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other fractal-based features as descriptors of the texture
of images [2–6]. Applications of the fractal theory in imageFractal dimension has been used for texture analysis as it is

highly correlated with the human perception of surface analysis also include image segmentation [2, 6–8], shape
roughness. Several methods have been proposed for the estima- description [9], object characterization [10], and surface
tion of the fractal dimension of an image. One of the most reconstruction [11], while there are several nice results on
popular is via its power spectrum density, provided that it is the fractal dimension estimator using wavelets [12]. The
modeled as a fractional Brownian function. In this paper, a fractal model has been used in medical imaging for analysis
new method, called the power differentiation method (PDM),

of bone X-rays [13, 14], classification of ultrasonic liverfor estimating the fractal dimension of a two-variable signal
images [15], edge enhancement [15, 16], and mammogramfrom its power spectrum density is presented. The method is
analysis [17].first applied to noise-free data of known fractal dimension. It

In this paper, a new method, called the power differentia-is also tested with noise-corrupted and quantized data. Particu-
tion method (PDM), for estimating the fractal dimensionlarly, in the case of noise-corrupted data, the modified power

differentiation method (MPDM) is developed, resulting in more of a two-variable signal from its power spectrum density
accurate estimation of the fractal dimension. The results ob- is presented. Along with the PDM a robust fitting tech-
tained by the PDM and the MPDM are compared directly to nique for obtaining the fractal dimension from the resulting
those obtained using four other well-known methods of fractal log–log plot is described. The method is first applied to
dimension. Finally, preliminary results for the classification of noise-free data of known fractal dimension. Then it is
ultrasonic liver images, obtained by applying the new method, tested with noise-corrupted data and quantized data (gray-
are presented.  1998 Academic Press

level images). Particularly, in the case of noise-corrupted
data, a modification of the method, called the modified
power differentiation method (MPDM), is proposed, re-1. INTRODUCTION
sulting in more accurate estimation of the fractal dimen-
sion. Results obtained by the PDM and the MPDM areFractal geometry was introduced and developed by Man-
compared directly to results obtained using four other well-delbrot [1] as a means for describing and analyzing the
known methods of fractal dimension estimation. Finally,properties of objects with irregular and complex structure
preliminary results for the classification of ultrasonic liver(fractals), such as coastlines and surfaces of mountains.
images, obtained by applying the new method, are pre-The characteristic property of a fractal is that it is self-
sented.similar for every scale of analysis. This fact implies that

any part of a fractal object is a scaled-down copy of the
2. FRACTAL DIMENSION: DEFINITION ANDoriginal. However, for natural objects the self-similarity is

ESTIMATION METHODSobserved only for a limited range of scales and it appears
in a statistical sense. In this case, a part of the object,

There are several definitions of the fractal dimension,magnified to the size of the original, exhibits statistical
FD, of a set. The most popular of them is the box-countingproperties similar to those of the original. The numerical
dimension, which is an upper limit of the Hausdorff–quantification of self-similarity is obtained by the fractal di-
Besicovich dimension [1]. The box-counting dimension ofmension.
a set S , Rn is defined asThe fractal dimension is a measure of the roughness of

the surface represented by the fractal set: the larger the
fractal dimension is, the rougher the surface appears. This FD 5 lim

rR0

log N(r)
log(1/r)

, (1)
fact has led to the utilization of the fractal dimension and
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where N(r) denotes the number of n-dimensional cubes, 2.3. Covering Blanket Method (CBM)
size r, needed to cover set S.

