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Abstract

An automatic three-dimensional non-rigid registration scheme is proposed in this paper and applied to thoracic computed

tomography (CT) data of patients with stage III non-small cell lung cancer (NSCLC). According to the registration scheme, initially

anatomical set of points such as the vertebral spine, the ribs, and shoulder blades are automatically segmented slice by slice from the

two CT scans of the same patient in order to serve as interpolant points. Based on these extracted features, a rigid-body transfor-

mation is then applied to provide a pre-registration of the data. To establish correspondence between the feature points, the novel

application of the self-organizing maps (SOMs) is adopted. In particular, the automatic correspondence of the interpolant points is

based on the initialization of the Kohonen neural network model capable to identify 500 corresponding pairs of points approxi-

mately in the two CT sets. Then, radial basis functions (RBFs) using the shifted log function is subsequently employed for elastic

warping of the image volume, using the correspondence between the interpolant points, as obtained in the previous phase. Quan-

titative and qualitative results are also presented to validate the performance of the proposed elastic registration scheme resulting in

an alignment error of 6 mm, on average, over 15 CT paired datasets. Finally, changes of the tumor volume in respect to each ref-

erence dataset are estimated for all patients, which indicate inspiration and/or movement of the patient during acquisition of the

data. Thus, the practical implementation of this scheme could provide estimations of lung tumor volumes during radiotherapy treat-

ment planning.

� 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Lung cancer, the most preventable of all human can-

cers, remains the leading cause of cancer death for both

sexes in 2003 (Jemal et al., 2003). Almost one-third of

the cancer deaths in men, and almost one-quarter of
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the cancer deaths in women, are due to lung cancer
alone (National Cancer Institute, 1994). The four major

types of lung cancer described by the World Health

Organization classification are small cell lung cancer

(25% of lung cancer), adenocarcinoma (30%), squamous

cell carcinoma (25%), and large cell carcinoma (15%)

(The World Health Organization, 1982). The last three

types are grouped as non-small cell lung cancers

(NSCLC) and they have been further categorized in dif-
ferent stages (from Stage 0 to Stage IV), depending on
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the progression of the cancer. Specifically, in Stage III,

NSCLC tumors have been spread beyond the lung to

the chest wall, the diaphragm, or further to the lymph

nodes (Oie and Gazdar, 1996).

Computed tomography (CT) is the primary imaging

modality for the investigation of lung tumors and the
evaluation of various therapeutic schemes applied dur-

ing staging, including radiotherapy treatment (Burns

et al., 2004). Radiotherapy has become widely accepted

modality for lung cancer treatment (Lagerwaard et al.,

2001) that uses high-energy ionizing radiation (e.g. c-
rays) to kill cancer lung cells. Throughout multiple radi-

ation beams, the radiation is delivered to the treatment

area defined by a CT planning software system capable
to visualize and reconstruct the tumor and the surround-

ing lung tissues in three dimensions. Even though the

radiation beams are closely focused to tumor treatment

area, a number of geometric errors in radiotherapy

treatment planning and delivery may be introduced.

Such errors may arise from external setup deviations

at the treatment unit or from tumor movement within

the patient. The former may be minimized by the use
of off-line setup correction protocols (de Boer et al.,

2001), but the mobility of lung tumors because of the

respiration and cardiac action continues to pose a formi-

dable problem (Lagerwaard et al., 2001; Engelsman

et al., 2001). Lung tumors motion has been found to

be as much as 25 mm near the diaphragm, decreasing

in magnitude but increasing in complexity in the middle

and upper lobes (Kubo and Hill, 1996). If nothing is
done to control or compensate the motion, then the

dosimetry margins will be extended beyond the tumor

boundary, limiting the intensity of radiation and harm-

ing healthy tissue (Murphy et al., 2002).

Several lung motion correction strategies have been

documented including multiple slow CT scans (Lager-

waard et al., 2001), breath-holding (Murphy et al.,

2002), or combination of breath-holding with external
fiducials implanted directly in the lung (Murphy et al.,

2003). Also, fast helical CT scanners have been used

acquiring images at 0.3 s in one rotation in conjunction

with breath-holding (Ross et al., 1990). Although these

approaches may stabilize the lung motions up to a cer-

tain level, they much depend on the clinical protocol fol-

lowed at the acquisition of the CT scans. In order to

generate a reliable three-dimensional (3D) lung tumor
target volume of a patient at different radiotherapy

treatment sessions, an a posteriori processing of the

CT lung scans based on registration techniques may as-

sist the radiologists to calculate differences in tumor vol-

umes at different times and to design an effective

thoracic radiation therapy scheme in terms of dose

delivery.

