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Image registration of multimodality images is an essential task in numerous applications in three-
dimensional medical image processing. Medical diagnosis can benefit from the complementary
information in different modality images. Surface-based registration techniques, while still widely
used, were succeeded by volume-based registration algorithms that appear to be theoretically ad-
vantageous in terms of reliability and accuracy. Several applications of such algorithms for the
registration of CT–MRI, CT–PET, MRI–PET, and SPECT–MRI images have emerged in the
literature, using local optimization techniques for the matching of images. Our purpose in this work
is the development of automatic techniques for the registration of real CT and SPECT images,
based on either surface- or volume-based algorithms. Optimization is achieved using genetic algo-
rithms that are known for their robustness. The two techniques are compared against a well-
established method, the Iterative Closest Point—ICP. The correlation coefficient was employed as
an independent measure of spatial match, to produce unbiased results. The repeated measures
ANOVA indicates the significant impact of the choice of registration method on the magnitude of
the correlation~F54.968,p50.0396!. The volume-based method achieves an average correlation
coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380
with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396
with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs
significantly better compared to both ICP~p,0.05, Neuman Keuls test! and the surface-based
technique~p,0.05, Neuman–Keuls test!. Surface-based registration and ICP do not differ signifi-
cantly in performance. ©2002 American Association of Physicists in Medicine.
@DOI: 10.1118/1.1445412#
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INTRODUCTION

In medical imaging, registration between two-dimensio
~2-D! or three-dimensional~3-D! images is a common prob
lem encountered when more than one image of the s
anatomical structure is obtained, either using different im
ing modalities or performing dynamic studies. In all cas
the information present in the different images must be co
bined to produce fused or parametric images. Registra
can be performed between two modalities with anatom
information ~CT–CT or CT–MR!, between anatomical at
lases~a 3-D model image with certain areas clearly labe
in advance1! and functional studies~CT–PET, CT–SPECT
MR–PET, etc.! or between images of the same modali
taken at different times. Comprehensive surveys of med
image registration can be found in van den Elsenet al.2 and
Maureret al.,3 in terms of imaging modalities and employe
techniques.

The process of image registration can be formulated a
problem of optimizing a function that quantifies the mat
201 Med. Phys. 29 „2…, February 2002 0094-2405 Õ2002Õ29
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between the original and the transformed image. Several
age features have been used for the matching process
pending on the modalities used, the specific application,
the implementation of the geometric transformation. The r
istration process can be divided into three main categor
point-based, surface-based, and volume-based methods

Point-basedregistration involves the determination of th
coordinates of corresponding points in different images a
the estimation of geometrical transformation using these c
responding points. Such points can be defined using exte
markers placed on the patient’s skin before the acquisitio4

stereotactic frames,5 landmarks,6 and the bone marker proce
dure, a technique that is exploiting the fact that bones
areas in the immediate vicinity can be registered by ri
transformation.7 External markers have been used to regis
SPECT–MR images with the affine transformation metho8

and CT–MR data with 3-D global transformations.9 The low
resolution along the transverse axis, the small number
corresponding markers, as well as possible inaccuracie
their placement during the acquisition from each modal
201„2…Õ201Õ13Õ$19.00 © 2002 Am. Assoc. Phys. Med.
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render these methods as semiautomatic resulting in ina
racies and inconsistencies.

Surface-based registrationinvolves the determination o
surfaces of anatomical structures that exist in both ima
and the minimization of a distance measure between th
corresponding surfaces. The surfaces are generally re
sented as set of large number of points obtained by segm
ing contours in contiguous image slices. Certain surfa
based registration techniques may require the points of
surface to be triangulated.10 The difference between point
based and surface-based registration algorithms is that p
correspondence is defined by the user for the form
whereas in automatic for the latter. Pelizzariet al.11 intro-
duced the idea of using surfaces to register brain image
obtaining a rigid body transformation, which when applied
‘‘hat’’ coordinates~points that belong to the skin surface
the scan with the lower resolution! minimizes a residual tha
is the mean square distance between ‘‘hat’’ points a
‘‘head’’ surface ~a stack of skin contours from the highe
resolution scan! using an optimization technique describ
by Powell.12 The Euclidean distance between a point of
image and the closest surface point is used in the work
Kozinskaet al.13 as a closest point projection rule, where
the integer approximations of the Euclidean distance as
as its highly computation cost required were improved
using the well-known chamfer distance transform.14 This
method was then applied to medical image registration.15,16

Besl et al.17 presented a general purpose registration te
nique called the ‘‘Iterative Closest Point method,’’ which w
extended and implemented toward medical applications.18,19

Volume-based registrationinvolves the optimization of a
quantity measuring the similarity of all geometrically corr
sponding voxel pairs, considering some predefined featu
Multiple volume-based algorithms have been proposed,20,21

optimizing a measure of the absolute difference between
age intensities of corresponding voxels within overlapp
parts in a region of interest. These methods were base
the assumption that the two images are linearly correla
which is not the general case. Cross correlation of fea
images derived from the original image data has been
plied to CT–MR modeling using geometrical features, su
as edges22 and ridges23,24 or using specially designed inten
sity transformations.25 Misregistration was measured by th
dispersion of the 2-D histogram of the image intensities
corresponding voxel pairs, which was assumed to be m
mal in the registered position. Studholmeet al.26 criterion
required segmentation of the images or delineation of s
cific histogram regions, while the Woodset al.27 criterion
was based on an additional assumption concerning rela
ships between the gray values in the different modalities
reduce the complexity. Collignonet al.28 and Maeset al.29

introduced the mutual information~MI ! registration criterion,
measuring the statistical dependence between two ran
variables or the amount of information that one variable c
tains about the other. The MI of the image intensity values
corresponding voxel pairs was maximal if the images w
geometrically aligned. A comparative study between surf
and volume-based registration algorithms was recently p
Medical Physics, Vol. 29, No. 2, February 2002
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lished by Westet al.,30 which indicates that the volume
based techniques tend to give more accurate and reliabl
sults when the CT–MR images are registered, and slig
more accurate results for the PET–MR images. The rea
lies with the fact that surface-based registration methods
quire well-defined corresponding surfaces prior to regis
tion.

