applied. The value of
D as well as the con"dence about H

0
were evaluated for

500 data sets (50 writers]10 feature vectors) and for
a low-level partition ("ve segments). Fig. 10a provides the
histogram of the measured values of D, while in Fig. 10b
the distribution of our con"dence about H

0
is shown.

The majority of the D's is around 0.1 which corresponds
to a degree of con"dence larger than 75%. Similar results
were obtained using the Greek word. This supports our
claim that for each individual feature component and for

each writer the normal density can be considered as good
approximation to the data.

It is worth mentioning that the best approximation to
Gaussian statistics was achieved by the features derived
using the compressed projection functions and trap-
ezoidal windows in the feature extraction procedure.
Similar experimental procedure was carried out for fea-
tures obtained using rectangular windows and/or the
simple projection function. Normal pdf hypothesis was
not found strong enough in these cases. Hence, the trap-
ezoidal windows are proved to be a natural process
which strengthens the validity of Gaussian pdf for the
derived features.

4.3. Cluster separability measure

A person's handwriting is not precisely repeatable
since it changes with physical and mental state, as well as
with the age [1]. Generally, we can distinguish between
two kinds of handwriting variability. The intraclass
variability which describes the variations within a class
(same writer), and the interclass variability which de-
scribes the di!erences between writers. Ideally, intraclass
variability should be as low as possible, while interclass
variability should be as large as possible. In practice,
classes are not well separated. A quality factor which
indicates the separability between two classes is introduc-
ed here. This quality factor expresses the maximum the-
oretical error in classifying the samples of two clusters
when these two clusters are normally distributed and
intermixed across the line of their larger variances.

Let us consider two normally distributed popula-
tions u

a
and u

b
with two dimensional pdf's p

a
"

N(k
ax

, p
ax

, k
ay
, p

ay
) and p

b
"N(k

bx
, p

bx
, k

by
, p

by
), respec-

tively, and the same a priori probabilities P(u
a
)"P(u

b
).

The above example can easily be generalized for higher
dimensions where real problems are met. Fig. 11 shows
the contour plot of two normal distributions having
variances in x and y axes equal to unity, while their
means are selected so that their Euclidean distance
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Fig. 10. (a) Histogram of D for 500 data sets (50 writers and a 10-dimensional feature vector) using the compressed projection function
and trapezoidal windows. Partition level is 5 and the word used is the English one. (b) The corresponding histogram for the degree of
con"dence (1!F

D
(D)) about the hypothesis H

0
for 500 data sets.

Fig. 11. Contours corresponding to p
i
"1, for two normal

distributions with equal variances and mean distance equal two.
Fig. 12. Decision boundary for the two class problem.

equals two. Inside each individual circle lies 60% of the
samples.

We seek a quantity which would express the separ-
ation between these two populations. This separation is
easier when the populations are quite distant and
the dispersion of each one is small. In order to measure
the distance between two populations, we use the Euclid-
ean distance of their means, whereas the dispersion
of each population is measured using the largest
eigenvalue j

imax
of its covariance matrix. This eigenvalue

is related to the length of the largest semiaxis of the
cluster hyperellipsoid and the corresponding standard
deviation Jj

imax
"p

imax
. Thus, we introduce the ratio

R in order to express the separability of two classes as

follows:

R(a, b)"
D(m

a
, m

b
)

Max(Jj
a
)#Max(Jj

b
)
, (14)

where D(m
a
, m

b
) is the Euclidean distance of the popula-

tion means and Max(j) is the maximum eigenvalue for
each class. In the worst-case scenario (maximum classi-
"cation error), the eigenvectors of the covariance matrix
which correspond to the greatest eigenvalues lie in the
direction Mm6

a
!m6

b
N as shown in Fig. 12. The separability

ratio R in this case is theoretically calculated as

R
T
"

D(m
a
, m

b
)

Max(Jj
a
)#Max(Jj

b
)
"

m
b
!m

a
p
a
#p

b

(15)
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Fig. 13. Histogram of R for all pairs u
1

and u
2

obtained from 50 writers and the English word. Partition level is 5 (10-dimensional
feature vector). (a) Features from compressed projection functions and trapezoidal windows. (b) Features from compressed projection
functions and rectangular windows. (c) Features from simple projection functions and rectangular windows. (d) Features from simple
projection functions and trapezoidal windows.

and the maximum theoretical error when the above situ-
ation holds is taken from
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b
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where the a priori probabilities P(u
a
) and P(u

b
) are

considered equal to 0.5 and the bivariate densities p
a
and

p
b
are decorrelated. This way p

a
and p

b
are separable with

respect to x and y so that Eq. (16) becomes
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This integral becomes minimum for p
ax
"p

bx
when

s is placed in the middle of m
bx
!m

ax
[22]. In this

case, s equals (m
ax
#m

bx
)/2 and using Eqs. (15) and

(17) becomes after some mathematical manipulations
[24]

P(error)"0.5!0.5erf A
R

J2B. (18)

Using simple MATLAB routines the theoretical max-
imum classi"cation error is found to be 16.5% for R"1
which is the case described in Fig. 11. For R'1 or in
case that the clusters higher dispersion is not in the
m6

a
!m6

b
direction, the success is expected higher.

