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Image registration of multimodality images is an essential task in numerous applications in three-
dimensional medical image processing. Medical diagnosis can benefit from the complementary
information in different modality images. Surface-based registration techniques, while still widely
used, were succeeded by volume-based registration algorithms that appear to be theoretically ad-
vantageous in terms of reliability and accuracy. Several applications of such algorithms for the
registration of CT-MRI, CT-PET, MRI-PET, and SPECT-MRI images have emerged in the
literature, using local optimization techniques for the matching of images. Our purpose in this work
is the development of automatic techniques for the registration of real CT and SPECT images,
based on either surface- or volume-based algorithms. Optimization is achieved using genetic algo-
rithms that are known for their robustness. The two techniques are compared against a well-
established method, the Iterative Closest Point—ICP. The correlation coefficient was employed as
an independent measure of spatial match, to produce unbiased results. The repeated measures
ANOVA indicates the significant impact of the choice of registration method on the magnitude of
the correlationNF=4.968,p=0.0396. The volume-based method achieves an average correlation
coefficient value of 0.454 with a standard deviation of 0.0395, as opposed to an average of 0.380
with a standard deviation of 0.0603 achieved by the surface-based method and an average of 0.396
with a standard deviation equal to 0.0353 achieved by ICP. The volume-based technique performs
significantly better compared to both 1QP<0.05, Neuman Keuls tgstind the surface-based
technique(p<0.05, Neuman—Keuls testSurface-based registration and ICP do not differ signifi-
cantly in performance. €2002 American Association of Physicists in Medicine.
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INTRODUCTION between the original and the transformed image. Several im-
age features have been used for the matching process, de-
In medical imaging, registration between two-dimensionalpending on the modalities used, the specific application, and
(2-D) or three-dimension&B-D) images is a common prob-  the implementation of the geometric transformation. The reg-
lem encountered when more than one image of the samietration process can be divided into three main categories:
anatomical structure is obtained, either using different imagpoint-based, surface-based, and volume-based methods.
ing modalities or performing dynamic studies. In all cases, Point-basedegistration involves the determination of the
the information present in the different images must be comeoordinates of corresponding points in different images and
bined to produce fused or parametric images. Registratiothe estimation of geometrical transformation using these cor-
can be performed between two modalities with anatomicatesponding points. Such points can be defined using external
information (CT-CT or CT-MR, between anatomical at- markers placed on the patient’s skin before the acquisftion,
lases(a 3-D model image with certain areas clearly labeledstereotactic frameslandmarks and the bone marker proce-
in advancé) and functional studie¢CT-PET, CT-SPECT, dure, a technique that is exploiting the fact that bones and
MR-PET, etc. or between images of the same modality, areas in the immediate vicinity can be registered by rigid
taken at different times. Comprehensive surveys of medicaransformatior. External markers have been used to register
image registration can be found in van den Elseal? and SPECT—MR images with the affine transformation method
Maureret al,? in terms of imaging modalities and employed and CT—MR data with 3-D global transformatioh$he low
techniques. resolution along the transverse axis, the small number of
The process of image registration can be formulated as eorresponding markers, as well as possible inaccuracies in
problem of optimizing a function that quantifies the matchtheir placement during the acquisition from each modality,
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render these methods as semiautomatic resulting in inacclished by Westet al.>® which indicates that the volume-