In this paper, a comparative study of two automatic re
istration methods is presented and applied on a numbe
pairs of clinical three-dimensional~3-D! CT–SPECT brain
images in order to establish a usefulness method for the
tomatic registration of the data from these modalities. T
first method is surface based and it is used to automatic
register the inner skull surface of the CT with the outer br
surface from the SPECT data. The second developed t
nique is a volume-based one, and utilizes the MI from
two images to be registered. Both methods exploit the o
mization efficiency of genetic algorithms~GAs!, as a global
optimization technique, combined with a local one, such
the Powell technique, in obtaining the parameters of the
fine transformation for the automatic registration of CT a
SPECT images. Furthermore, these two proposed autom
registration methods are compared against a well-establis
registration method, the Iterative Closest Point~ICP! method
and their performances are validated qualitatively and qu
titatively. The advantages of the volume-based registra
method, as finally proposed to automatically register CT a
SPECT data, include stability and repeatability of perf
mance, speed of execution, independence of clinical pr
col, and robustness due to the employed genetic algorit
as an optimization process.

For the present study we selected patients suffering fr
ischemia ~acute–chronic–transient! and patients with sub-
arachnoid hemorrhage.

It is well known that in brain ischemia SPECT is able
provide an early diagnosis, while CT better describes
anatomic features. Our study strengthens our belief that
istering the two images gives us the opportunity to estim
more accurately the extent and the position of the lesi
resulting in a more accurate diagnosis, prognosis, and co
quent treatment.

DATA ACQUISITION

X-ray CT and SPECT brain images were acquired fro
five ~5! patients~five pairs of data! at the Radiology and
Nuclear Medicine Departments of the University Hospital
Patras, Greece. CT datasets were acquired with a Som
Plus 4 Power scanner~Siemens, Erlangen! at 120 kV and
180 mAs without administration of contrast media. Sli
thickness was set to 3 mm, feed was 3 mm/s, and the re
of interest was about 13 cm. Reconstruction was perform
with a soft kernel algorithm and the 5123512 pixel slices
with 12 bits per pixel were degraded to 1283128 for the
coregistration process. Thus, a linear interpolation techni
was applied to the CT data to reduce the memory requ
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203 Kagadis et al. : A comparative study 203
ments and the total execution time for the registrat
process.31 There was no slice spacing or slice overlap for
CT datasets.

While patients laid in a dimly lit quiet room, with thei
eyes open, an intravenous dose~703–777 MBq! of
99mTc-ethyl cysteinate dimmer~ECD! ~Neurolite, DuPont
Merck Pharmaceuticals, Billerica, MA! was
administered.32,33 Forty-five minutes after ECD injection
brain perfusion acquisition was performed at 6° increme
on a dual-head gamma camera system with low-ene
general-purpose collimators~Elscint Helix, Israel!. Post ac-
quisition, intrinsic Metz postfiltering and finally attenuatio
correction based on Chang’s iterative method34 were serially
applied. In the attenuation correction step the body cont
of the SPECT data is assumed to be an ellipse, and
weight given for each point inside the ellipse is calcula
according to Chang’s formula. Points outside the ellipse h
a correction value of 0. The calculation of Chang’s integra
done by a discrete computation. Each reconstructed s
contains 1283128 pixels, using 8 bits per pixel, with n
slice spacing for each SPECT dataset. The acquisition
rameters of the data used in this paper, along with the co
sponding FOV of the CT data, are listed in Table I. As it c
be seen, the FOV was not the same for all CT data sets s
its value was set according to the pathology of the subje
during the acquisition process. The voxel size is given in m
in Table I along thex andy axes, whereas the size along t
z axis is defined as the sum of the slice thickness. The int
sic spatial resolution for the first head of the gamma cam
is 3.72 mm while for the second head is 3.78 mm.

Both the gamma camera and the CT scanner are che
regularly with the quality control processes described
AAPM Reports No. 6, No. 22 and No. 39.35–37

METHODOLOGY

The methodology of two proposed automatic registrat
methods is diagrammatically presented in Fig. 1, where
following steps are presented: preprocessing step~depending
on the method!, selection of a measure of spatial match b
tween the images to be registered~depending on the

TABLE I. The acquisition parameters of the CT–SPECT head data used

Matching
scheme

Acquisition parameters

Voxel size
(mm3mm3mm)

Pixel
matrix

Slice
thickness

~mm!
No

slices
FOV
~cm!

Pair-1
CT 1283128 3 47 22.78 1.7831.7833

SPECT 1283128 3 83 ¯ 1.4931.4933

Pair-2
CT 1283128 1.5 42 19.07 1.4931.4931.5

SPECT 1283128 1.5 80 ¯ 1.4931.4931.5

Pair-3
CT 1283128 1.5 67 22.53 1.7631.7631.5

SPECT 1283128 1.5 67 ¯ 1.4931.4931.5

Pair-4
CT 1283128 1.5 74 19.07 1.4931.4931.5

SPECT 1283128 1.5 70 ¯ 1.4931.4931.5

Pair-5
CT 1283128 3 42 21.63 1.6931.6933

SPECT 1283128 3 48 ¯ 1.40314.4033
Medical Physics, Vol. 29, No. 2, February 2002
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method!, selection of a geometric transformation mod
~common for both methods!, and selection of an optimization
technique for the determination of transformation parame
~common for both methods!.