This method belongs to the area measurement methods.
The methods for the estimation of the fractal dimension

The area of the image intensity surface at scale « is given
of an image, I(m, n), of size M 3 N can be grouped into

by the relation
three categories; fractional Brownian motion (fBm) meth-
ods, area measurement methods, and box-counting meth-
ods. The main representatives from each category are A(«) 5 C«22FD,
the following.

where C is a constant. Peleg [3] suggested that the area
2.1. Power Spectrum Method (PSM) A(«) be estimated (« 5 1, 2, . . . ,) by the relation

This method belongs to the fractional Brownian motion
(fBm) methods. The image is assumed to be fBm [2, 18,

A(«) 5
V(«) 2 V(« 2 1)

2
,19] with parameter

H 5 3 2 FD (2)
where V(«) is the volume of the blanket, of thickness 2«,
covering the image intensity surface. The fractal dimension

with 0 , H , 1. is obtained as 2-s, where s is the slope of the best fitting
Then the power spectrum density of image is given by line at the points (log «, log A(«)).

2.4. Box Counting Method (BCM)P( f1 , f2) 5
k

(Ïf 2
1 1 f 2

2)b
5

k
f b , (3)

In the box-counting method, the estimation of the fractal
dimension is based on Eq. (1). The image plane (m, n) is

where k is a positive constant. The exponent b is related covered by a 3-dimensional grid of cubes for various grid
to the fractal dimension as sizes r. The number of cubes, N(r), containing at least one

pixel of the image is counted and the fractal dimension is
b 5 2 1 2H 5 2(4 2 FD), (4) obtained by the slope of the best fitting line at the points

(2log r, log N(r)). Modifications of the box-counting
method can be found in [21].where 2 # b # 4.

Equation (3) actually describes an average power spec-
trum density [20], since for fBm processes, due to their 3. POWER DIFFERENTIATION METHOD (PDM)
nonstationarity [20], the power spectrum density cannot
be derived by the Fourier transform of the autocorrela- In this section, a new method, called the Power Differen-
tion function. tiation Method (PDM), for estimating the fractal dimen-

Pentland [2] estimated the exponent b for various direc- sion of a two variable fBm function, BH(x1 , x2), from its
tions of the Fourier plane as the slope of the least-squares average power spectrum is presented.
line at the points (2log f, log P( f1 , f2)). These estimates According to Eq. (3), the average power spectrum den-
were then collapsed into one average measurement, from sity of BH(x1 , x2) is given by
which the fractal dimension was obtained.

2.2. Difference Statistics Method (DSM) P( f1 , f2) 5
k

(Ïf 2
1 1 f 2

e)b
.

This method also belongs to the fBm methods, where
the following relation is assumed to hold [2],

Let I( fr) denote the power of the signal for the bandwidth
of radial frequencies [ f0 , fr]:

E[uDIDu] 5 E[uDIDr5lu](Dr)H, (5)

I( fr) 5 EE
f0#ifi#fr

P( f1 , f2) df1 df2where DIDr 5 I(m 1 Dm, n 1 Dn) 2 I(m, n) with Dr 5
Ï(Dm)2 1 (Dn)2, c is a constant, and E[?] denotes the ex-
pectation value. Then the H parameter is estimated by the

5 EE
f0#ifi#fr

k

(Ïf 2
2 1 f 2

2)b
df1 df2 .slope of the line that fits best at the points (log Dr, log

E[uDIDru]).
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By changing the Cartesian coordinates ( f1 , f2) to the polar n2/M2 (n1 5 0, 1, . . . , M1 2 1, n2 5 0, 1, . . . , M2 2 1) is
approximated by P(F1 , F2) 5 uK(F1 , F2)u2, where( f, w), where f 5 Ïf 2

1 1 f 2
2 and w 5 tan21 ( f1 , f2), we obtain

K(F1 , F2)I( fr) 5 k E2f

0
dw Efr

f0

f 12b df 5
2fk

2 2 b S 1
f b22

r
2

1
f b22

0
D.

5 OM121

m150
OM221

m250
BH(m1Ts , m2Ts) exp[22fj(m1F1 1 m2F2)]

The derivative, I9( fr), of I( fr) with respect to fr is given by
the relation

is the discrete 2-D Fourier transform of BH(m1Ts , m2Ts).
The power I(Fr), for various normalized radial frequen-I9( fr) 5

dI
dfr

5
2fk
f b21

r
.

cies, Fr 5 fr/fs , is approximated by the double sum

Thus, b 2 1 is the slope of the straight line described by I(Fr) P O
F1

O
F2

P(F1 , F2),
the equation

log I9( fr) 5 log(2fk) 1 (b 2 1)(2log fr). (6)
where F0 # ÏF 2

1 1 F 2
2 # Fr and F0 5 f0/fs .