The problem of medical image registration has been
extensively addressed in the literature. Comprehensive

surveys can be found in (Maintz and Viergever, 1998;
Audette et al., 2000). Most of these algorithms have

been focused to register brain images with the assump-

tion that they are rigid. In those cases, rigid transforma-

tions can only correct translation and rotational

differences. Thus, non-rigid transformations are re-

quired. An example is the affine transformation, which
in addition to rigid mappings allows for scaling and

shear (Matsopoulos et al., 2001). Another class of

non-rigid transformations is the elastic transformations

in which images are considered as continuous bodies

and geometric differences are modeled as a result of elas-

tic deformation (Rohr, 2000).

A survey on elastic registration methods for medical

images with emphasis on landmark-based schemes has
been published by Rohr (2000). According to this class

of algorithms, 3D corresponding point landmarks,

either fiducial markers placed on the body or anatomical

point landmarks localized manually or automatically by

applying image operators (Rohr et al., 2003) were ini-

tially extracted in both CT-MRI brain data and subse-

quently input into the thin-plate spline (TPS)

deformation model (Bookstein, 1989). Given the dis-
placements of point landmarks, the TPS model interpo-

lates them while minimizing the bending energy of a thin

plate, which represents those displacements, by solving a

set of linear equations. This approach may yield mini-

mal bending energy properties measured over the whole

image, but the deformation is not limited to regions

where the common structures are identified (Arad

et al., 1994). To cope with local deformations, radial ba-
sis functions have been employed in small localized re-

gions in mammographic images (Behrenbruch et al.,

2003) and brain tumor in 3D MR dataset (Fornefett

et al., 2001). A concise description of techniques for im-

age warping and morphing, including the application of

thin plate splines and radial basis functions can be found

in (Wolberg, 1998). Furthermore, an algorithm for the

non-rigid registration of 3D contrast-enhanced breast
MRI was proposed, which combines the normalized

mutual information similarity measures with an affine

transformation to model the global motion of the breast

while the local breast motion is described by a free-form

deformation based on B-splines (Rueckert et al., 1999).

Recently, landmark- and intensity-based consistent im-

age registration techniques have been presented. Magn-

otta et al. (2003) proposed an inverse-consistent linear
elastic registration algorithm for the alignment of brain

MR data, comprising of two phases: the registration of

manually identified landmarks to serve for an initial glo-

bal registration and the matching of intensities and bin-

ary segmentation information to refine the registration

locally. Similarly, a landmark- and intensity-based con-

sistent image registration algorithm was developed for

inter-subject lung registration (Li et al., 2003). Branch
points of the pulmonary airway tree were used as inter-

nal landmarks, and surface shape information was
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based on the 3D boundaries of the segmented lungs. The

combination of landmark and intensity information as

proposed in the two aforementioned methodologies

may result a more biologically meaningful correspon-

dences than traditional unidirectional registration algo-

rithms but they require human intervention by an
expert and high execution time (approximately 2 h to

register two image volumes), which makes the imple-

mentation of these algorithms very difficult on a clinical

environment. The non-rigid registration scheme pro-

posed in this paper aims to overcome the aforemen-

tioned drawbacks by firstly introducing anatomical

features for point correspondence that are automatically

segmented from the CT datasets, and secondly by imple-
menting an elastic registration model based on local Ra-

dial Basis Functions which results in low execution time

applicable to a clinical setting.

A number of registration algorithms have focused on

the alignment of thoracic images. These algorithms dif-

fer with respect to the image features used as well as the

class of the transformations applied. The former in-

cludes anatomical features such as bifurcation of pul-
monary vasculature (Gee et al., 2003), sternum,

vertebrae and trachea (Betke et al., 2003), nodules

(Betke et al., 2003; Shen et al., 2002; Brown et al.,

2001), lung surfaces and airways (Betke et al., 2003;

Kubo et al., 2001; Li et al., 2003; Fan et al., 2001), which

were detected either manually or automatically and were

used to guide the registration process. The transforma-

tions applied to thoracic registration can be broadly
classified into rigid and non-rigid transformations. An

automatic system for registering CT images of the chest

was based on the detection of specific landmarks to pro-

vide an initial registration followed by a surface-based

rigid registration method using an iterative closest-point

(ICP) process (Betke et al., 2003). Of 58 nodules in 10

patients, correspondence was correctly established for

56 nodules (97%). For detection and registration of nod-
ules in chest CT, Brown et al. (2001) developed a rule-

based system using fuzzy logic that creates patient-spe-

cific models. Also, Kubo et al. (2001) used landmarks

and the lung surfaces to register slice-by-slice the CT

data using the rigid transformation model. Shen et al.