Preprocessing of CT and SPECT brain images

Surface-based automatic registration: In the case of the
pair of CT and SPECT brain images, a match has to
achieved between the inner skull CT surface and the o
SPECT brain surface. Since the SPECT data have been
quired from a cerebral perfusion study, at which no conc
tration of radioactive material occurs at the bone structu
these two surfaces are the closest possible match for
given modalities.

A prerequisite for the proposed CT–SPECT automa
registration scheme is the extraction of the voxels of
common surfaces from the two images. Different approac
were followed for the CT and the SPECT data. For the
data, the inner skull surface’s voxels are obtained using m
phological operations,38 according to the following equation

VCT5@T~X!+B1#ù$@T~X!+B1# ^ B2%
C, ~1!

whereVCT are the inner skull CT surface’s voxels,X is the
original CT data,T(X) is the threshold operator that pro
duces a binary output such that voxels with original valu
greater than the threshold level obtain values equal to 1,
+ is the symbol for the opening operation~erosion followed
by a dilation! using the circular diskB1 with a diameter of 21
pixels, as a structuring element, and̂is the symbol of the
erosion operation using a rectangular structuring elem
B2 , with size 333. The opening operation removes an
background and the skull information while it restores t
CT inner area, in a binary format, to its original size. T
superscriptC denotes the complement of the set$@T(X)+B1

^ B2#% with respect to the set@T(X)+B1#. Finally, the inter-
section,ù, produces the inner CT skull surface. The pr
posed method is fast and robust since the aforementio
approach does not require any user intervention.

For the SPECT data, the outer surface’s voxels,VSPECT,
are obtained according to the following equation:

VSPECT5T~X!ù@T~X! ^ B2#C, ~2!

FIG. 1. Typical diagram of the proposed automatic registration methods
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204 Kagadis et al. : A comparative study 204
where the same notation is used as in Eq.~1!. A simple
thresholdingT belonging to the range between 5–25 pixe
was employed. The value of the aforementioned thresh
operation does not vary substantially between differ
SPECT images.

A coarse registration is initially achieved by translati
the points of the SPECT surface so that their center of m
coincides with CT-surface’s center of mass and then sca
the SPECT surface points coordinates to compensate fo
difference of voxel size between the two modalities. Eq
tion ~3! demonstrates the above process:

F x8
y8
z8
GSPECT53

Vx
SPECT

Vx
CT 0 0

0
Vy

SPECT

Vy
CT 0

0 0
Vz

SPECT

Vz
CT

4
3F xSPECT1~ x̄CT2 x̄SPECT!

ySPECT1~ ȳCT2 ȳSPECT!

zSPECT1~ z̄CT2 z̄SPECT!
G , ~3!

where (x8,y8,z8)SPECT and (x,y,z)SPECT are the coarsely
transformed and the original coordinates of the SPECT d
( x̄,ȳ,z̄)SPECT and (x̄,ȳ,z̄)CT are the mean values of th
SPECT and CT set, (Vx ,Vy ,Vz)

SPECTand (Vx ,Vy ,Vz)
CT are

the voxel sizes of the SPECT and CT data, respectively.
The final step of the preprocessing consists of the prod

tion of the distance map from the CT surface, DM~CT!. The
distance map is a discrete space where each voxel ho
value equal to its Euclidean distance from the closest nod
the CT inner skull surface.13 The distance map accelerat
the process of matching two surfaces consisting ofN nodes
each, since it reduces the problem’s complexity fromO(N2)
to O(N). In the Appendix, a fast implementation of the 3-
Euclidean distance transformation is presented
pseudocode.

Volume-based automatic registration: Normally, no pre-
processing for the extraction of common anatomical str
tures ~such as surfaces! is necessary for this technique, e
cept for the coarse preregistration, as it has been describ
the previous paragraph. However, while the application
the volume-based automatic registration method produ
very accurate matches of the brain structures, it tends to
pand the SPECT image slightly outside the inner skull s
face, as it was shown during this study.29 For this reason, it
was decided to apply the preprocessing step of remova
the skull from the CT data. The skull extraction process
defined as follows:

ECT5X3@T~X!+B#, ~4!

whereECT is the resulting gray level CT data with the bon
structure removed,X is the original CT data~gray values!,
T(X) is the threshold operator that produces a binary ou
such that voxels with original values greater than the thre
old level obtain values equal to 1,+ is the symbol for the
Medical Physics, Vol. 29, No. 2, February 2002
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opening operation~erosion followed by a dilation! using the
circular diskB with a diameter of 21 pixels, as a structurin
element. The erosion operation causes the binary skull
any outside structure to disappear, while the dilation ope
tion restores the remaining binary brain structure to its or
nal size. The symbol3 denotes the element-by-element mu
tiplication operator, implementing a masking operation. T
CT skull extraction process is clearly demonstrated in Fig
Figure 2~a! shows the original CT slice 14 of the Pair-4, Fi
2~b! the result of the application of the threshold operatio
T(X), to produce a binary image, Fig. 2~c! is the result of the
opening operation onto the binary image that removes all
background pixels along with the bone structure, and fina
in Fig. 2~d! the corresponding CT image without any bo
structure, extracted according to Eq.~4! is displayed.

The measure of match „MOM…

After the preprocessing of the CT and the SPECT da
the registration proceeds by optimizing the function of me
sure of match, over the parameters of the selected geom
transformation model.