Experimentally, the proposed quality factor R was
evaluated for each feature type, considering u

1
as the

writer under examination and u
2

as the set of all the
other writers (totally 49). The u

2
class can be viewed as

noise which must be rejected from the genuine classes u
1
.

A low-level partition was used ("ve segments) for the
projection functions. The results are shown in Fig. 13.
From this "gure it is obvious that the highest values of
R (higher separability) are obtained when trapezoidal
windows and compressed projection functions are em-
ployed (Fig. 13a). Therefore, the experimental classi"ca-
tion procedure in the next section is carried out using
only the corresponding type of features.

5. Classi5cation approaches and discrimination results

In order to evaluate the performance of the proposed
features for writer discrimination, a comparative study is
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carried out by means of two well-established classi"ca-
tion schemes. The conventional Bayesian approach using
weighted distance measures is examined "rst. The simple
multilayer perceptron is tested, next.

In biometrics the most common issues concerning the
e!ectiveness of features, which potentially describe the
behavior of a person, are identi"cation and veri"cation. In
the "rst case, an unknown sample is classi"ed among a
number of writers thus answering the question `who does
this sample belong to?a. The latter case deals with the
problem of deciding whether a word or text belongs to
a speci"c writer or not. So, the question arising here is
`does that sample belong to that specixc person?a. In both
cases, the classi"cation approach followed was to employ
the database described in Section 2 and form the feature
space and the corresponding covariance matrices. The
word under test is assigned to a speci"c writer based on
the distance of the feature vector from the corresponding
cluster center.

5.1. Classixcation using Bayesian approach

According to the material exposed in the previous
section, the Gaussian pdf is a satisfactory approximation
regarding one set of the features. For this same feature,
the maximum separability in the feature space is achieved
based on the ratio R. In this subsection, the identi"cation
problem is considered using this particular feature. The
classi"cation criterion is based on the weighted distance
from the center of each cluster

d
i
"(x!m

i
)tC~1

i
(x!m

i
), (19)

where m
i

is the center of each cluster, and C
i

is the
corresponding covariance matrix. In case that each C

i
equals I, the Euclidean distance is obtained. The esti-
mation of m

i
and C

i
constitutes the training procedure of

the conventional Bayesian classi"er.
For the 50-writer group, the classi"cation procedure

was based on the leave-one-out-method [22]. According
to this method the covariance matrix C

i
as well as the

center m
i
of each cluster in the feature space are found

using 2249 points. Then the remaining point is assigned
to the writer with the minimum d

i
. The procedure is

repeated for all 2250 points of the feature space. Both the
mean and the covariance must be determined every
single time. However, methods have been developed and
used here that overcome the problem of designing
N"2250 classi"ers [23]. This is done by properly
weighing the mean and the covariance of each class using
the following relations:
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where MK
ik
, RK

ik
are the mean and covariance estimates of

the i-class without the X(i)
k

sample, N
i
is the class popula-

tion, and MK
i
, RK

i
are the estimates when all the samples

are used. The method was applied to both the English
and the Greek word. The partitions (number of segments)
employed in order to examine the e$ciency of the feature
vector were 5, 6, 7, 8, 10, 12 and 15 leading the dimen-
sionality of the feature space to 10, 12, 14, 16, 20, 24, and
30, respectively.

The experimental results of the above 50-writer identi-
"cation procedure are presented in Table 4a and b. The
total identi"cation success was found 92.48% for the
English word and 92.63% for the Greek one. This is
considered satisfactory for simultaneously discriminating
50 writers and using only one word. It has been observed
that beyond a partition level (which in our case is 10) the
feature e$ciency drops drastically. This is due to the fact
that there exist highly correlated feature components,
a large number of which is zero. This makes the calcu-
lation of the weighted distances impossible. Therefore,
only the Euclidean distance can be used which, however,
results in a poor success rate.

The veri"cation problem was experimentally studied
in the following way. For each writer, two di!erent
classes were de"ned. The "rst class (u

1
) contained the

genuine samples of the speci"c writer, whereas the other
(u

2
) contained the samples of the remaining 49 writers.