racies and inconsistencies. based techniques tend to give more accurate and reliable re-
Surface-based registratiomvolves the determination of sults when the CT-MR images are registered, and slightly
surfaces of anatomical structures that exist in both imagesiore accurate results for the PET—MR images. The reason
and the minimization of a distance measure between thedies with the fact that surface-based registration methods re-
corresponding surfaces. The surfaces are generally reprguire well-defined corresponding surfaces prior to registra-
sented as set of large number of points obtained by segmertion.
ing contours in contiguous image slices. Certain surface- In this paper, a comparative study of two automatic reg-
based registration techniques may require the points of thistration methods is presented and applied on a number of
surface to be triangulatéd.The difference between point- pairs of clinical three-dimension&B-D) CT—SPECT brain
based and surface-based registration algorithms is that poifihages in order to establish a usefulness method for the au-
correspondence is defined by the user for the formertomatic registration of the data from these modalities. The
whereas in automatic for the latter. Pelizzatial'? intro-  first method is surface based and it is used to automatically
duced the idea of using surfaces to register brain images biggister the inner skull surface of the CT with the outer brain
obtaining a rigid body transformation, which when applied tosurface from the SPECT data. The second developed tech-
“hat” coordinates (points that belong to the skin surface of nique is a volume-based one, and utilizes the Ml from the
the scan with the lower resolutipminimizes a residual that two images to be registered. Both methods exploit the opti-
is the mean square distance between “hat” points andnization efficiency of genetic algorithm&As), as a global
“head” surface (a stack of skin contours from the higher optimization technique, combined with a local one, such as
resolution scanusing an optimization technique describedthe Powell technique, in obtaining the parameters of the af-
by Powell!? The Euclidean distance between a point of anfine transformation for the automatic registration of CT and
image and the closest surface point is used in the work oBPECT images. Furthermore, these two proposed automatic
Kozinskaet al!® as a closest point projection rule, whereasregistration methods are compared against a well-established
the integer approximations of the Euclidean distance as wefegistration method, the Iterative Closest Pgl@P) method
as its highly computation cost required were improved byand their performances are validated qualitatively and quan-
using the well-known chamfer distance transfdfiiThis  titatively. The advantages of the volume-based registration
method was then applied to medical image registrafidi. method, as finally proposed to automatically register CT and
Besl et all” presented a general purpose registration techSPECT data, include stability and repeatability of perfor-
nique called the “Iterative Closest Point method,” which was mance, speed of execution, independence of clinical proto-
extended and implemented toward medical applicatlBh%. col, and robustness due to the employed genetic algorithms
Volume-based registratioimvolves the optimization of a as an optimization process.
quantity measuring the similarity of all geometrically corre-  For the present study we selected patients suffering from
sponding voxel pairs, considering some predefined featureéschemia (acute—chronic—transigneind patients with sub-
Multiple volume-based algorithms have been propc8éd, arachnoid hemorrhage.
optimizing a measure of the absolute difference between im- It is well known that in brain ischemia SPECT is able to
age intensities of corresponding voxels within overlappingprovide an early diagnosis, while CT better describes the
parts in a region of interest. These methods were based gnatomic features. Our study strengthens our belief that reg-
the assumption that the two images are linearly correlatedstering the two images gives us the opportunity to estimate
which is not the general case. Cross correlation of featurgnore accurately the extent and the position of the lesion,
images derived from the original image data has been apesulting in a more accurate diagnosis, prognosis, and conse-
plied to CT-MR modeling using geometrical features, suchquent treatment.
as edge¥ and ridge$®?* or using specially designed inten-
sity transformationg® Misregistration was measured by the
dispersion of the 2-D histogram of the image intensities of
corresponding voxel pairs, which was assumed to be minipaTa ACQUISITION
mal in the registered position. Studholne¢al?® criterion
required segmentation of the images or delineation of spe- X-ray CT and SPECT brain images were acquired from
cific histogram regions, while the Wood= al?’ criterion  five (5) patients(five pairs of data at the Radiology and
was based on an additional assumption concerning relatiomNuclear Medicine Departments of the University Hospital of
ships between the gray values in the different modalities tdatras, Greece. CT datasets were acquired with a Somatom
reduce the complexity. Collignoat al?® and Maeset al?®  Plus 4 Power scanndSiemens, Erlanggnat 120 kV and
introduced the mutual informatioiMI) registration criterion, 180 mAs without administration of contrast media. Slice
measuring the statistical dependence between two randothickness was set to 3 mm, feed was 3 mm/s, and the region
variables or the amount of information that one variable con-of interest was about 13 cm. Reconstruction was performed
tains about the other. The MI of the image intensity values ofvith a soft kernel algorithm and the 5%%12 pixel slices
corresponding voxel pairs was maximal if the images werawvith 12 bits per pixel were degraded to 22828 for the
geometrically aligned. A comparative study between surfaceoregistration process. Thus, a linear interpolation technique
and volume-based registration algorithms was recently pubwas applied to the CT data to reduce the memory require-
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TaBLE |. The acquisition parameters of the CT-SPECT head data used. _ -
CT SPECT
Acquisition parameters I I

Preprocessin Preprocessin
Matching Pixel thickness No FOV Voxel size P g P &

scheme matrix (mm) slices (cm) (mmXmmxmm) l

Pair-1 CT 128x 128 3 47 2278  1.781.78x3 Geometric
SPECT 12&128 3 83 e 1.49x1.49x 3 Measure of < Transformation
Pair-2 CT 128x 128 1.5 42 19.07 1.491.49<1.5 Match
SPECT 12&128 15 80 1.49x1.49x1.5
Pair-3 CT 128x< 128 1.5 67 2253 1.761.76x1.5
SPECT 12&128 1.5 67 1.49x1.49x1.5
o4 CT  128<128 15 74 1907 1.491.49x15 Optimization
SPECT 12&128 1.5 70 e 1.49X1.49x1.5 Process
Pair-5 CT 128x128 3 42 21.63 1.691.69<3
SPECT 12&128 3 48 .- 1.40x14.40¢3 Fic. 1. Typical diagram of the proposed automatic registration methods.

method, selection of a geometric transformation model
ments and the total execution time for the registration(common for both methodlsand selection of an optimization
process! There was no slice spacing or slice overlap for alltechnique for the determination of transformation parameters
CT datasets. (common for both methodls
While patients laid in a dimly lit quiet room, with their
eyes open, an intravenous dog&03-777 MBq of  Preprocessing of CT and SPECT brain images
9MTc-ethyl cysteinate dimmefECD) (Neurolite, DuPont

Merck Pharmaceuticals, Billerica, MA  was . LS
administered®3® Forty-five minutes after ECD injection P2 of CT and SPECT brain images, a match has to be
achieved between the inner skull CT surface and the outer

brain perfusion acquisition was performed at 6° increment . .
on a dua-head gamma camera system with Iow-energ)§PECT brain surface. Since the SPECT data have been ac-

general-purpose collimator&lscint Helix, Israel. Post ac- duired from a cerebral perfusion study, at which no concen-
I S o - ' . tration of radioactive material occurs at the bone structures,
quisition, intrinsic Metz postfiltering and finally attenuation

correction based on Chang’s iterative metHasere serially these two surfaces are the closest possible match for the

applied. In the attenuation correction step the body contougivin '::;gallijtii;tsé for the pronosed CT—SPECT automatic
of the SPECT data is assumed to be an ellipse, and the prereq brop

weight given for each point inside the ellipse is Calculatedregls;tratlon scheme is the extraction of the voxels of the

according to Chang's formula. Points outside the ellipse havgommon surfaces from the two images. Different approaches