Surface-based automatic registration: The measure of
match~MOM! is defined as the average Euclidean distan
between the CT and SPECT surfaces. It can be mathem
cally expressed as follows:

MOM5
1

n (
i :SPECT~x,y,z! iÞ0

DMCT~x8,y8,z8! i , ~5!

where

FIG. 2. ~a! Transverse slice 14 from the original CT data of Pair-4.~b! The
result of the application of the threshold operation,T(X), to produce a
binary image.~c! The result of the opening operation onto the binary ima
which removes all the background along with the bone structure whil
restores the brain CT area to its original size.~d! The corresponding CT slice
with the skull structure removed.



C
T
s

re
a
e
T

is
es

d

a

m

eg
e

an

n
th
s

3-

-D

re
ly,
th

. An
tion
pro-
n
nner,
nce
is
e of
the
ns

ch is

.
es
imate
ient
ial

ues

d
to

that
wo
ical

ed

bal
n-

to-

e to
pa-
val-

are
e

ra-
lu-
the
n
of

on,
n is
oss-

the
evi-
ber
lu-
lects

on,
tion

is

205 Kagadis et al. : A comparative study 205
~x8,y8,z8!5@Tx~x,y,z!,Ty~x,y,z!,Tz~x,y,z!#, ~6!

where DMCT denotes the distance map produced by the
inner skull surface, (x,y,z) i are voxels that lie on the SPEC
outer brain surface,Tx , Ty , andTz are the transformation
for thex, y, andz coordinates, andn is the number of voxels
of the SPECT surface. The MOM has to be minimized,
quiring the SPECT surface to be transformed in such a w
that it lies on low value voxels of the distance map produc
by the CT surface, or equivalently to overlap with the C
surface.

Volume-based automatic registration: The MOM that is
employed for this method is the mutual information~MI ! or
relative entropy of the two images to be registered. This
measure of the combined information of the two imag
defined as

MI5 (
CT,SPECT

p~CT,SPECT!log
p~CT,SPECT!

p~CT!p~SPECT!
, ~7!

where p(I ) is the probability distribution of imageI and
p(CT,SPECT) is the joint probability distribution of CT an
SPECT images. In more specific terms,

p~ i , j !5p@CT~x,y,z!5 i uSPECT~x,y,z!5 j #,;~x,y,z!

PCTùSPECT, ~8!

wherep( i , j ) is the probability of any voxel~x,y,z! of the CT
data having valuei, given that the same voxel~x,y,z! of the
SPECT data has valuej. This quantity is defined for all vox-
els that belong in the volumes of the CT and SPECT d
that overlap~thus the intersection operator,ù!. The greater
the value of MI, the better the match between the two i
ages.

The geometric transformation model

The transformation model employed in the proposed r
istration methods is the affine transformation model, defin
over a wide range of values to achieve robustness.2 This
transformation was employed to partially compensate
geometric transformation occurred in the SPECT data.39 The
affine transformation can be decomposed into a linear tra
formation and a simple translation. It can be shown that
transformation maps straight lines into straight line
whereas it preserves parallelism between lines. In the
case, it can be mathematically expressed as follows:

S x8
y8
z8
D 5S a1 a2 a3

b1 b2 b3

c1 c2 c3

D S x
y
z
D 1S dx

dy
dz

D . ~9!

The affine transformation is completely defined for the 3
case by 12 independent parameters: (ai ,bi ,ci) for i 51, 2, 3
anddx, dy, anddz.

The optimization technique

If the measure of match has multiple local minima, p
sents discontinuities or cannot be expressed analytical
brute force-based exhaustive search is the only method
Medical Physics, Vol. 29, No. 2, February 2002
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guarantees successful estimation of the parameter values
exhaustive search in the case of an affine transforma
model in order to register remote sensing images was
posed by Fuhet al.,40 assuming that some of the unknow
parameters can be estimated one at a time, in a serial ma
thus converting the multidimensional search into a seque
of optimization problems of lower dimensionality. Under th
assumption, the authors were forced to narrow the rang
the parameters in order to accelerate the execution of
program. However, in cases of nontrivial transformatio
with many independent parameters, an exhaustive sear
not possible.

The measure of match that has been adopted in Eqs~5!
and~6! is nonlinear; therefore global optimization techniqu
are good candidates to explore the search space and est
the unknown transformation parameters. The most effic
and attractive solution for search methods using nontriv
transformations is based on global optimization techniq
such as simulated annealing~SA!41 and genetic algorithms
~GAs!.42,43 In Matsopouloset al.44 these two global optimi-
zation techniques and the Downhill Simplex Metho
~DSM!,45 as a standard one, were investigated in order
register retinal images. It was shown in the same study
GAs outperformed consistently and substantially the t
other optimization techniques, independently of geometr
transformations or clinical data.

The definition of 12 independent parameters, combin
with the presence of multiple local minima of the MOM
~objective function!, necessitates the use of GAs, as a glo
optimization technique, for the 3-D registration case, in co
junction with the affine transformation model, as an au
matic registration method.

The GA operate with a population of solutions~also
called individuals or offspring! of the optimization problem.
A solution consists of the values of the parameters that ar
be estimated. In this implementation, the values of the
rameters are encoded in the solutions unaltered, as real
ues. Each population forms a generation. Initially~first gen-
eration!, the solutions are created randomly, since we
using noa-priori knowledge about the specific problem. Th
GAs allow the solutions to interact through two main ope
tors: crossover and mutation. The probability of two so
tions performing crossover is an important parameter of
GAs optimization system, as it is the probability of mutatio
during crossover. In the specific implementation, the value
the probability of mutation has been encoded in the soluti
rather than being kept constant. The process of selectio
responsible for selecting the solutions that undergo the cr
over operator.

The new generation that is produced by the action of
two operators on the previous generation replaces the pr
ous one, and this process is continuous until a total num
of generations is reached or a total number of function eva
ations has been achieved. Since the selection process se
only the best solutions with respect to the objective functi
statistically the next generations achieve better optimiza
of the MOM than the previous ones.

