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Abstract

In this paper, a new interpolation scheme, based onMathematical Morphology and a modi-

fiedMarchingCubes (MC)Algorithm to reconstruct 3-Danatomical structures is presented.The

proposed interpolation technique is implemented using morphological operations and incorpo-

rates a distance function to improve the computational effectiveness of the technique. The mor-

phological interpolation technique is compared to an existing shape based interpolationmethod

and its advantages include superiority capability on handling various cases such as the branching

and holes problem (appearance and disappearance of information) and more accurate volume

estimation. Furthermore, the morphological technique is companied with a 3-D reconstruction

algorithm capable of representing any anatomical structure from real 3-D medical data. Intro-

ducing a novel general rule, the algorithm triangulates all standard cube configurations intro-

duced from the standard MC algorithm, without producing topologically incoherent surfaces

or holes. Finally, the technique is implemented in JAVA and its output is in VRML 1.0 format;

therefore it can be executed over the internet and implemented for telemedicine applications.
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1. Introduction

Medical image interpolation is a process often required for discrete image analy-

sis, manipulation, and visualization. Various interpolation methods have been intro-

duced for the image generation and more frequently for the image post-processing.
In the latter, there are cases where interpolation techniques have been applied in or-

der to reduce errors during monomodal or multimodal medical image registration

(Meijering et al., 2001), to improve image quality due to an implementation of lossy

image compression algorithm (Beucher, 1998), or to improve volumetric medical im-

age representation from various medical imaging devices (Ostuni et al., 1997). In par-

ticular, three-dimensional (3-D) anatomical structures are commonly obtained from

a sequence of cross-sectional slices (equally spaced 3-D samples) by contiguously

scanning a 3-D region of the body. However, in clinical practice, it happens very of-
ten to collect a limited number of slices in order to reduce the patient�s exposure and
the examination time. Additionally, there are cases where the spacing between slices

is not uniformly distributed, resulting in an anisotropic data set. Since most of the

visualization techniques operate on equally spaced 3-D samples, a medical image in-

terpolation technique becomes inevitable.

Broadly, interpolation techniques can be divided in two categories: gray level in-

terpolation and binary interpolation methods. In gray level based methods, the inter-

polated values are determined directly from the gray values of neighboring image
elements. Examples of methods belonging to this category are: nearest neighbor, lin-

ear, quadratic, cubic, spline family, Lagrange polynomials, truncated sinc, etc. (Meij-

ering et al., 2001; Lehmann, 1999; Thevenaz et al., 2000). The gray level

interpolation is based generally on the assumption that if a small change of the shape

of object occurred then it would result a small change of the chromatic density of the

object. This is sufficient when the images acquired from a modality are dense (e.g.,

MRI of the brain with resolution 1� 1� 3mm). Medical data are often quite sparse

and the application of the gray level interpolation in these data creates blurred inter-
mediate slices and/or it assigns to area intermediate colors that corresponds to arti-

facts.

Shape based interpolation techniques are object based and applied on structures

of interest according to their geometrical characteristics, after a segmentation proce-

dure is applied. In object based methods, some object information is extracted from

the given data and is used in guiding the interpolation process. An example of meth-

od belonging to this category is that developed by Goshtasby et al. (1992), where cor-

respondence between feature points is used in directing the interpolation process. An
efficient binary interpolation algorithm was introduced in (Raya and Udupa, 1990).

The algorithm consists of first segmenting (using thresholding) the given image data

into a binary image and then converting the binary image back into a gray image

wherein the gray value of a point represents its shortest distance from the cross-sec-

tional boundary (positive for the points of object and negative for those outside)

(Rausin, 1995). After acquiring the signed distance maps of the two sequential con-

tours, a linear interpolation is performed generating a set of intermediate distance

maps according to the required resolution. Then, the inverse procedure is performed
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creating form the distance maps the binary contour interpolating slices. This algo-

rithm, proposed in (Raya and Udupa, 1990), is also implemented for comparison

purposes and it will be referred as shape based interpolation in the rest of the paper.

Other interpolation methods on binary objects are based on elastic dynamic interpo-

lation (Burr, 1981; Chen et al., 1990) and direction interpolation, called staircase
(Werahera et al., 1995). These algorithms have difficulties when dealing with non-

convex objects and the computational requirements are enormously increased.