The derivative I9(Fr) is then estimated using the Sa-
Consequently, the fractal dimension is obtained using Eqs. vitzky–Golay smoothing filter [22]. For a given data set
(6) and (4). hzij (i 5 1, 2, . . . , N), the Savitzky–Golay smoothed first

It is very important to note that the presence of additive derivative, at position j, is estimated by the derivative,
noise does not degrade the robustness of the estimator. at the same position, of the least-squares fit polynomial
Actually, in the presence of white, additive noise, which (usually of order 4 or higher) at the points hzj2mw

, . . . ,
happens quite often, the proposed method gives a more

zj , . . . , zj1nw
j, where nw and nw are positive integers.

robust estimate of the fractal dimension than using Eq. (3) Ideally, according to Eq. (6), all points (2log Fr , log
directly, as the PSM does. It is not difficult to show that

I9(Fr)) must lie on a straight line, namely 2d log I9(Fr)/d
in the presence of white noise with power spectrum density log(Fr) 5 b 2 1, for every Fr . In the practice, the discrete
equal to N0 , the expression for the derivative of the power, nature of the procedure for calculating I9(Fr), as well as
I9n( fr), of the noise-corrupted signal can be written in the the fact that Eq. (3) does not hold for every value of f for
following form real data, cause the points (2log Fr , log I9(Fr)) not to lie

exactly on a straight line. Therefore, b 2 1 is estimated
usually by the slope of the best-fitting line at the pointsI9n( fr) 5 2f S k

f b21
r

1 N0D,
(2log Fr , log I9(Fr)), using the least-squares method.

For a set of data points (xi , yi), i 5 1, 2, . . . , N, the
parameters of the best-fitting line, in the least-squareswhile Eq. (3) is modified as follows:
sense, y 5 p 1 qx, are obtained by minimizing, with respect
to p and q, the function

Pn( fr) 5
k
f b

r
1 N0 .

hLSq(p, q) 5 ON
i51

d 2
i 5 ON

i51
(yi 2 p 2 qxi)2.

Recalling that b . 2 and noticing that
1

f b21
r

.
1
f b

r
for

fr . 1, we conclude that the signal component in the expres- However, the least-squares fitting is not a robust method;
sion for I9n( fr) is greater than that in the expression for points deviating much from the straight line, called outliers,
Pn( fr). This means that, in the presence of white noise, the can cause the resulting line to be a very bad fit. A more
useful component in the two expressions is higher in the robust method can be obtained if the function to be mini-
PDM, which can result in more accurate estimates of the mized is chosen in such a way that the outliers influence
fractal dimension. the fit less. Such a robust method is the M-estimation

In practice, discrete data BH(m1Ts , m2Ts), with m1 5 0, method [22], where the function to be minimized is
1, . . . , M1 2 1, m2 5 0, 1, . . . , M2 2 1, and Ts 5 1/fs

the sampling period, are available. The average power
spectrum density, P(F1 , F2), for the normalized pair of hMEst(p, q) 5 ON

i51
r(d 2

i ), (7)
frequencies (F1 , F2), with F1 5 f1/fs 5 n1/M1 , F2 5 f2/fs 5
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where F 5 ÏF 2
1 1 F 2

2 is the normalized radial frequency,
a(F1 , F2) is a Rayleigh distributed random variable such
that E[a2(F1 , F2)] 5 A2 and w(F1 , F2) is uniform in [0, 2f).