(2002) used a two steps registration method to register

CT scans; globally by the use a linear transformation

model which includes scaling and shifting in the z-direc-
tion and shifts in the x- and y-directions, applied on

cross-sectional lung area, and then locally by an ROI-

based correlation method. They reported an average

nodule mismatch error of only 2 mm. A non-rigid trans-

formation was also implemented towards the establish-

ment of a normative atlas of the human lung (Li et al.,

2003) in which segmented lung surfaces are initially

aligned using the rigid transformation followed by an
intensity-based deformation model over segmented air-

way trees. A 3D warping model was proposed by Fan
et al. (2001) and applied to CT lung images obtained

at different stages of breathing. According to this model,

a sparse comprehensive displacement field was obtained

using airway trees, vessels and lung surfaces as a priori

knowledge of the lung deformation, and it was then

interpolated over the entire volume iteratively governed
by a model derived from continuum mechanics and 3D

optical flow. Furthermore, chest CT images were

matched with the corresponding PET images (Cai

et al., 1999) and PET images with MR images (Makela

et al., 2001) using a surface-based registration scheme

based on the rigid transformation.

In this paper, a general non-rigid registration

scheme is proposed and applied on thoracic CT data
acquired at different periods of radiotherapy treatment

sessions. The scheme is comprised of four main steps.

In the first step, anatomical surface points are auto-

matically extracted from the two data sets, in order

to serve as interpolant points. Usually, lung surfaces

and/or nodules have been selected for the registration

of lung images in the majority of the aforementioned

papers (Betke et al., 2003; Kubo et al., 2001; Li et al.,
2003; Fan et al., 2001). In our approach, the vertebral

spine, the ribs, and shoulder blades are finally selected

as candidate points for the registration, since they are

easily distinguished from the surrounding tissues, they

are uniformly distributed within the whole image data

and more importantly, they are bone structures with

relative fixed position with the chest in comparison

to the lung surfaces used by other researchers. A glo-
bal pre-registration over the points of the spine verte-

bra is performed in the next step using rigid

transformation in conjunction with the Powell method

(Press et al., 1993).

In the third step, an automatic correspondence be-

tween sets of points of the vertebral spine, the shoul-

der blades and the ribs is obtained by the novel

application of self-organizing maps (SOMs) (Koho-
nen, 1982). The automatic determination of point cor-

respondence is a known problem in the literature.

Guest et al. (2001) applied a new correspondence cal-

culation algorithm, called correspondence by sensitiv-

ity to movement, by determining the sensitivity of a

correspondence to movement of the point being

matched. Carcassoni and Hancock (2001) investigated

the correspondence matching of point sets, using spec-
tral graph analysis. Mayoral and Pérez-Ilzarbe (2000)

employed a Hopfield algorithm that favors unicity of

the matches for all interest points both on the left

and right images in stereo vision. Betke et al. (2003)

used an ICP process to determine an automatic

point-to-point correspondence between lung surfaces.

Our approach towards automatic point correspon-

dence is based on SOMs, expanding the idea described
in (Fritzke, 1995; Camp et al., 1998) for surface trian-

gulation. A SOM is an unsupervised competitive
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learning neural network that uses lateral neural inter-

action to discover the topological structure hidden in

the data, for visual display in one or two-dimensional

(2D) space (Kohonen, 1989). SOMs have been widely

used for the clustering of complicated patterns of neu-

ral response and unknown fMRI responses (Wismuller
et al., 2004), clustering of disc space narrowing grade

assignment from cervical X-ray images (Chamarthy

et al., 2004), clustering of gene expression data

(Huang et al., 2003), clustering breast cancer data in

a database (Markey et al., 2003), and segmentation

of ophthalmologic MR images using a learning mech-

anism (Lin et al., 2003).