Thus, a total of 50 pairs was formed and evaluated. For
each pair the individual cluster centers m

i
(i"1, 2)

and covariance matrices C
i
(de"ned as previously) were

evaluated using 2249 out of the 2250 points in the feature
space. After that, the remaining point was classi"ed into
one of the two classes (writer i or not) based on the
minimum weighted distance as (19) indicates. The leave-
one-out-method was repeated 2250 times. The type of
feature achieving the maximum identi"cation rate
(Table 4, 10 segments partition) was used in this experi-
ment, as well. The results are presented in Table 5. The
veri"cation error is of the order of 5% for both words
when the weighted distance is used. The mean value of
R was evaluated for the 50 writers in order to have an
approximate measure for the veri"cation rate. However,
it is noted that the classi"cation error is much smaller
than that determined by the separability measure R, since
the orientation of the cluster hyperellipsoids in the fea-
ture space, in general, is di!erent from the direction
de"ned by the line m6

i
!m6

j
.

5.2. Classixcation using neural networks

The performance of the neural network classi"cation
scheme is investigated in case of the general identi"cation
problem using 50 writers. So, the capability of the
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Table 5
Classi"cation results for binary decision problem (veri"cation): partition level is 10

Language and similarity
measure used

Mean separability
measure R

Maximum expected classi"cation
error based on R (%)

Experimental classi"cation error (%)

English Euclidean 0.75 22.30 12.25
English weighted 0.75 22.30 6.35
Greek Euclidean 0.79 21.01 14.73
Greek weighted 0.79 21.01 5.57

Table 4

(a) Identi"cation rate in 50 writers case: English word

Partition
level

5 6 7 8 10 12 15

Euclidean
distance

48.18 46.70 54.85 56.14 56.74 51.22 44.29

Weighted
distance

69.51 71.59 80.77 87.59 92.48 X X

(b) Identi"cation rate in 50 writers case: Greek word

Partition
level

5 6 7 8 10 23 25

Euclidean
distance

50.85 55.30 58.56 59.41 63.74 65.22 60.57

Weighted
distance

70.85 77.37 83.89 86.11 92.63 X X

Table 6
Classi"cation results for the general identi"cation problem using
the neural network approach: partition level is 10

Language Classi"cation success

English 1061/1100 (96.5%)
Greek 1069/1100 (97.0%)

network to separate the feature space and correctly clas-
sify the majority of the samples is tested. The classi"er
employed was a three-layer neural network with 20 neur-
ons for the input and the hidden layer. The 20-dimen-
sional feature vector (10 level partition was used) was
inserted into the input layer. The output layer consists of
six neurons. Consequently, the six-bit binary number at
the output of the network will point to one of the "fty
clusters. The network was trained using half of the sam-
ples (1150). The rest samples (1100) were used to test the
network in the discrimination procedure. The method
was applied to both the English and the Greek word. The
classi"cation results obtained by means of this procedure
are given in Table 6. The identi"cation error is in the
order of 3.5%. It is noted that the identi"cation success is
higher than that obtained using the classical Bayesian
approach followed previously. This is due to the fact that
employing neural networks the feature space is divided
into decision regions independently of the underlying
cluster statistics. The training procedure terminates when
the sum of squared errors becomes quite small as it is
shown in Fig. 14. Actually, this error may be relatively
large when it is used as a criterion for stopping the

training of the network, especially when the number of
training samples is small and the clusters are not well
separated in the feature space [19]. Therefore, it is prefer-
able to train the network so that the best performance
from the available samples is achieved by allowing the
error to become as small as possible through several
epochs.

The veri"cation issue, which means separate one clus-
ter from the rest 49, can be solved much easier using
a simpler neural structure. This happens because the
feature space is to be separated into two di!erent regions
only. The experimental results acquired were better than
those taken when solving the general identi"cation prob-
lem. However, for each writer a di!erent network is
required. Cumulative experimental results are shown in
Table 7. The veri"cation error is of the order of 2%.

6. Conclusions and discussion

A new feature vector is proposed for writer discrimina-
tion by means of morphologically transforming the pro-
jection function of a word. This waveform is a description
of the way the pixels of the word are distributed along the
direction of projection. The feature vector is formed
ignoring the blanks between the letters since in this case
the separability of the clusters is better. Furthermore, the
use of trapezoidal windows (segments) for the formation
of the feature vector results in Gaussian statistics and
higher separability in the feature space. An extensive
study for the statistics (pdf ) of the feature components
was provided using the Kolmogorov}Smirnov "t test.
The dimensionality of the feature vector is determined by
the length of the word, the number of SEs used to process
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Fig. 14. Sum of squared errors in the identi"cation problem: English word. Partition level is 10.

Table 7
Cumulative experimental results for the veri"cation problem
using the neural network approach: partition level is 10

Language Classi"cation success

English 1075/1100 (97.7%)
Greek 1085/1100 (98.6%)

the obtained waveform as well as by the number of
segments the original image is divided into (partition
level).