GAs hybridization with local optimization techniques
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not an unusual practice, mainly due to the GAs inefficien
to estimate the global optimum exact position, despite th
ability to locate it approximately. Often, the GAs achie
convergence at a point of the search space very close to
location of the global optimum, whereas the lack of divers
of the population at the advanced stages of the search m
it either very time consuming or impossible to locate t
exact position and value of the optimum. In these cas
bibliography extensively advises the use of a local optimi
tion, which commences after the end of the genetic opti
zation and uses as an initial guess the best solution achi
so far by the GAs. The Powell conjugate gradient meth
was selected for the implementation of the hybrid schem12

The specific GAs hybrid system with a Powell techniq
that was implemented for this application can be summari
in the following pseudocode:
initialize the first generation ofn individuals randomly
while ~termination–condition is false! $

decode and calculate the objective function of then indi-
viduals
selectN/2 pairs of individuals
apply crossover and mutation operator to produceN off-
spring
replace the current generation by theN offspring

%
locate the best solution achieved during the genetic ev
tion
initiate multidimensional Powell method, using the be
solution as an initial guess.

IMPLEMENTATION DETAILS OF TWO
REGISTRATION ALGORITHMS

The registration scheme proposed in the paper has b
developed by the authors. More specifically, the algorith
related to the registration processes, including the trans
mation algorithm, the optimization process, and the surf
triangulation method, have been developed inC11,
whereas the rendering process has been performed by a
dard VRML viewer. Furthermore, the development and
evaluation of the compared registration methods have b
performed on a Unix workstation~SGI workstation with 128
MB and high impact graphics!, which was dedicated for the
specific study.

Implementation details of the transformation model

Throughout this study, the affine transformation mod
has been considered for the registration of CT–SPECT b
images. The allowed ranges of the parameters of Eq.~9! are
determined during the experimental phase for both regis
tion methods and are presented. These values cover the
jority of the brain image pairs and can be redefined by
user in situations where extreme transformation is requir
a1 ,b2 ,c3 @0.9,1.1#
a2 ,a3 ,b1 ,b3 ,c1 ,c2 @20.3,0.3#
dx,dy @240,40#
dz @220,20#
Medical Physics, Vol. 29, No. 2, February 2002
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It can be observed that in the affine transformation, the
rameters controlling the contribution ofx coordinate to the
transformedx8 coordinate, the contribution ofy coordinate
to the transformedy8 coordinate, and the contribution ofz
coordinate to the transformedz8 coordinate, (a1 ,b2 ,c3), are
symmetrically kept in the range (160.1). Also, the param-
eters controlling the contribution of thex to the transformed
y and z coordinate, the contribution of they to the trans-
formed x and z coordinate, the contribution of thez to the
transformedx and y coordinate, (a2 ,a3 ,b1 ,b3 ,c1 ,c2), are
symmetrically kept in the range~60.3!. The translation pa-
rameters, ~dx,dy! and ~dz!, are kept within the range
@240,40# and @220,20#, respectively.

Implementation of the optimization technique

In this study, GAs are combined with the Powell metho
for the estimation of the values of the affine transformat
parameters. The details of the implementation of GAs a
the Powell method are summarized as follows:

Population 100
Number of generations 100
Total number of function
evaluations

10,000

Probability of crossover 1.0
Probability of mutation/
parameter

0.01–0.1 encoded into
the individual

Parameter encoding real values
Selection tournament selection
Type of crossover linear and arithmetic
Hybridization Powell at the end

of GAs optimization
First generation uniformly random

QUANTITATIVE ANALYSIS

In order to quantitatively compare the accuracy and e
ciency of the two proposed methods, a validation meth
must be selected. In this study, the lack of fiducial skin ma
ers, due to the nature of clinical protocol, does not all
comparisons against the marker-based approach, whic
widely accepted as a golden standard in registering med
data from other modalities~CT and MR!.4 Also, the well-
established Target Registration Error~TRE!, according to
West et al.,30 could not be applied in this case since t
medical experts were not in a position to accurately pla
landmarks in the SPECT image, by means of software, a
the acquisition, due to the low spatial resolution of the da
The comparison between the two proposed registration m
ods will therefore take place using either their own MOM
other unbiased image similarity criteria. Nevertheless,
performed various tests using our algorithms on register
CT-MRI data, which have been available to us according
the international project entitled ‘‘Evaluation of retrospecti
image registration,’’ sponsored by the National Institute
Neurological Disorders and Stroke, Project No. 1 R
NS33926-02, with principal investigator Professor
Michael Fitzpatrick!. The obtained results have been sent
evaluation to the authors of Ref. 30 according to the st
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procedures that have been defined within the aforementio
web-based project ~http://cswww.vuse.vanderbilt.edu
;image/registration/!.

As it can be seen from the definition of the MOMs th
are used in the proposed methods@Eq. ~5! and Eq.~7!#, the
surface-based method uses the average distance of two
faces, whereas the volume-based method uses the m
information~MI ! criterion, which is a pure number. The tw
MOMs ~mutual information—MI—and average surface d
tance! are used as modules of the registration schem
~volume-based and surface-based methods, respectively!, in
the sense that the optimization process is using these MO
to estimate the unknown transformation parameters. T
the two proposed methods do not employ directly com
rable MOMs. Evaluating the volume-based method using
average surface distance, or calculating the MI criterion
the result of the surface-based method would be bia
he

ue

al
, t
n

h
ho

tio
n

ce
cr
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since, in the first case, the volume-based was not designe
minimize the average surface distance, orvice versa.

The appropriate approach would be to employ an ima
similarity measure and calculate its value for the result
registered images of both methods. Ideally, this independ
measure of match~MOM! should be of a different nature
from both MOMs that are being examined.