Interpolation techniques have been also used on binary, mosaic, gray level, and

color images, based on mathematical morphology (Serra, 1983, 1988. These methods

were consisted by creating intermediary two-dimensional images between two given

ones by morphological filtering. Morphological interpolation approaches were based

on the application of either a morphological median (Meijering et al., 2001; Iwanow-

ski and Serra, 1999), or using an interpolation function which describes the relative
distance between the objects (Meyer, 1996). In terms of interpolating binary images,

a major drawback of these methods is that the intersection of the input objects must

be non-empty. The Hausdorff distance was also incorporated for interpolating im-

ages in (Serra, 1998), which allows interpolation between disjoint input objects but

it creates large interpolated objects compared with the input ones. Furthermore,

an interpolation method, trying to correct the disadvantage of the previous method,

was introduced implementing in (Iwanowski, 2002). According to this method, a

geodesic set is used covering both input objects as well as the gap between them.
Then, interpolation sets are created by the implementation of morphological dila-

tions of the geodesic set controlled by a distance function. The algorithm does not

deal with interpolation of on non-convex objects where irregularities or holes and

concavities are presented, as they often occurred in clinical medical data.

Another shape based interpolation technique was performed for two adjacent

slices using mathematical morphology operations and conditional erosions applied

iteratively (Joliot and Mazoyer, 1993). After segmentation, the two slices are scanned

and three regions are identified containing common, non-common and intermediate
points, respectively. Since the intermediate slice must contain the common points

and part of intermediate points, iterative erosions of the intermediate points by

3� 3 structuring element are applied until a required number of points is achieved.

The algorithm fails if there is a cavity present in start slice, which disappears in the

goal. To correct this drawback the algorithm requires the identification and skelet-

onization of these components and the removal of the skeleton points. Even with

these corrections, the algorithm loses its attraction because the skeletonization is a

complex morphological procedure and is often difficult to recognize areas that re-
quire the above transformation. Furthermore, this interpolation technique is applied

in order to interpolate only MRI brain data and it was not extensively tested to other

general cases that occur in medical imaging.

In this paper, a 3-D medical imaging representation scheme is presented. The

scheme consists of the novel implementations of two algorithms for interpolating

and reconstructing medical data from different imaging modalities. The first algo-

rithm is an interpolation algorithm based on mathematical morphology capable of

handling various cases occurring on medical data, including the branching and holes
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problem as well as the accurate volume representations. The second algorithm, as a

reconstruction algorithm, consists of a modification of the standard MC algorithm

and it is capable to fast and efficient reconstruct 3-D medical structures. The medical

representation scheme is successfully validated on several synthetic data as well as on

real medical data providing 3-D medical data to further used for various telemedi-
cine applications.
2. The proposed morphological interpolation algorithm

Creation of intermediate slices, between a start and a goal slice, resembles to existing

multiresolution image representation and decomposition schemes where a sequence of

imageswith decreasing resolution is treated.Morphological filters have been applied in
each step of these schemes preserving edge and features properties in various applica-

tions (Haralick et al., 1987; Matsopoulos and Marshall, 1995). A modified version of

these schemes is used based on the theory that binary operators are equivalent with

thresholding the distance map of an image (Liang et al., 1989).

The first step of the algorithm is the segmentation process. The seeded region

growing technique (Adams and Bischof, 1991) is firstly applied in the 3-D data. Gi-

ven the seed, the algorithm finds a tasselation of the 3-D image into regions with the

property that each connected component of a region meets exactly the initial seed
point. Subject to this constraint, the region is chosen to be as homogeneous as pos-

sible. Binary contours of the object are then obtained.

Let call S0 and Snþ1 the start and the goal slices, O0 and Onþ1 the set of points that

belong to the object from the corresponding slices and B0 and Bnþ1 the set of points

that belong to the background.

We first generate the signed (positive values for the inner area of the objects and

negative values for the outer of the objects) city block distance map for each slice S0
and Snþ1, noted as DMðS0Þ and DMðSnþ1Þ, respectively. A fast calculation of the dis-
tance map is presented in Appendix A. Then, the difference of the two slices S0 and
Snþ1 is obtained, ðS0=Snþ1Þ. The points of the union of the two objects are labeled as

follows:

Pc if a point belongs to O0 \ Onþ1 set,

P� if a point belongs to Onþ1=O0 set,

Pþ if a point belongs to O0=Onþ1 set,

where \ denotes set intersection and / set difference.

The information from S0 to Snþ1 then is used in order to calculate the distance map
histograms for the inner points of the objects labeled as P� and Pþ, respectively. An-

alytically, H1 is the histogram that contains the density values of the DMðS0Þ having
a range of positive values from 1 to h1max and H2 is the histogram that contains the

density values of the DMðSnþ1Þ, having a range of positive values from 1 to h2max.