A database was built to test the discrimination capabil-
ities of the proposed feature. Fifty writers were employed
for this purpose and two di!erent words of the same
length were used, an English word and the corresponding
(same meaning) Greek one. It is shown throughout the
paper that the identi"cation results obtained using these
two words are equivalent, which means that the prop-
osed feature is independent of the language used. The
database can be accessed by any researcher though the
Internet.

The classi"cation results obtained using the proposed
feature can be considered satisfactory given that only one
word is employed for writer discrimination. Two di!er-
ent classi"cation schemes were tested, namely, the con-
ventional Bayesian classi"er and the neural networks.
The veri"cation problem was solved considering the
writer to be veri"ed as belonging to class u

1
, while the

rest of the writers form the class u
2
. The veri"cation error

using the Bayesian approach is in the order of 5% as
shown in Table 5. It is shown in Table 7 that using the
neural nets this error becomes quite smaller (2%). In the
general identi"cation case, where each class corresponds
to a di!erent writer, the classi"cation error is in the order
of 7% as shown in Table 4. The corresponding error
when neural networks are employed is found to be 3.5%
(Table 6). All experimental results were obtained using
a 20-dimensional feature vector, which corresponds to

a 10-level partitioning. For this partitioning the highest
identi"cation rate was acquired for the speci"c length of
the words in our data base (Table 4).

Furthermore, it was proved that the components of the
proposed feature vector are correlated (Tables 2 and 3).
Thus, the intrinsic dimensionality of the feature space
which can be obtained using the eigenvalues of the
covariance matrices is small (Table 1). In order to avoid
a complicated theoretical analysis to test the separability
of the clusters in the feature space employing the
covariances and the correlation of the features, a separ-
ability measure was proposed described by Ref. [14].
This measure was statistically analyzed and used success-
fully throughout the experiments (Table 5).

The computational load required to carry out the
whole procedure can be divided into two parts. The
feature extraction step and the classi"cation process.
Feature extraction, which is the main objective of this
paper, is performed in milliseconds for each of the words
in our database, using MATLAB routines (for thresh-
olding, thinning, projecting and resampling) and simple
min}max "lters for morphological transformations. The
computer system used was a Pentium-133 running
Windows-NT and MATLAB 5. The time required
to perform classi"cation depends on the method
employed (Bayesian or Neural) and the training proced-
ure (leave-one-out-method, back-propagation, etc.). The
training procedures in our experiments were of the order
of minutes.

For further classi"cation improvement more than one
word can be used by means of fusion techniques [3].

7. Summary

In this work a writer identi"cation method is pro-
posed, which is based on the use of a single word. A new
feature vector is employed by means of morphologically
transforming the projection function of the word. First,
the image of the word is properly preprocessed (thresh-
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olded thinned) and then projected onto the horizontal
direction. The obtained projections are segmented in
parts which are morphologically processed in order to
obtain the required feature vector. The morphological
processing is a type of granulometry. Two di!erent types
of windows are applied to the segments of the projection
to control the #ow of information from one part to the
other. The blanks between the letters are also taken into
consideration in the formation of the feature vector.
An extensive study for the statistics (pdf) of the feature
components is provided employing the Kolmogorov}
Smirnov "t-test.

The identi"cation success depends on the dimensional-
ity of the feature vector which in turn depends on the
length of the word, the length of the SEs and the partition
level. Furthermore, it is proved that the components of
the proposed feature vector are correlated. In order to
avoid a complicated theoretical analysis to test the separ-
ability of the clusters in the feature space, a separability
measure is proposed. This measure is statistically ana-
lyzed and used successfully throughout the experiments.

A database was built to test the discrimination capabil-
ities of the proposed feature. Fifty writers were employed
for this purpose and two di!erent words of the same
length were used, an English word and the corresponding
(same meaning) Greek one. It is shown throughout the
paper that the identi"cation results obtained using these
two words are equivalent, which means that the pro-
posed feature is independent of the language used. The
database can be accessed by any researcher through the
Internet.

The capability of the proposed feature for writer dis-
crimination is extensively studied. Two di!erent class"-
cation schemes are tested, namely, the Bayesian classi"er
and the neural networks. In the classi"cation procedure
the binary decision problem and the general classi"ca-
tion problem are studied. The classi"cation results ob-
tained using the proposed feature can be considered
satisfactory given that only one word is used for writer
discrimination. The veri"cation error using the Bayesian
approach is of the order of 5%, while for the neural nets
this error becomes quite smaller (2%). In the general
identi"cation case the classi"cation error is of the order
of 7%, whereas the corresponding error when neural
networks are used is found to be 3.5%.
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