. . V- . Were followed for the CT and the SPECT data. For the CT
a correction value of 0. The calculation of Chang’s integral is

done by a discrete computation. Each reconstructed slic%ata’ the inner skull surface’s voxels are obtained using mor-

contains 128128 pixels, using 8 bits per pixel, with no phological operation& according to the following equation:
slice spacing for each SPECT dataset. The acquisition pa- Ver=[T(X)°B;]N{[T(X)°B;]®B,}, (€N)
rameters of the data used in this paper, along with the Corr%hereVCT are the inner skull CT surface’s voxel,is the

EpondlngtI;O\égl‘/the cr (:a::]a, are I'S]Eed 'ﬂ g"f‘rbée:' As tlt C".’moriginal CT data,T(X) is the threshold operator that pro-
€ seen, the was notthe same for a ata sets sing,ces a binary output such that voxels with original values

gzr\i/r?luti W:s i?tizcﬁor?'zgstg EP; Fi,agsg:(;?ge?; tr}\ejeiui?lj?ﬁ:preater than the threshold level obtain values equal to 1, and
g the acquisition process. Tne 9 ° is the symbol for the opening operatiderosion followed

maTz_;\Sb!g (Ij;!.?] r;% t::(tr?giyﬁngt’hvghs?featshﬁﬁnﬁs ?ﬁggntgi by a dilation using the circular disB; with a diameter of 21
zaxis | ! u ! ' ' Intr ixels, as a structuring element, agdis the symbol of the

sic spatial resolution for the first head of the gamma camergrosion operation using a rectangular structuring element,

is 3.72 mm while for the second head is 3.78 mm. with size 3<3. The opening operation removes any

B )
Both the gamma camera and the CT scanner are.CheC!(%cgckground and the skull information while it restores the
regularly with the quality control processes described "CT inner area, in a binary format, to its original size. The

AAPM Reports No. 6, No. 22 and No. 39:%/ superscriptC denotes the complement of the $gT(X)<B;
®B,]} with respect to the sgfT(X)°B,]. Finally, the inter-
METHODOLOGY section, N, produces the inner CT skull surface. The pro-
nposed method is fast and robust since the aforementioned
pproach does not require any user intervention.
For the SPECT data, the outer surface’s Vox®lssecr
are obtained according to the following equation:

Surface-based automatic registratiolm the case of the

The methodology of two proposed automatic registratio
methods is diagrammatically presented in Fig. 1, where thé
following steps are presented: preprocessing &epending
on the methoyg selection of a measure of spatial match be-
tween the images to be registerddepending on the Vepeer=T(X)N[T(X)®B,]°, 2
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where the same notation is used as in ED. A simple
thresholdingT belonging to the range between 5-25 pixels
was employed. The value of the aforementioned threshold
operation does not vary substantially between different
SPECT images.

A coarse registration is initially achieved by translating
the points of the SPECT surface so that their center of mass
coincides with CT-surface’s center of mass and then scaling
the SPECT surface points coordinates to compensate for the
difference of voxel size between the two modalities. Equa- ()
tion (3) demonstrates the above process:

[ \/SPECT b
S 00
, X
X \/SPECT
y
y'|SPECT| © Vel 0
z’ y
VZSPECT
0 0 VvCT
: z (c) (d)
X + (Xer— X
SPECT (_CT _SPEC-B Fic. 2. (a) Transverse slice 14 from the original CT data of Paitb}.The
X| Yspectt (Yer— Yspecd |, 3 result of the application of the threshold operatidi{X), to produce a

Zspeett (Zet— Zspec? binary image(c) The result of the opening operation onto the binary image,
which removes all the background along with the bone structure while it
where ',y’,z2")spect and (X,Y,Z)spect are the coarsely restores the brain CT area to its original sizh.The corresponding CT slice

transformed and the original coordinates of the SPECT datdith the skull structure removed.
(X,¥,2)spect and X,y,z)cr are the mean values of the
SPECT and CT setM,Vy,V,)5"ETand (V,,V,,V,)“T are _ _ _ o _
the voxel sizes of the SPECT and CT data, respectively. Opening operatiotterosion followed by a dilationusing the
The final Step of the preprocessing consists of the produc’Circular diskB with a diameter of 21 piXElS, as a StrUCtUring
tion of the distance map from the CT surface, @M). The element. The erosion operation causes the binary skull and
distance map is a discrete space where each voxel holdsady outside structure to disappear, while the dilation opera-
value equal to its Euclidean distance from the closest node dfon restores the remaining binary brain structure to its origi-
the CT inner skull surfacE The distance map accelerates hal size. The symbok denotes the element-by-element mul-
the process of matching two surfaces consistingNafodes tiplication operator, implementing a masking operation. The
each, since it reduces the problem’s complexity frOfN?) CT skull extraction process is clearly demonstrated in Fig. 2.
to O(N). In the Appendix, a fast implementation of the 3-D Figure 2a) shows the original CT slice 14 of the Pair-4, Fig.
Euclidean distance transformation is presented ir2(b) the result of the application of the threshold operation,
pseudocode. T(X), to produce a binary image, Fig(@ is the result of the
Volume-based automatic registratioNormally, no pre- opening operation onto the binary image that removes all the
processing for the extraction of common anatomical strucbackground pixels along with the bone structure, and finally
tures(such as surfacgss necessary for this technique, ex- in Fig. 2(d) the corresponding CT image without any bone
cept for the coarse preregistration, as it has been described $fucture, extracted according to Hé) is displayed.
the previous paragraph. However, while the application of
the volume-based automatic registration method produce
very accurate matches of the brain structures, it tends to ex-
pand the SPECT image slightly outside the inner skull sur- After the preprocessing of the CT and the SPECT data,
face, as it was shown during this studyFor this reason, it the registration proceeds by optimizing the function of mea-
was decided to apply the preprocessing step of removal afure of match, over the parameters of the selected geometric
the skull from the CT data. The skull extraction process istransformation model.
defined as follows: Surface-based automatic registratiomhe measure of
match (MOM) is defined as the average Euclidean distance
Ecr=XX[T(X)B], 4) between the CT and SPECT surfaces. It can be mathemati-