Then, the number of points that must be contained in the interpolating slices is

calculated. Let NC the number of points labeled as PC, Nþ the number of points la-

beled as Pþ, and N� the number of points labeled as P�. The total number of points,

NTOTAL, for the intermediate slice for level i, with i ¼ 1; . . . ; n, is given:
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NTOTAL ¼ NC þ N�
i

nþ 1
þ Nþ

ðnþ 1Þ � i
nþ 1

; ð1Þ
where NC is the number of points labeled PC, N� is the number of points labeled

P�, Nþ is the number of points labeled Pþ.
The number of points, N , which are inner points of both objects and they are

candidates to be morphologically transformed, are given from the following

equation:
N ¼ N� þ Nþ: ð2Þ

In order to generate the intermediate slices, we take as a reference slice the start,

S0, slice. Each intermediate slice must contain the common points, PC, of the slices

S0 and Snþ1 and a number of points labeled as P� and Pþ from the S0=Snþ1. In each

intermediate slice i, the P� points must be generated and the Pþ points must be

reduced. This resembles to the morphological operations of erosion and dilation un-

der certain constrains.

A threshold t1 is defined from the histogram H1 in such a way that pixels between

1 and t1 have a number of N�ðiÞ ¼ N�ði=ðnþ 1ÞÞ and a threshold t2 for the histogram
H2 is defined is such a way that pixels between the threshold t2 and h2max have a num-

ber of NþðiÞ ¼ Nþðððnþ 1Þ � iÞ=ðnþ 1ÞÞ points.
In order to produce an interpolation slice at level i, morphological erosion and

dilation operations are implemented under certain constrains. Specifically, the reduc-

tion of Pþ points corresponds to the morphological erosion of these points by Bt1 ,

where Bt1 is an elementary structuring element with diamond shape and size t1,
equals to the threshold level of histogram H1. This operation is equivalent with thres-

holding the distance map of S0 with threshold t1 by keeping all points of the distance
map with value larger than t1 as object points:
Pþ � Bk � threshðDMðS0Þ; t1Þ; ð3Þ

where threshðDMðS0Þ; t1Þ ¼ 1, if DMðS0Þ > t1, and 0 otherwise.

Similar, the generation of P� points corresponds to the dilation of these points

with, Bt2 , where Bt2 is an elementary structuring element with diamond shape and size

t2, equals to the threshold level of histogram H2. This operation is equivalent with
thresholding the distance map of Snþ1 with threshold t2 by keeping all points of

the distance map with value lower than t2 as object points:
P� � Bk � threshðDMðSnþ1Þ; t2Þ; ð4Þ

where threshðDMðSnþ1Þ; t2Þ ¼ 1, if DMðSnþ1Þ < t2, and 0 otherwise.

Then, the final interpolating slice of level i is produced adding in the initial slice S0,
the P� points with distance map value lower than t1 (dilation under constrains) and
subtracting from the initial slice S0 the Pþ points with value larger that t2 (erosion

under constrains).

The new interpolation scheme is presented in Fig. 1. The proposed algorithm was

tested on generated images, producing the results shown in Fig. 2, covering various

cases such as changing of size, translation, disappearance of information, and ap-

pearance and disappearance of holes from one slice to the next one.



Fig. 1. Flow chart of the new Morphological interpolation algorithm.
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3. A modified marching cubes algorithm for surface rendering

Surface reconstruction consists the final step of the proposed 3-D image rep-
resentation scheme. To this end, a surface rendering technique, based on the

modification of the MC algorithm, is used, producing VRML format files



Fig. 2. (A–C) Application of the proposed morphological interpolation algorithm (creation of three inter-

mediate slices) in three test patterns. The first pair of contours (A) covers the case of a simple changing of

the size and translation of an object. The second pair (B) is the case of the appearance or disappearance

of part of an object. The third pair (C) is the case of objects with the appearance and the disappearance of

holes.
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suitable for telemedicine applications. Next, the modified MC algorithm is

shortly described.
Given a gray scale 3-D image, the standard MC algorithm produces an isosurface

of value t (Lorensen and Cline, 1987). The algorithm operates on a standard length

(usually voxel) cubic region of the image that occupies 8 adjacent voxels. The vertices

of the cube are set to 1, if the value of the corresponding image voxel is greater than

or equal to the threshold t, and 0 otherwise. The pattern produced is called ‘‘Cube

Configuration.’’ There are a number of 256 possible configurations, which have been

reduced to 14, using symmetry (Baker, 1989). The symmetry is defined as the equiv-

alence between complementary configurations (if the action of the logical not oper-
ator on the one of them generates the other).