In this specific case, a number of image similarity crite
have been investigated. The normalized cross-correla
coefficient,46 the gradient correlation coefficient,47 and simi-
larity measures, based on the difference image,48 are the
most widely used. The similarity measures based on the
ference images are not applicable in the case of registe
CT and SPECT images due to its operation, which can o
take place for intramodality registration. Therefore, the n
malized cross correlation was finally selected. Its mathem
cal definition is given below:
cc5
(~ i , j !PA@ I CT~ i , j ,k!2 Ī CT#@ I SPECT~ i , j ,k!2 Ī SPECT#

A(~ i , j !PA@ I CT~ i , j ,k!2 Ī CT#2(~ i , j !PA@ I SPECT~ i , j ,k!2 Ī SPECT#
2

, ~10!
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where Ī CT, Ī SPECT are the mean values of the image at t
overlap region of the CT and SPECT, (i , j ,k)PA
5CTùSPECT. The normalized cross-correlation’s val
ranges between21 ~least similar! to 11 ~most similar!. It
must be pointed out that the two proposed methods are
compared against a well-established registration method
Iterative Closest Point~ICP! method. The three registratio
methods were evaluated for all five pairs of data.

EXPERIMENTAL RESULTS

Quantitative results

In Table II, the normalized cross-correlation values of t
registration using the surface- and the volume-based met
against the ICP are presented.

In order to assess if there is a difference of the correla
coefficient between the three registration methods, a o
way repeated-measures analysis of variance~RM-ANOVA !

TABLE II. Quantitative results of the three registration methods: the surfa
based, the volume-based, and the ICP method using the normalized
correlation, as a similarity criterion, for all CT–SPECT image pairs.

Data pairs

Correlation coefficient value

Volume-based Surface-based ICP

1 0.474 0.4196 0.423
2 0.424 0.408 0.397
3 0.506 0.3013 0.402
4 0.407 0.331 0.337
5 0.46 0.44 0.423
Average 0.454 0.380 0.396
Std. deviation 0.0395 0.0603 0.0353
so
he

e
ds

n
e-

is performed.49 The null hypothesis is that the independe
variable ~i.e., the registration method! has no effect on the
estimation of the correlation coefficient. The results of t
test are listed in Table III. The first column of the table pr
sents the source of variation of the correlation coefficie
One source of variation is the independent variable man
lation ~registration method!: five of the estimations were ob
tained using the volume-based method, five using
surface-based method, and five using the ICP method.
other source of variation is the individual differences: t
mean value of the three correlation coefficients correspo
ing, for example, to the Pair-1 is likely to be different tha
that corresponding to the Pair-3. The final component of
total variability is due to the so-called registration meth
3pairs interaction and it describes how the patterns of
correlation coefficient are affected by the levels of the ind
pendent variable~registration method!. The quantification of
the various sources of variation is achieved by the use of
sum of squares~SS!, which is an abbreviation for the ‘‘sum
of the squared deviations from the mean.’’ The values for
sum of squares for the three components are listed in-

oss

TABLE III. One-way repeated measures—ANOVA for assessing if the m
values of the correlation coefficient are different between the three a
rithms

Source of Variation SS df MS F p value

Registration method~RM! 0.015 198 4 2 0.0076 4.968 0.0396
Pairs~P! 0.013 533 8 4 0.003 383
(RM)3(P) ~residual! 0.012 237 1 8 0.001 530
Total 0.040 969 3 14
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second column of the Table III. The third column of the tab
contains the degrees of freedom~df! for each source of varia
tion. The column labeled as MS presents the mean
squares, which is the ratio of the sum of squares to the
grees of freedom. Since the mean of squares correspon
to the second component of variation is not used for furt
calculations, it is not necessary to include it in Table III. T
systematic effect of the registration method on the value
the correlation coefficient is quantified by the so-calledF
ratio, which is the ratio of the mean squares of the first co
ponent of variation to the mean of squares of the third co
ponent of variation. Thep value corresponding to the com
putedF ratio ~0.039 578 3! indicates that the null hypothes
can be rejected with significance level 0.05, i.e., the regis
tion method has a significant effect on the value of the c
relation coefficient.

Furthermore, a post hoc analysis is performed in orde
determine between which registration methods there is a
nificant difference of the correlation coefficient. In Table I
the results of the Newman–Keuls multiple comparison t
between all the possible combinations of registration me
ods are listed. The null hypothesis is that the two meth
under consideration do not differ as per the correlation co
ficient.

TABLE IV. p values of a Newman–Keuls multiple comparison test for
sessing if the values of the correlation coefficient are different for the m
ods under comparison

Methods under comparison p value

Mutual distance ,0.05
Mutual ICP ,0.05
Distance ICP .0.05
Medical Physics, Vol. 29, No. 2, February 2002
of
e-
ing
r

f

-
-

a-
r-

to
g-

t
-
s
f-

As can be observed, there is a significant statistical dif
ence of the values of the correlation coefficient between
volume-based method and both the surface-based and
ICP method. In particular, the correlation coefficient o
tained by the volume-based method is higher than that of
surface-based and the ICP method, thus the volume-b
method systematically outperforms the other two metho
On the contrary, there is not a statistical difference of
value of the correlation coefficient between the surface-ba
and the ICP methods.