whereEcr is the resulting gray level CT data with the bone Cally expressed as follows:

structure removedX is the original CT datdgray valueg, 1

T(X) is the threshold operator that produces a binary output MOM=— > DMcr(X",y",2")i, 5
such that voxels with original values greater than the thresh- :SPECTX.y.2)i 70

old level obtain values equal to &,is the symbol for the where

he measure of match (MOM)

Medical Physics, Vol. 29, No. 2, February 2002



205 Kagadis et al.: A comparative study 205

(XY, 2)=[Tx(X,y,2), Ty(X,Y,2), T,(XY,2)], (6) guarantees successful estimation of the parameter values. An
_Iexhaustive search in the case of an affine transformation
model in order to register remote sensing images was pro-
. . posed by Furtet al,*® assuming that some of the unknown
outer brain surfaceTy, Ty, andT, are the ransformations parameters can be estimated one at a time, in a serial manner,

for thex, y, andz coordinates, and is the number of voxels ¢ converting the multidimensional search into a sequence
of the SPECT surface. The MOM has to be minimized, "€ ot optimization problems of lower dimensionality. Under this
quiring the SPECT surface to be transformed in such a wa '

e . ssumption, the authors were forced to narrow the range of
that it lies on low value voxels of the distance map produce P 9

. : he parameters in order to accelerate the execution of the
by the CT surface, or equivalently to overlap with the CT P . L .
surface. program. However, in cases of nontrivial transformations

Volume-based automatic registratiofihe MOM that is with many independent parameters, an exhaustive search is

employed for this method is the mutual informati@vil) or not possible.

. ; : . The measure of match that has been adopted in &gs.
relative entropy of the two images to be registered. This is a . . ] S X
. . . . and(6) is nonlinear; therefore global optimization techniques
measure of the combined information of the two images

are good candidates to explore the search space and estimate

where DM:7 denotes the distance map produced by the C
inner skull surface,X,y,z); are voxels that lie on the SPECT

defined as the unknown transformation parameters. The most efficient
p(CT,SPECT and attractive solution for search methods using nontrivial
M =CT;ECTP(CT.SPECT|09 p(CT)p(SPECT’ transformations is based on global optimization techniques

_ S _ such as simulated annealit§A)** and genetic algorithms
where p(l) is the probability distribution of imagé and (GAs).#243 In Matsopouloset al** these two global optimi-
P(CT,SPECT) is the joint probability distribution of CT and zation techniques and the Downhill Simplex Method

SPECT images. In more specific terms, (DSM),*® as a standard one, were investigated in order to

p(i,j)=p[CT(X,y,2)=i|SPECTX,y,2) =],V (X,y,2) register retinal images. It was shown in the same study that

GAs outperformed consistently and substantially the two

e CTNSPECT, (8)  other optimization techniques, independently of geometrical
wherep(i,j) is the probability of any voxelx,y,2 of the CT  transformations or clinical data. _

data having value, given that the same voxék,y,2 of the The definition of 12 independent parameters, combined

SPECT data has valjeThis quantity is defined for all vox- With the presence of multiple local minima of the MOM
els that belong in the volumes of the CT and SPECT dat;gob!ec;nvg funcuon)l,_ necessitates the use of GAs, as a.global
that overlap(thus the intersection operatan). The greater optimization technique, for the 3-D registration case, in con-

the value of MI, the better the match between the two imdJunction with the affine transformation model, as an auto-
ages. matic registration method.

The GA operate with a population of solutiorialso
called individuals or offspringof the optimization problem.
A solution consists of the values of the parameters that are to

The transformation model employed in the proposed regpe estimated. In this implementation, the values of the pa-
istration methods is the affine transformation model, definegameters are encoded in the solutions unaltered, as real val-
over a wide range of values to achieve robustAieshis ues. Each popu|ati0n forms a generation_ |n|t|aﬂyst gen-
transformation was employed to partially compensate ankration, the solutions are created randomly, since we are
geometric transformation occurred in the SPECT dafthe  ysing noa-priori knowledge about the specific problem. The
affine transformation can be decomposed into a linear trangsAs allow the solutions to interact through two main opera-
formation and a Simple translation. It can be shown that thiiors: crossover and mutation. The probabmty of two solu-
transformation maps straight lines into straight lines,tions performing crossover is an important parameter of the
whereas it preserves parallelism between lines. In the 3-[g5As optimization system, as it is the probability of mutation
case, it can be mathematically expressed as follows: during crossover. In the specific implementation, the value of
the probability of mutation has been encoded in the solution,

The geometric transformation model

X' a; a; as\ /x dx : o

, rather than being kept constant. The process of selection is
Y 1= by by bs]|y]|+|dy]. (9 responsible for selecting the solutions that undergo the cross-
4 C; C, C3/ \Z dz over operator.