The standard MC algorithm can be summarized in pseudocode as follows:

FOR each image voxel

a cube of length 1 is placed on 8 adjacent voxels of the image

FOR each of the cube’s edge{
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IF (the one of the node voxels has value greater than or equal to t

AND the other voxel has value less than t) THEN

{calculate the position of a point on the cube’s edge that

belongs to the isosurface, using linear interpolation}

}
FOR each of the predefined cube configurations{

FOR each of the 8 possible rotations{

FOR the configuration’s complement{

{compare the produced cube configuration of the above

calculated iso-points to the set of predefined cube

configurations and produce the corresponding triangles}

}

}
}

In the case of a binary image with threshold t, the iso-points lie necessarily on the

middle of the cube�s edges, for which the two voxels had the values of 0 and 1. When

the input is a gray scale image and the two cube vertices (image voxels) have values

n1 and n2 satisfying the inequality: ðt � n1Þðt � n2Þ6 0, the location of the iso-point is

calculated using linear interpolation along the edge connecting the two voxels. The

main drawback of this implementation is the computational overhead imposed by

the cube relations and comparisons as well as the great number of the produced tri-
angles. From a programming point of view, this method of predefining cube config-

uration and their connected triangles is error prone. Furthermore, the use

of symmetry produces topologically incoherent surfaces, or holes in certain cases

of two adjacent cubes (Zhou et al., 1994).

In this paper, a novel implementation is used, based on a single rule capable of

generating all predefined cube configurations. The modified algorithm uses the same

first step, as the standard MC algorithm, with the addition that for each iso-point

that is found, the voxel from which it stems is also kept. The voxel is called source
voxel.

The implementation of the modified algorithm can be described in pseudocode as

follows:

Step 0 FOR each image voxel

A cube of length 1 is placed on 8 adjacent voxels of the image

FOR each of the cube’s edge
IF (the grey value of one of the edge node voxels is above t and

the other below t) THEN

Step 1 {calculate the position of the iso-point on the cube’s edge using

linear interpolation;

place the iso-point into a list}

p¼ 0

Step 2 Scan the list of iso-points until the first unmarked iso-point is found

IF no unmarked iso-points exist in the list THEN GO TO Step 0

ELSE

p¼ p+1
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set the first unmarked iso-point as current_iso-point

mark current_iso-point as belonging to polygon p

new_iso-point¼ next_iso-point(current_iso-point)

WHILE (new_iso-point<>NULL)

new_iso-point¼ next_iso-point(current_iso-point)
current_iso-point¼ new_iso-point

mark current_iso-point as belonging to polygon p

END

store the polygon into the VRML file

GO TO Step 2

END FOR (each image voxel)

It can be proved that the modified algorithm generates all the cases that are pre-

defined by the standard MC algorithm. The only difference is that the produced out-
put consists of polygons instead of triangles, but with their points equivalently

ordered. Furthermore, the algorithm can handle cases where more than one polygon

is present in the same cube. As the modified algorithm does not depend on the com-

plementary symmetries, it does not suffer from specific type of holes, ‘‘type A,’’ that

appear due to the symmetry. A full verification of the modified MC algorithm and

comparison with other surface rendering techniques is presented in (Delibasis

et al., 2001).
4. Experimental results

The proposed morphological interpolation algorithm was tested on isotropic axial

CT and MRI data sets with pixel size 1� 1� 1mm (slice spacing uniform) and scan

dimensions 256� 256� 98 and 256� 256� 85, respectively. The seeded region grow-

ing algorithm was firstly applied on the 3-D data in order to isolate the skull region

from the CT data and the brain area from the MRI data. The data sets were subsam-
pled subtracting one up to six intermediate slices. Then, the shape based (Raya and

Udupa, 1990) and the proposed morphological interpolation algorithms are per-

formed. Quantitative measurements are introduced counting the percentage of the

absolute errors, in term of number of volume and surface points, of the recon-

structed data sets from the initial ones, according to the following equation:
EV ¼ V0 � Vi
Vi

�
�
�
�

�
�
�
�
x 100% and ES ¼

S0 � Si
Si

�
�
�
�

�
�
�
�
x 100%; ð5Þ
where V0 and Vi are the original and the reconstructed volumes, S0 and Si are the

original and the reconstructed surfaces and EV and ES the absolute errors of volumes
and surfaces. The results are presented in Table 1 and Table 2 whereas in Fig. 3

shows the percentage of absolute errors for the two interpolation methods. In Tables

1 and 2, the percentage of the absolute errors by applying the two interpolation

methods are presented, in term of volume and surface. The results are obtained

interpolating one up to six slices in the original CT and MRI data, respectively. Also,

in Fig. 3, it can be seen that the loss of points follows the number of interpolating