If n(m1Ts , m2Ts) denotes a sample from zero-mean,
white, noise random process with standard deviation s,
then its 2-D discrete Fourier transform is

N(F1 , F2) 5 n(F1 , F2)eju(F1,F2)

where n(F1 , F2) is a Rayleigh distributed random variable
such that E[n2(F1 , F2)] 5 s 2 and u(F1 , F2) is uniform in
[0, 2f).

Thus, the 2-D discrete Fourier tranform of the function
FIG. 1. Fitting a straight line at the data points (2log Fr , log g(m1Ts , m2Ts) 5 BH(m1T2 , m2Ts) 1 n(m1Ts , m2Ts), is

I 9(Fr)) by the least-squares method and the M-estimation method.

G(F1 , F2) 5 K(F1 , F2) 1 N(F1 , F2).
where r is a symmetric, positive valued function with a
unique minimum at zero; for example, such a function is

Thus, the average spectrum density of g(m1Ts , m2Ts) isr(x) 5 log(1 1 x 2/2).
given by the relationIn order to demonstrate the superiority of the robust

fitting method against the least-squares method, the two
methods were applied to a set of points (2log Fr , log I9(Fr))

Pg (F1 , F2) 5 E [uG(F1 , F2)u2] 5
A2

F b 1 s 2.obtained by a 256 3 256 data set with true fractal dimension
2.1. The results are shown in Fig. 1, where it can be ob-
served that the M-estimation method in contrast to the Requiring
least-squares method, ignores the outliers, resulting in a
more accurate estimation of the fractal dimension. Indeed,
the estimated values were FDLSq 5 2.240 for the least- A2

F b @ s 2 (8)
squares method and FDMEst 5 2.093 for the M-estimation
method. Actually the fluctuations at lower frequencies as
displayed in Fig. 1 were generated artificially, adding uni- for every F # Fr,max results in Pg (F1 , F2) P A2/F b.
formly distributed random numbers to log I9(Fr), and they Equation (8) is rewritten as
did not arise from the application of the estimator to the
data set. The reason for this was to emphasize the superior-
ity of the robust fitting against the least-squares method. s 2F b

A2 ! 1

4. MODIFIED POWER DIFFERENTIATION
METHOD (MPDM)

The presence of white noise causes the flattening of
the average power spectrum density, particularly for high
radial frequencies, which in turn causes the deformation
of the scatter plot log I9(Fr) vs 2log(Fr), as shown in Fig.
2. Thus, there is a (normalized) radial frequency, Fr,max ,
depending on the level of the noise, which is the upper
limit of the range of the frequencies over which the fitting
procedure must be done. This critical frequency can be
estimated as follows.

Due to the fact that BH(m1Ts , m2Ts) is a discrete fBm
function, its 2-D discrete Fourier transform is given by

FIG. 2. Scatter plot of log I 9(Fr) vs 2log Fr for noise free data
K(F1 , F2) 5

a(F1 , F2)

(ÏF 2
1 1 F 2

2)b
ejw(F1,F2) 5

a(F1 , F2)
Fb/2 ejw(F1,F2), and corrupted data with white noise.
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TABLE 1
Estimation of the Fractal Dimension of the Data Generated by the Fourier Filtering Method Applying the Five Methods

PDM PSM DSM CBM RDBCM

True Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

2.2 2.206 0.025 2.207 0.072 2.297 0.045 2.266 0.046 2.104 0.031
2.4 2.403 0.026 2.412 0.076 2.423 0.044 2.392 0.043 2.197 0.029
2.6 2.609 0.028 2.585 0.070 2.558 0.040 2.526 0.046 2.295 0.031
2.8 2.802 0.026 2.794 0.083 2.691 0.029 2.670 0.038 2.393 0.022

or equivalently spectrum method (PSM) due to Pentland, the difference
statistics method (DSM), the covering blanket method
(CBM) and the relative differential box counting methods 2F b