The new generation that is produced by the action of the
two operators on the previous generation replaces the previ-
ous one, and this process is continuous until a total number
of generations is reached or a total number of function evalu-
ations has been achieved. Since the selection process selects
only the best solutions with respect to the objective function,

If the measure of match has multiple local minima, pre-statistically the next generations achieve better optimization
sents discontinuities or cannot be expressed analytically, af the MOM than the previous ones.
brute force-based exhaustive search is the only method that GAs hybridization with local optimization techniques is

The affine transformation is completely defined for the 3-D
case by 12 independent parametess. l§; ,c;) fori=1, 2, 3
anddx, dy, anddz

The optimization technique
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not an unusual practice, mainly due to the GAs inefficiencyit can be observed that in the affine transformation, the pa-
to estimate the global optimum exact position, despite theirameters controlling the contribution a&fcoordinate to the
ability to locate it approximately. Often, the GAs achieve transformedx’ coordinate, the contribution of coordinate
convergence at a point of the search space very close to the the transformed’ coordinate, and the contribution af
location of the global optimum, whereas the lack of diversitycoordinate to the transformexi coordinate, &,,b,,cs3), are
of the population at the advanced stages of the search makegmmetrically kept in the range ¢10.1). Also, the param-
it either very time consuming or impossible to locate theeters controlling the contribution of theto the transformed
exact position and value of the optimum. In these casesy and z coordinate, the contribution of the to the trans-
bibliography extensively advises the use of a local optimizaformed x and z coordinate, the contribution of theto the
tion, which commences after the end of the genetic optimitransformedx andy coordinate, &,,a5,b,,b;,c;,c,), are
zation and uses as an initial guess the best solution achievegmmetrically kept in the range+0.3). The translation pa-
so far by the GAs. The Powell conjugate gradient methodameters, (dx,dy and (dz, are kept within the range
was selected for the implementation of the hybrid sch&me. [ 40,40 and[—20,20, respectively.

The specific GAs hybrid system with a Powell technique
that was implemented for this application can be summarizetimplementation of the optimization technique
in the following pseudocode:
initialize the first generation af individuals randomly
while (termination_condition is falseg {

decode and calculate the objective function of thiadi-

In this study, GAs are combined with the Powell method,
for the estimation of the values of the affine transformation
parameters. The details of the implementation of GAs and
the Powell method are summarized as follows:

viduals
selectN/2 pairs of individuals Population 100
apply crossover and mutation operator to prodbceff- Number of generations 100
spring Total number of function 10,000
replace the current generation by tNeoffspring evaluations
} Probability of crossover 1.0
locate the best solution achieved during the genetic evoluProbability of mutation/ 0.01-0.1 encoded into
tion parameter the individual
initiate multidimensional Powell method, using the bestParameter encoding real values
So|ution as an |n|t|a| guess_ Se|eCti0n tournament Selection
Type of crossover linear and arithmetic
Hybridization Powell at the end
of GAs optimization
IMPLEMENTATION DETAILS OF TWO First generation uniformly random

REGISTRATION ALGORITHMS

The registration scheme proposed in the paper has beépUANTITATIVE ANALYSIS
developed by the authors. More specifically, the algorithms |, order to quantitatively compare the accuracy and effi-

related to the registration processes, including the transfon&iency of the two proposed methods, a validation method
mation algorithm, the optimization process, and the surfacgst pe selected. In this study, the lack of fiducial skin mark-
triangulation method, have been developed @+, g5 due to the nature of clinical protocol, does not allow
whereas the rgnderlng process has been performed by a St%'mparisons against the marker-based approach, which is
dard VRML viewer. Furthermore, the development and theyigely accepted as a golden standard in registering medical
evaluation of the compared registration methods have beegfaia from other modalitie¢CT and MR.# Also, the well-
performed_ on a Unix works_tanoﬁ_SGl workstat_lon with 128 astaplished Target Registration Err6fRE), according to

MB and high impact graphigswhich was dedicated for the \yest et al,3* could not be applied in this case since the
specific study. medical experts were not in a position to accurately place
Implementation details of the transformation model landmarks in the SPECT image, by means of software, after

the acquisition, due to the low spatial resolution of the data.

Throughout_this study, the gffine_ transformation mode_IThe comparison between the two proposed registration meth-
has been considered for the registration of CT-SPECT bra'Bds will therefore take place using either their own MOM or

images. The allowed ranges of the parameters of&are other unbiased image similarity criteria. Nevertheless, we

d_etermmed during the experimental phase for both reglstraberformed various tests using our algorithms on registering
tion methods and are prese.nted. These values cover the mar R data, which have been available to us according to
jority of the brain image pairs and can be redefined by theyg jhtermational project entitled “Evaluation of retrospective

user in situations where extreme transformation is requlredimage registration,” sponsored by the National Institute of