Qualitative results

In Fig. 3, the pre- and post-registered SPECT outer br
surfaces are rendered in the CT coordination system, a
with the inner skull CT surface, using a standard VRML 2
browser. The technique used for rendering is a surface
dering technique, where the red surface corresponds to
inner CT skull surface and the blue surface correspond
the SPECT brain surface. The SPECT brain surface is
dered with transparency, therefore, wherever it lies outs
the CT surface, it is rendered with a purple color, where
when it lies inside the CT surface it is hidden by it. Succe
ful registration results in areas of the SPECT surface t
rapidly interchange with the CT skull surface. A degree
spatial misalignment occurs between the preregiste
SPECT and CT surfaces in Fig. 3~a!, especially in the
parieto-occipital and the iniac areas. This misalignmen
finally corrected by the application of the proposed volum
based automatic registration method, in Fig. 3~b!, where the
registered SPECT surface is closely aligned with the in
skull CT surface. Areas of seemingly imperfect alignme
can be attributed to the segmentation of the skull structu

-
-

face for the
FIG. 3. Visual assessment of the volume-based automatic registration method by superposing the SPECT surface on the corresponding CT sur
Pair-4, before~a! and after~b! the proposed registration method.
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FIG. 4. Original CT transverse slice 35—enhanced for visibility~a!. Corresponding SPECT slice~b!. CT transverse slice fused with the corresponding sl
from the registered SPECT data, using the MI method~c!. CT slice fused with the registered SPECT data using the surface-based method~d!. CT slice fused
with the registered SPECT data using the ICP method~e!.
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The performance of the surface- and the volume-ba
automatic registration methods is also visually compa
against the ICP method for data of Pair-4, which was
lected as the most representative according to the team
experts. Furthermore, the internal SPECT anatomical st
ture was more evident in this pair, probably due to patholo
thus making the task of qualitative evaluation of the te
niques easier. In Figs. 4 and 5, selected regions of the re
tered SPECT slices of Pair-4 are superimposed on the co
sponding CT transverse slices 35 and 17, respectively
enhance the visual assessment of the registration meth
the SPECT data have been displayed using pseudocolor,
cifically the hot body color map, as indicated in the figures
pseudocolor map defines the correspondence between a
value and an~R,G,B! triplet, thus producing the effect o
color display from noncolor information. The correspo
dence between the gray scale and the color map is indic
in Figs. 4, 5, and 6. The hot body color map is defined
psychophysiologic criteria and it has been considered as
appropriate for the display of SPECT data.39 The selection of
the particular slices presented in the figures was based o
amount of internal structure that is visible on the SPE
images, such as ventricles and ischemic pathologies. A
can be observed in Fig. 4, the volume-based registration~MI !
method achieves superior continuity regarding the inter
brain structures, such as the lateral ventricles and the
Medical Physics, Vol. 29, No. 2, February 2002
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occipital horn. The lowest degree of continuity is achiev
by the ICP method, whereas the surface-based method lie
the middle. This can be explained, since the MI is the o
criterion in this study that takes into consideration the inf
mation from the interior of the two modalities, indicatin
spatial alignment of corresponding structures of the two
ages that are to be registered. The criteria employed by
surface-based method or the ICP rely on the surface in
mation, ignoring the spatial alignment of internal structur
The superiority of volume-based registration techniques o
surface-based ones because of the nature of the empl
measure of match has been reported.31 The ICP method has
either produced a set of unrealistic transformation parame
for the specific pair of datasets or it may have miscalcula
thez displacement, since the degree of discontinuity betw
the CT and SPECT internal structure is much greater t
that of the surface-based method. The inner skull CT surf
and the outer SPECT brain surface present a high degre
continuity regarding the ICP method, as well as with t
volume-based registration method. The surface-ba
method presented only few local discrepancies.

Results from transverse CT slice 17 of Pair-4 also supp
the above findings, although brain structure at this leve
not as easily identifiable~Fig. 5!.
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FIG. 5. Original CT transverse slice 17—enhanced for visibility~a!. Corresponding SPECT slice~an arrow indicates the ischemia in the left posterior limb
the internal capsule! ~b!. The CT transverse slice fused with the corresponding slice from the registered SPECT data, using the MI method~an arrow indicates
the ischemia in the left posterior limb of the internal capsule! ~c!. CT slice fused with the registered SPECT data using the surface-based method~d!. CT slice
fused with the registered SPECT data using the ICP method~e!.
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DISCUSSION

Surface- and a volume-based automatic registration m
ods have been proposed in this paper for matching CT
SPECT data of the human brain under a clinical protoc
For the determination of the parameters of the geome
transformation, the optimization technique of genetic alg
rithms was used. Using independent MOM criteria w
showed that the volume-based method consistently out
forms the surface-based method.

Since the SPECT study is a brain perfusion study, b
structure~such as the skull! cannot be imaged by SPECT
Therefore, in registering CT and SPECT datasets, the o
limits of the brain tissue, as imaged by SPECT, should co
cide with the inner skull, as imaged by CT. Thus, a prep
cessing step to extract the inner skull CT surface and
outer SPECT surface has been applied for the surface-b
registration method. Furthermore, a preprocessing step o
moval of the skull from the CT data has been required p
to the volume-based registration.

Figure 6 demonstrates the necessity of this preproces
step before applying the volume-based registration meth
Figure 6~a! shows the transverse fused slice 35~selected re-
gions of the SPECT data, superimposed on the CT d!
without applying the skull-removal preprocessing step on
Medical Physics, Vol. 29, No. 2, February 2002
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CT data, whereas Fig. 6~b! shows the same fused result
after applying the skull-removal preprocessing step on
CT data. It can be observed that in the first case the re
tered SPECT areas invade the CT skull surface, thus dete
rating the performance of this method significantly. The p
formance is improved, as can be seen in Fig. 6~b!, by the
application of the aforementioned preprocessing step. T
improvement is not due to different spatial resolution of t
two imaging modalities, because~a! the voxel size of the two
modalities has been taken into consideration@in Eq. ~3!#, ~b!
the effect appears only in the volume-based registration te
nique and could be attributed to the properties of the mu
information criterion, and~c! the effect disappears after th
removal of the skull from the CT data, prior to the volum
based registration process.