A2 5 c, (9) (RDBCM) [21]. These methods were tested on data with
known fractal dimension, generated by the Fourier filtering
method [19]. Specifically, one hundred (100) two-dimen-where 0 , c ! 1.
sional fBm signals of size 128 3 128 were generated forIf Fr,max is chosen equal to
each value of FD 5 2.2, 2.4, 2.6, 2.8. The results of the
estimations can be seen in Table 1, where the true fractal

Fr,max 5 ScA2

s 2 D1/b

, (10) dimension, the mean and the standard deviation of the
estimates are listed. The results in Table 1 suggest that the
proposed method has the best performance amongst the

then indeed the relation (8) holds. methods in terms of accuracy and standard deviation of the
The MPDM for the estimation of the fractal dimension estimates. The PSM performs equally well, the RDBCM

of corrupted data with white noise of known variance is underestimates the true value of fractal dimension,
based on a two-pass procedure. Firstly, an estimation of whereas the DSM and CBM seem to underestimate the
the parameters A and b is obtained for a small number of true value only for high fractal dimensions (FD 5 2.8).
radial frequencies. Based on these estimates, the Fr,max is The five method were also tested to another set of images
calculated from Eq. (10) for a very small value of c, for generated by the random midpoint displacement method
example c 5 1025. Then the method is applied again for [19], which approximates the statistical model given by Eq.
radial frequencies smaller than Fr,max and the final estimate (5). The obtained estimates are listed in Table 2. The re-
of b is obtained. It must be noticed that this two-pass sults indicate that the DSM yields reliable estimates for
procedure can be applied to any other method of estima- the full range of variation of the fractal dimension. The
tion of the fractal dimension based on the average power CBM gives very good estimates only when the true value
spectrum density. of the fractal dimension is relatively low. The proposed

method, for this set of data, provides reliable estimates for
5. EXPERIMENTAL RESULTS high values of the fractal dimension (for 2.6 or higher),

whereas the PSM cannot give reliable estimates at all.
5.1. Noise-Free Data

Finally, the RDBCM underestimates the true value of frac-
tal dimension.Five methods, including the PDM, were chosen for a

comparative study. The other four methods were the power It is important to note that the performance of any algo-

TABLE 2
Estimation of the Fractal Dimension of the Data Generated by the Random Midpoint Displacement Method Applying

the Five Methods

PDM PSM DSM CBM RDBCM

True Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

2.2 2.534 0.043 2.895 0.144 2.317 0.057 2.290 0.050 2.054 0.035
2.4 2.570 0.040 2.891 0.125 2.473 0.049 2.412 0.042 2.163 0.034
2.6 2.690 0.059 2.888 0.120 2.632 0.036 2.530 0.028 2.277 0.027
2.8 2.879 0.077 2.933 0.078 2.768 0.025 2.627 0.022 2.375 0.019
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rithm derived for the estimation of the fractal dimension
changes depending on the approximate fBm technique
used for the generation of the data [23]. Therefore, for the
first set of data, where Eq. (3) is used, the results are biased
towards the PDM and the PSM, while for the second set,
the results are biased towards the DSM. A more fair perfor-
mance comparison would include the use fBm generation
techniques not related to any of the estimators under study.
Such a method, which generates true 2-D discrete fBm
samples, is the Cholesky decomposition. However, the
computational cost of the technique is too high [23].

5.2. Noise-Corrupted Data

The five methods were also tested on noise-corrupted
data. White, Gaussian, zero mean noise was added to the
data generated by the Fourier filtering method, for signal
to noise ratio 10, 20, and 30 dB, where SNR 5 10 log10

(Ps/s 2), Ps 5 1/N 2 oN
i51 oN

j51 I(i, j)2 is the power of signal
I(i, j), and s 2 is the variance of the noise. First, the PDM
and the MPDM were tested on the noise corrupted data.
The results obtained by the two methods are shown in
Fig. 3.