21'22'83 ba Co C Flg%ga Neurological Disorders and Stroke, Project No. 1 RO1
d>2<,d3, 3Lz [_4'0 4(] NS33926-02, with principal investigator Professor J.
dz, y [_20’2(] Michael Fitzpatrick. The obtained results have been sent for

evaluation to the authors of Ref. 30 according to the strict
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procedures that have been defined within the aforementionegince, in the first case, the volume-based was not designed to
web-based  project (http://cswww.vuse.vanderbilt.edu/ minimize the average surface distanceyime versa
~image/registration/ The appropriate approach would be to employ an image
As it can be seen from the definition of the MOMs that similarity measure and calculate its value for the resulting
are used in the proposed methdés. (5) and Eq.(7)], the  registered images of both methods. Ideally, this independent
surface-based method uses the average distance of two sumeasure of matckiMOM) should be of a different nature
faces, whereas the volume-based method uses the mutdfadm both MOMs that are being examined.
information (MI) criterion, which is a pure number. The two  In this specific case, a number of image similarity criteria
MOMs (mutual information—MI|—and average surface dis- have been investigated. The normalized cross-correlation
tancé are used as modules of the registration schemesoefficient*® the gradient correlation coefficiefftand simi-
(volume-based and surface-based methods, respegtiuely larity measures, based on the difference im&gare the
the sense that the optimization process is using these MOMmost widely used. The similarity measures based on the dif-
to estimate the unknown transformation parameters. Thuderence images are not applicable in the case of registering
the two proposed methods do not employ directly compaCT and SPECT images due to its operation, which can only
rable MOMs. Evaluating the volume-based method using théake place for intramodality registration. Therefore, the nor-
average surface distance, or calculating the MI criterion ofnalized cross correlation was finally selected. Its mathemati-
the result of the surface-based method would be biasedaal definition is given below:

Sipealleriyi k)= Terllspecfii k) —speci

\/E(i,j)eA[ICT(i J,K) _I_CT]ZE(i,j)EA[ISPEC‘I(i i, K) = Tspecd?

cc= (10

Where|_c_|_, I—SPECTare the mean values of the image at theiS performed‘.g The null hypothesis is that the independent
overlap region of the CT and SPECT,i,j(k) A variable (i.e., the registration methadas no effect on the
=CTNSPECT. The normalized cross-correlation’s value€stimation of the correlation coefficient. The results of the
ranges between-1 (least similay to +1 (most similaj. It test are listed in Table Ill. The first column of the table pre-
must be pointed out that the two proposed methods are alsgents the source of variation of the correlation coefficient.
compared against a well-established registration method, tHene source of variation is the independent variable manipu-
lterative Closest PointiCP) method. The three registration lation (registration method five of the estimations were ob-

methods were evaluated for all five pairs of data. tained using the volume-based method, five using the
surface-based method, and five using the ICP method. An-
EXPERIMENTAL RESULTS other source of variation is the individual differences: the

mean value of the three correlation coefficients correspond-
ing, for example, to the Pair-1 is likely to be different than
In Table II, the normalized cross-correlation values of thethat corresponding to the Pair-3. The final component of the
registration using the surface- and the volume-based methodgtal variability is due to the so-called registration method
against the ICP are presented. X pairs interaction and it describes how the patterns of the
In order to assess if there is a difference of the correlatiorgorrelation coefficient are affected by the levels of the inde-
coefficient between the three registration methods, a onependent variabléregistration method The quantification of
way repeated-measures analysis of variafREI-ANOVA)  the various sources of variation is achieved by the use of the
sum of square$SS), which is an abbreviation for the “sum
of the squared deviations from the mean.” The values for the

TasLE Il. Quantitative results of the three registration methods: the surface- m of squares for the three components are listed in the
based, the volume-based, and the ICP method using the normalized cro§éJ q P

correlation, as a similarity criterion, for all CT-SPECT image pairs.

Quantitative results

Correlation coefficient value o
TaBLE lll. One-way repeated measures—ANOVA for assessing if the mean

Data pairs Volume-based Surface-based ICP values of the correlation coefficient are different between the three algo-
1 0.474 0.4196 0.423 fithms

2 0.424 0.408 0.397 Source of Variation SS df MS F  pvalue

3 0.506 0.3013 0.402

4 0.407 0.331 0.337 Registration methodRM) 0.0151984 2 0.0076 4.968 0.0396

5 0.46 0.44 0.423 Pairs(P) 0.0135338 4 0.003 383

Average 0.454 0.380 0.396 (RM) X (P) (residua) 0.0122371 8 0.001 530

Std. deviation 0.0395 0.0603 0.0353 Total 0.0409693 14
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TABLI‘E |\/: p values of a Newman—_KeuIs myIFipIe comparison test for as-  As can be observed, there is a signiﬁcant statistical differ-
sessing if the value_zs of the correlation coefficient are different for the meth-ence of the values of the correlation coefficient between the
ods under comparison

volume-based method and both the surface-based and the

Methods under comparison p value ICP method. In particular, the correlation coefficient ob-
M . tained by the volume-based method is higher than that of the
utual distance <0.05
Mutual ICP <0.05 surface-based and the ICP method, thus the volume-based
Distance ICP >0.05 method systematically outperforms the other two methods.

On the contrary, there is not a statistical difference of the
value of the correlation coefficient between the surface-based

and the ICP methods.
second column of the Table Ill. The third column of the table