One further disadvantage of the surface-based registra
method is the necessity of identification of common anato
cal structures to be matched in both modalities; inaccura
are inevitably introduced during this process. These inac
racies of the surface-based registration method are due to
difficulty of obtaining the SPECT brain surface. The alig
ment of the internal structures may be affected by the re
tration of the extracted surfaces. In order to quantitativ
evaluate the performance of the surface-based registra
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FIG. 6. CT transverse slice fused with the corresponding slice from the registered SPECT data, using the MI method, without removing the CT bon
~a!. The same fused slice, using the volume-based method~MI !, after performing the CT bone structure removal preprocessing step~b!.
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method, in terms of determination of the SPECT brain s
face, a study was also performed.

According to this study, the actual SPECT brain surfa
has been obtained using a threshold operator as describ
the preprocessing section. As it can be seen in Fig. 7,
optimum threshold level is difficult to be determined for t
SPECT data, whereas the determination of the thresh
value for the CT is a simpler process, as indicated by
higher slope of the line profiles. Thus, the inaccurate de
mination of the SPECT brain surface may introduce inac
racies during the application of the surface-based meth
These inaccuracies are quantified in Fig. 8, where the a
age brain SPECT-CT inner skull distance is plotted in mi
meters against different SPECT threshold values, for Pa
The average brain SPECT-CT inner skull distance has b
calculated for each threshold value according to the a

FIG. 7. Mid-coronal line profiles of a CT transverse slice and the co
sponding~registered! SPECT slice.
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rithm presented in the Appendix, using the surface-ba
registration technique. This measure of match was sele
because the average surface distance is associated wit
automatic surface-based registration technique and this
cific technique was the one affected by these kinds of in
curacies. As it can be observed, there is an area round
threshold level of 10 where the automatic surface-based
istration technique produces the most accurate performa
Its performance deteriorates rapidly as the threshold le
increases above 15. Similar observations were recorded
the rest of the pairs.

Additionally, the volume-based method does not suf
from the aforementioned disadvantage, despite the fact th
preprocessing step toward removal of the CT bone struc
was needed. Furthermore, as it was pointed out above,
bone structure in the CT data is well defined and thus ea
segmented. This method, however, does not require the i

-
FIG. 8. Performance of the automatic surface-based registration me
against the determination of the brain SPECT surface~in terms of threshold
level! for the Pair-4.
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tification of the corresponding SPECT brain surface, wh
cannot be unambiguously identified and therefore is
source of spatial inaccuracies.

The ICP algorithm suffers from similar to the surfac
based method’s disadvantage; it does not require the de
tion of common anatomical structures, such as surfaces
it does require the identification of homologous points b
tween the two images that are to be registered. In the spe
case of registering CT and SPECT brain images, most of
points used for the registration of the images lay on the s
faces used by the surface-based registration method.
explains the fact that the quantitative results of Table II
not show any statistical difference between the two metho

Finally, the performance of the surface- and volume-ba
registration methods shows no correlation with the voxel s
within the range of sizes given in Table I. Nevertheless,
aligning CT and MRI data, the performance of the automa
surface-based registration method deteriorated as the v
size increases to values outside of the range of the cur
study, as it was described in the work of Matsopouloset al.10

CONCLUSIONS

A volume-based registration using the MI criterion,
conjunction with genetic algorithms and the Powel meth
has been successfully applied to automatically register
pairs of CT and SPECT data. The proposed method prov
the clinicians with a registration tool characterized by sta
ity and repeatability of performance, speed of execution,
dependence of clinical protocol, and robustness due to
employment of the genetic algorithms, as an optimizat
process. At the present study, the patients involved su
from ischemia~acute–chronic–transient! and from subarach
noid hemorrhage. It is well known that in brain ischem
SPECT is able to provide an early diagnosis, while CT be
describes the anatomic features.

In the near feature, the current study will be enhanc
with more clinical trials and a new clinical protocol is goin
to be established involving also patients suffering from br
tumors, since CT data provides finer anatomical details w
the corresponding SPECT data successfully delineate
edges of the malignancy. Registering the two data will p
vide the clinical experts with information to estimate mo
accurately the extent and the position of the lesion, thus
sulting in a more accurate diagnosis, prognosis and co
quent treatment.

APPENDIX: FAST IMPLEMENTATION OF 3-D
EUCLIDEAN DISTANCE TRANSFORMATION

The distance transformation~DT! accepts as input a bi
nary image~e.g., a given surface marked as nonzero voxe!
and produces as output a 3-D float image, each voxe
which holds the distance of the specific voxel from the cl
est nonzero voxel of the input image. The resulting flo
image is called the distance map~DM!. Several implemen-
tations of DT exist in the bibliography.13 The adopted imple-
mentation is very fast, compared to the other implemen
tions, and is based on a list. Each voxel of the result
Medical Physics, Vol. 29, No. 2, February 2002
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distance map is associated with a closest voxel from the
nary input image. This information is stored into a looku
table, which greatly accelerates execution time, with m
ageable memory requirements. The algorithm for DT can
summarized in the pseudocode as follows:
Insert all voxels of the given surface into the list,
initialize the lookup table~set distances to an unused labe!,
for all surface voxels, set the closest voxel as the same vo
while ~list not empty!,
extract the top voxel from the list, set this as the curre
voxel, expand its six closest neighbors~in three dimensions!
and insert them at the end of the list,
calculate the minimum distance min–dist, of each of the six
neighbors from the closest voxel of the current voxel,
if min–dist is less than the distance of the neighbor po
from the already assigned closest voxel to it, then
set the closest voxel of the neighbor equal to the clos
voxel of the current voxel~update the lookup table!.
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