From Fig. 3, it can be noticed that the performance
of the PDM is affected deeply by the presence of noise,
resulting in large deviation of the estimated fractal dimen-
sion from the true value. This is particularly true when the
true fractal dimension is low (for example, FD 5 2.2), even
for moderate signal to noise ratio (for example SNR 5 20
dB). On the other hand, the MPDM performs very well
even for small SNR and for low fractal dimension. It must
be noted that the same remarks hold also for other methods
based on average power spectrum (PSM).

Next, the MPDM and the other four methods (PSM
was also modified) were applied to the previous noise-
corrupted data. The obtained results for FD 5 2.2, 2.4, 2.6,
and 2.8 are presented in Table 3. The results suggest that:

1. For SNR 30 dB, the MPDM ranks the best in terms
of accuracy among the five methods, except for FD 5 2.2,
where the PSM gives a better estimate. The CBM and the
DSM perform well, mainly, for FD 5 2.4, 2.6, whereas the
RDBCM clearly underestimates the true value, although FIG. 3. Comparison of PDM and MPDM for noise corrupted

data. (a) SNR 10 dB, (b) SNR 20 dB, and (c) SNR 10 dB.the standard deviation of its estimates are the lowest.

2. For SNR 20 dB, the PSM, followed by the MPDM,
has the best performance, regarding the accuracy, while

5.3. Quantized Datathe same remarks for SNR 30 dB hold for the CBM, DSM,
and RDBCM. In order to examine the influence of the quantization

3. For SNR 10 dB, the MPDM and the PSM perform on the estimation of the fractal dimension, the noise-
the best in terms of accuracy. The DSM and CBM perform free data previously generated by the Fourier filtering
well only when the true value of the fractal dimension is method were converted to gray images with 256 gray
relatively high (FD 5 2.8), while the RDBCM seems to levels. The results obtained by the application of the
overestimate the true value for FD 5 2.2 and underesti- five methods to the quantized data are shown in Table

4. Comparing Table 1 and Table 4, it follows that themate for FD 5 2.6, 2.8.
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TABLE 3
Estimation of the Fractal Dimension of the Noise-Corrupted Data by the Five Methods

MPDM PSM DSM CBM RDBCM

Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

SNR 5 30 dB
2.2 2.255 0.067 2.245 0.155 2.315 0.039 2.282 0.040 2.116 0.027
2.4 2.414 0.033 2.442 0.120 2.431 0.042 2.398 0.040 2.202 0.027
2.6 2.600 0.032 2.607 0.098 2.561 0.039 2.529 0.045 2.298 0.031
2.8 2.796 0.082 2.826 0.086 2.692 0.029 2.671 0.037 2.395 0.022

SNR 5 20 dB
2.2 2.259 0.161 2.234 0.249 2.413 0.024 2.374 0.022 2.191 0.019
2.4 2.497 0.117 2.413 0.191 2.482 0.030 2.446 0.028 2.240 0.021
2.6 2.664 0.055 2.609 0.160 2.584 0.032 2.552 0.039 2.315 0.024
2.8 2.810 0.087 2.834 0.122 2.702 0.027 2.680 0.036 2.402 0.020

SNR 5 10 dB
2.2 2.171 0.293 2.199 0.424 2.682 0.040 2.645 0.040 2.414 0.039
2.4 2.433 0.183 2.457 0.307 2.680 0.026 2.643 0.026 2.399 0.024
2.6 2.718 0.128 2.589 0.246 2.710 0.020 2.679 0.023 2.415 0.018
2.8 2.740 0.223 2.823 0.240 2.766 0.017 2.748 0.026 2.454 0.014

quantization of the data affects minimally the perfor- as well as the mean and the standard deviation of the
estimates are listed in Table 5.mance of the five methods. The PDM method continues

to perform the best amongst the methods regarding the From Table 5, it follows that the fractal dimension for
the images of normal livers is below 2.9, whereas for theaccuracy and the standard deviation of the estimates.