contains the degrees of freedddf) for each source of varia-
tion. The column labeled as MS presents the mean o
squares, which is the ratio of the sum of squares to the de=
grees of freedom. Since the mean of squares corresponding In Fig. 3, the pre- and post-registered SPECT outer brain
to the second component of variation is not used for furthesurfaces are rendered in the CT coordination system, along
calculations, it is not necessary to include it in Table Ill. Thewith the inner skull CT surface, using a standard VRML 2.0
systematic effect of the registration method on the value obrowser. The technique used for rendering is a surface ren-
the correlation coefficient is quantified by the so-called dering technique, where the red surface corresponds to the
ratio, which is the ratio of the mean squares of the first cominner CT skull surface and the blue surface corresponds to
ponent of variation to the mean of squares of the third comthe SPECT brain surface. The SPECT brain surface is ren-
ponent of variation. The value corresponding to the com- dered with transparency, therefore, wherever it lies outside
putedF ratio (0.039 578 3 indicates that the null hypothesis the CT surface, it is rendered with a purple color, whereas
can be rejected with significance level 0.05, i.e., the registrawhen it lies inside the CT surface it is hidden by it. Success-
tion method has a significant effect on the value of the corful registration results in areas of the SPECT surface that
relation coefficient. rapidly interchange with the CT skull surface. A degree of
Furthermore, a post hoc analysis is performed in order tgpatial misalignment occurs between the preregistered
determine between which registration methods there is a sSigSPECT and CT surfaces in Fig.(a3, especially in the
nificant difference of the correlation coefficient. In Table 1V, parieto-occipital and the iniac areas. This misalignment is
the results of the Newman—Keuls multiple comparison tesfinally corrected by the application of the proposed volume-
between all the possible combinations of registration methbased automatic registration method, in Fifh)3where the
ods are listed. The null hypothesis is that the two methodsegistered SPECT surface is closely aligned with the inner
under consideration do not differ as per the correlation coefskull CT surface. Areas of seemingly imperfect alignment
ficient. can be attributed to the segmentation of the skull structure.

ualitative results

(a) (b)

Fic. 3. Visual assessment of the volume-based automatic registration method by superposing the SPECT surface on the corresponding CT surface for the
Pair-4, beforg@) and after(b) the proposed registration method.
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(b)

Gray scale

Color scale

(d)

Fic. 4. Original CT transverse slice 35—enhanced for visibilty Corresponding SPECT sli¢e). CT transverse slice fused with the corresponding slice
from the registered SPECT data, using the Ml mett@dCT slice fused with the registered SPECT data using the surface-based rtwthod slice fused
with the registered SPECT data using the ICP mettepd

The performance of the surface- and the volume-basedccipital horn. The lowest degree of continuity is achieved
automatic registration methods is also visually comparedy the ICP method, whereas the surface-based method lies in
against the ICP method for data of Pair-4, which was sethe middle. This can be explained, since the Ml is the only
lected as the most representative according to the team @fjterion in this study that takes into consideration the infor-

experts. Furthermore, the internal SPECT anatomical StruGi,ation from the interior of the two modalities, indicating

ture was more evident in this pair, probably due to pathology,. _.. . . .
. o . tial alignment of corr nding structur f the two im-
thus making the task of qualitative evaluation of the tech-sPa al alignment of corresponding structures of the two

nigues easier. In Figs. 4 and 5, selected regions of the regig-ges that are to be registered. The criteria employed by the

tered SPECT slices of Pair-4 are superimposed on the corrdUrface-based method or the ICP rely on the surface infor-
sponding CT transverse slices 35 and 17, respectively. T8'ation, ignoring the spatial alignment of internal structures.
enhance the visual assessment of the registration method&e superiority of volume-based registration techniques over
the SPECT data have been displayed using pseudocolor, sparface-based ones because of the nature of the employed
cifically the hot body color map, as indicated in the figures. Ameasure of match has been reporte@he ICP method has
pseudocolor map defines the correspondence between a graiyher produced a set of unrealistic transformation parameters
value and anR,G,B triplet, thus producing the effect of for the specific pair of datasets or it may have miscalculated
color display from noncolor information. The correspon- ihez displacement, since the degree of discontinuity between
dence between the gray scale and the color map is indicatfle cT and SPECT internal structure is much greater than

in Figs. 4, 5 anql 6. _Th_e hot pody color map i_s defined bythat of the surface-based method. The inner skull CT surface
psychophysiologic criteria and it has been considered as ver hd the outer SPECT brain surface oresent a hiah dearee of
appropriate for the display of SPECT dafalhe selection of P gn deg

the particular slices presented in the figures was based on gegntinuity regardlng the.ICP method, as well as with the

amount of internal structure that is visible on the SPECTVOlume-based registration method. The surface-based
images, such as ventricles and ischemic pathologies. As ffethod presented only few local discrepancies.

can be observed in Fig. 4, the volume-based registrakitin Results from transverse CT slice 17 of Pair-4 also support
method achieves superior continuity regarding the internalhe above findings, although brain structure at this level is
brain structures, such as the lateral ventricles and the lefiot as easily identifiabléFig. 5.
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Gray scale

Color scale

,
Fic. 5. Original CT transverse slice 17—enhanced for visibiléy Corresponding SPECT sli¢an arrow indicates the ischemia in the left posterior limb of
the internal capsu)eb). The CT transverse slice fused with the corresponding slice from the registered SPECT data, using the M{anethoe indicates

the ischemia in the left posterior limb of the internal capsg CT slice fused with the registered SPECT data using the surface-based rthod slice
fused with the registered SPECT data using the ICP metlod

DISCUSSION CT data, whereas Fig.(l5) shows the same fused results,
i i . . . after applying the skull-removal preprocessing step on the
Surface- and a volume-based automatic registration met T data. It can be observed that in the first case the regis-

ods have been proposed in this paper for matching CT an . )
SPECT data of the human brain under a clinical protocol.tered SPECT areas invade the CT skull surface, thus deterio-