Table 1

Percentage of the absolute error applying the shape based and the proposed morphological interpolation

algorithms on original CT data

SKULL

Number of interpolating slices 1 2 3 4 5 6

EV (%) Shape based Interpolation 11 22 22 26 29 31

Morphological Interpolation 2 1 2 2 1 1

ES (%) Shape based Interpolation 10 15 20 25 30 32

Morphological Interpolation 2 5 8 11 12 13

Table 2

Percentage of the absolute error applying the shape based and the proposed morphological interpolation

algorithms on original MRI data

BRAIN

Number of interpolating slices 1 2 3 4 5 6

EV (%) Shape based Interpolation 9 13 14 16 17 17

Morphological Interpolation 2 2 3 3 3 4

ES (%) Shape based Interpolation 15 21 25 28 32 32

Morphological Interpolation 7 11 16 18 22 22
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slices. Analytically, for the shape based interpolation method (linear interpolation),

the absolute volume and surface errors follow the subsampling rate resulting a loss of

the volume points compared to the original. In contrast, the morphological inter-

polation method tends to preserve the volume of the objects uncorrelated with the

subsampling rate as it controls the number of points from the calculated from the

distance histograms. In terms of surface error, the morphological interpolation
method follow the subsampling rate but it behaves better than the shape based in-

terpolation method. These can become clear looking at real 3-D rendered data using

the modified MC algorithm (Fig. 4 and Fig. 5), where the loss of points follows the

number of interpolating slices.
5. Conclusions

In this paper, we have presented a new scheme for representing 3-D tomographic

data from various medical imaging modalities. The scheme is based on the applica-

tion of a new interpolation algorithm based on Mathematical Morphology and a

modified MC algorithm for the 3-D rendering of the data.

The proposed morphological interpolation algorithm provides more accurate

quantitative measures resulting enhanced representations than the shape based inter-

polation. It also covers all the possible cases that can be found from the start to a

goal slice, including the branching and the holes problem. Because is using morpho-



Fig. 3. Volume absolute error using the proposed morphological interpolation technique (continuous line)

and the shape based interpolation technique (dotted line). (A–C) Interpolation of skull and brain. Surface

absolute error using the proposed morphological interpolation technique (continuous line) and the shape

based interpolation technique (dotted line). (B–D) Interpolation of skull and brain.
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logical operations, it is simple and can be incorporated easily with imaging modali-

ties used in clinical practice.
Furthermore, the modified MC algorithm is independent from any predefined

cube configurations. The proposed surface rendering uses a generic rule capable of

generating the correct polygons in any case of configurations without introducing

‘‘type A’’ hole problems, which occur in the standard MC algorithm. Finally, the al-

gorithm is implemented on Java, generating output files in VRML format from 3-D

medical data sets. It is therefore suitable for platform independent applications, such

as the Telemedicine applications.
Appendix A. Fast calculation of city block distance map

The algorithm is initialized putting all the contour points in a list and assigning
value 1 to the points of the contour and value 0 elsewhere. Then, an iteration begins

extracting in each step the first point of the list. All its neighbors (following the four

neighbors connectivity), which are not assigned with a value take a value, equal to



Fig. 4. (A–F) Surface rendering of subsampled CT skull data set using the modified MC algorithm

(VRML output files). (A) 3-D model produced by the full resolution data. (B, D, and F) 3-D models pro-

duced using the shape based interpolation algorithm and subsampling on, three, and five slices, respec-

tively. (C, E, and G) 3-D models produced using the morphological interpolation algorithm and

subsampling one, three or five slices, respectively.
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Fig. 5. (A–f) Surface rendering of subsampled MRI brain data set using the modified MC algorithm

(VRML output files). (A) 3-D model produced by the full resolution data. (B, D, and F) 3-D models pro-

duced using the shape based interpolation algorithm and subsampling on, three, and five slices, respec-

tively. (C, E, and G) 3-D models produced using the morphological interpolation algorithm and

subsampling one, three or five slices, respectively.
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the value of the extracted point plus one and they are put in the list. The iteration

stops when all points of the map have a value. The implementation of the algorithm

is described as follows:

initialize the linear list

put all contour points in the linear list

give to their position on the map value 1

while list not empty

{

put out the first point of the list

dist ¼ value of the distance map of the pixel

for each neighboring pixel

{

if the distance map is not assigned with a value{
assign the distance map with value ¼ dist + 1

put the pixel in the list}

}

}

multiply points not belonging to the object on the distance map with -1.
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