The RDBCM continues to underestimate the true value images of abnormal livers is above 2.9 (except for image
Hem3). A fuzzy c-mean clustering algorithm [24] was ap-of the fractal dimension.
plied for the classification of the images, based on the
estimated fractal dimension, in two classes; normal and6. CLASSIFICATION OF ULTRASONIC LIVER
abnormal. Livers N1, N2, N3, N4, N5, N6, N7, and HemIMAGES—PRELIMINARY RESULTS
3 were classified as normal (class center 5 2.629) and the

The proposed method (PDM) was tested on a set of 21 rest as abnormal (class center 5 3.169), which means that
ultrasonic liver images, comprising seven (7) images of the correct classification percentage was 95.2%. The above
normal liver and fourteen (14) images of abnormal liver results suggest that the fractal dimension, estimated by
(hepatoma: 7 images and hemangeoma: 7 images). The the proposed method, can be used as a feature for the
fractal dimension was estimated for each image using a 64 discrimination between normal and abnormal livers. Simi-
3 64 pixel block (region of interest-ROI). ROIs were cho- lar results were obtained by Chen et al. [15] using a normal-
sen so that they were located as close to the center as ized fBm feature vector.
possible, approximately at one of the transmit focal points The above procedure was repeated using the DSM. The
and included solely liver parenchyma without including mean value and the standard deviation of the fractal di-

mension for normal and abnormal livers were 2.990 6major blood vessels (Fig. 4). The results of the estimations

TABLE 4
Estimation of the Fractal Dimension of the Quantized Data by the Five Methods

PDM PSM DSM CBM RDBCM

True Mean St.D. Mean St.D. Mean St.D. Mean St.D. Mean St.D.

2.2 2.213 0.025 2.258 0.066 2.297 0.045 2.266 0.046 2.099 0.027
2.4 2.405 0.026 2.440 0.074 2.424 0.044 2.392 0.043 2.181 0.027
2.6 2.609 0.028 2.599 0.069 2.558 0.040 2.526 0.046 2.271 0.030
2.8 2.803 0.026 2.804 0.081 2.691 0.029 2.670 0.038 2.366 0.022
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FIG. 4. Images from normal liver (a) and abnormal liver (b). The rectangular area in each image is the region of interest (ROI), whose
size is 64 3 64 and from which the fractal dimension was estimated using the PDM.

0.019 and 2.944 6 0.022, respectively. The percentage of of the estimates. A modified version of the PDM, the
correct classification was 85.7%, which means that 18 out of MPDM, was developed in order to encounter the presence
21 images were correctly classified. The misclassifications of white noise in the data. The MPDM and the other four
occurred for images Hep4, Hep5, and N1. methods were tested on corrupted data with white noise

for various values of signal to noise ratio (SNR). The

7. CONCLUSIONS
MPDM and the PSM had the best performance even for
low SNR. Finally, the PDM was applied for the classifica-
tion of ultrasonic liver images, obtaining 95.2% right classi-

In this paper, a new method, the power differentation fication between normal and abnormal liver.
method (PDM), for the estimation of the fractal dimension Future directions include the improvement of MPDM
of a two-variable fBm function from its average power in order to encounter white noise of unknown variance
spectrum density was presented. A robust procedure was and its extension for taking into account colored
used for the fitting of a straight line at the points (2log noise. Although the results of the classification between
Fr , log I 9(Fr)). The PDM was applied to noise-free data normal and abnormal liver were satisfactory, work must
and the results obtained were compared with those from continue in order to distinguish different types of abnor-
four other well-known methods (PSM, DSM, CBM, and malities.
RDBCM). The PDM had the best performance among the
methods regarding the accuracy and the standard deviation
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