For the determination of the parameters of the geometrit’iating the performance of this method significantly. The per-

transformation, the optimization technique of genetic a|go_f0rmance is improved, as can be seen in Fi@)6by the

rithms was used. Using independent MOM criteria weapplication of the aforementioned preprocessing step. This

showed that the volume-based method consistently outpef™Provement is not due to different spatial resolution of the
forms the surface-based method. two imaging modalities, becausa the voxel size of the two
Since the SPECT study is a brain perfusion study, bongnodalities has been taken into considerafionEq. (3)], (b)
structure(such as the skullcannot be imaged by SPECT. the effect appears only in the volume-based registration tech-
Therefore, in registering CT and SPECT datasets, the outdlique and could be attributed to the properties of the mutual
limits of the brain tissue, as imaged by SPECT, should coininformation criterion, andc) the effect disappears after the
cide with the inner skull, as imaged by CT. Thus, a prepro.removal of the skull from the CT data, prior to the volume-
cessing step to extract the inner skull CT surface and th@ased registration process.
outer SPECT surface has been applied for the surface-based One further disadvantage of the surface-based registration
registration method. Furthermore, a preprocessing step of rénethod is the necessity of identification of common anatomi-
moval of the skull from the CT data has been required priorcal structures to be matched in both modalities; inaccuracies
to the volume-based registration. are inevitably introduced during this process. These inaccu-
Figure 6 demonstrates the necessity of this preprocessingcies of the surface-based registration method are due to the
step before applying the volume-based registration methodlifficulty of obtaining the SPECT brain surface. The align-
Figure &a) shows the transverse fused slice (3Blected re- ment of the internal structures may be affected by the regis-
gions of the SPECT data, superimposed on the CT)datdration of the extracted surfaces. In order to quantitatively
without applying the skull-removal preprocessing step on theevaluate the performance of the surface-based registration
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Gray scale

i

Color scale

Fic. 6. CT transverse slice fused with the corresponding slice from the registered SPECT data, using the MI method, without removing the CT bone structure

(). The same fused slice, using the volume-based methiby after performing the CT bone structure removal preprocessing(step

method, in terms of determination of the SPECT brain sur+ithm presented in the Appendix, using the surface-based
face, a study was also performed. registration technique. This measure of match was selected
According to this study, the actual SPECT brain surfacebecause the average surface distance is associated with the
has been obtained using a threshold operator as describedantomatic surface-based registration technique and this spe-
the preprocessing section. As it can be seen in Fig. 7, theific technique was the one affected by these kinds of inac-
optimum threshold level is difficult to be determined for the curacies. As it can be observed, there is an area round the
SPECT data, whereas the determination of the thresholthreshold level of 10 where the automatic surface-based reg-
value for the CT is a simpler process, as indicated by thestration technique produces the most accurate performance.
higher slope of the line profiles. Thus, the inaccurate deteris performance deteriorates rapidly as the threshold level
mination of the SPECT brain surface may introduce inaccuincreases above 15. Similar observations were recorded for
racies during the application of the surface-based methodhe rest of the pairs.
These inaccuracies are quantified in Fig. 8, where the aver- Additionally, the volume-based method does not suffer
age brain SPECT-CT inner skull distance is plotted in milli- from the aforementioned disadvantage, despite the fact that a
meters against different SPECT threshold values, for Pair-4oreprocessing step toward removal of the CT bone structure
The average brain SPECT-CT inner skull distance has beamas needed. Furthermore, as it was pointed out above, the
calculated for each threshold value according to the algobone structure in the CT data is well defined and thus easily
segmented. This method, however, does not require the iden-

Mid-coronal line profiles

8 35
250 g
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Fic. 8. Performance of the automatic surface-based registration method
Fic. 7. Mid-coronal line profiles of a CT transverse slice and the corre-against the determination of the brain SPECT surfatéerms of threshold
sponding(registeredl SPECT slice. level) for the Pair-4.
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tification of the corresponding SPECT brain surface, whichdistance map is associated with a closest voxel from the bi-

cannot be unambiguously identified and therefore is thenary input image. This information is stored into a lookup

source of spatial inaccuracies. table, which greatly accelerates execution time, with man-
The ICP algorithm suffers from similar to the surface- ageable memory requirements. The algorithm for DT can be

based method’s disadvantage; it does not require the definslummarized in the pseudocode as follows:

tion of common anatomical structures, such as surfaces, byf§sert all voxels of the given surface into the list,

it does require the identification of homologous points be-nitjalize the lookup tabldset distances to an unused l3bel
tween the two images that are to be registered. In the specifigr 5| surface voxels, set the closest voxel as the same voxel
case of registering CT and SPECT brain images, most of thgije (list not empty,

points used for the registration of the images lay on the SUrgyiract the top voxel from the list, set this as the current
faces used by the surface-based registration method. Thj xel, expand its six closest neighbds three dimensions
explains the fact that the quantitative results of Table Il doand insert them at the end of the list,

not show any statistical difference between the two methOdEalculate the minimum distance nidist, of each of the six

Finally, the performance of the surface- and volume-base eighbors from the closest voxel of the current voxel,

registration methods shows no correlation with the voxel size, " L : . .
o ; . : if min_dist is less than the distance of the neighbor point
within the range of sizes given in Table I. Nevertheless, re- . .
from the already assigned closest voxel to it, then

aligning CT and MRI data, the performance of the automatic t the closest voxel of the neiahbor equal to the closest
surface-based registration method deteriorated as the voxaf | of th ; elupdat ?h : kq tabl
size increases to values outside of the range of the curreffPX€! OF the current voxelupdate the lookup table

study, as it was described in the work of Matsopowdbal X°
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