In the fourth step, a 3D deformation model, based
on the radial basis functions (RBFs), is finally applied

to the whole volume of the tomographic data, given

the displacement of the interpolant points produced

by the previous step. Local RBFs have been selected

as the deformation model, since they can prevent

deformations in regions where no changes are desired,

in contrast to the TPS approach which fails to recover

local deformations since it yields an overall smooth
deformation of the data (Fornefett et al., 2001). The

deformation model is based on the implementation

of the shifted log function, proposed by Arad et al.

(1994) and its underlying mathematical theory for

the particular implementation is presented. Since our

methodology does not incorporate changes in the

attenuation of tissues within the data, no attempt

was made towards the application of an intensity-
based deformation model to recover deformations, as

proposed by Li et al. (2003).

The proposed non-rigid registration scheme is also

compared to a surface-based registration method using

a rigid transformation in order to evaluate the perfor-

mance of the two methodologies. Finally, the lung tu-

mor volumes of 15 patients are calculated, with and

without the application of the proposed registration
scheme and differences of the tumor volumes for all pa-

tients are recorded.
Feature 
extraction (S2)

Feature 
extraction (S1)

Control

Data flow

Preregistration
of S2 with

respect to  S1. 

Reference 
CT data

Float CT
data

Fig. 1. Block diagram of the proposed elastic registration scheme. Continous
2. The non-rigid registration scheme

The proposed non-rigid scheme for thoracic registra-

tion comprises of four main steps and it is shown in the

block diagram of Fig. 1. Continuous lines indicate con-

trol flow, whereas dotted lines indicate data flow be-
tween modules. Data flow is indicated as input to the

SOM module, since in this case it does not coincide with

control flow. According to the block diagram in Fig. 1,

3D anatomical sets of points are initially extracted on

the two CT datasets (see Section 2.1). These sets of

points correspond to the vertebral spine, the thoracic

rib and the shoulder blade contours and they are super-

sets of the interpolant points. A rigid transformation, in
conjunction with Powell optimization technique, is then

applied over the vertebral spine points to perform an ini-

tial pre-registration of the two CT datasets. Two sets of

points are defined, S2 is the set of points of the vertebrae,

ribs and blades, segmented from the reference data and

S1 the set of points of the same anatomical structures

from the second dataset, called float data. Preregistra-

tion takes place between these sets of points and triangu-
lation of S1 is performed, before automatic

correspondence between them could be determined

using a SOM (see Section 2.2). After adaptation, the

SOM network results in discovering the pairs of interpo-

lant points, which are further refined by a distance crite-

rion. Finally, RBFs based on the shifted log function,

are subsequently employed for elastic warping of the im-

age volume, using the correspondence between the inter-
polant points, as obtained in the previous step (see

Section 2.3).

2.1. Detection of anatomical features

In the first step of our approach, anatomical features

are extracted from the CT datasets, the reference and the

float datasets. As anatomical features, the vertebral
spine, the thoracic ribs, and shoulder blades are finally

selected, since they are bone structures, with relative
Triangulation 
of S1

SOM 

weight vector
initialization

Input signal

RBF

Final values of
weight vectors

Bending factor λ

lines indicate control flow and dotted lines data flow between modules.
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fixed position within the chest and they have attenuation

values (>700 Hounsfield units – HU)) that are signifi-

cantly higher than the surrounding tissues (80–100 HU).

The anatomical features are extracted by a process,

which resembles the first step of the algorithm proposed

by Hu et al. (2001) for the extraction of lung surfaces.
According to our extraction process, an initial threshold

is applied in an iterative way that separates voxels of

low-density corresponding to air and/or other areas

(such as the Gantry, etc.) from the chest body area.

The initial threshold is selected based on the CT number

for pure air (�1000 HU) and the CT number for voxels

within the chest body (around 0 HU). A second iterative

thresholding procedure is applied to extract the verte-
bral spine, the thoracic ribs and shoulder blades from

the rest of the chest body. The initial threshold is se-

lected based on the CT number for chest/wall body

(approximately 0 HU) and the CT number for voxels

within the anatomical features (700 HU). Then, a mor-

phological opening operation defined by:

(I�b) = (I§b)¯b , where I is the binary slice containing

the segmented anatomical features, § and ¯ denote
the morphological operations of erosion and dilation,

respectively, and b the structuring element (Serra,

1988), is applied slice by slice to smooth the areas of

the anatomical features from bulges of the surrounding

tissues and to discard small isolated regions that are

present during thresholding. The opening operation is

iteratively performed for four times using a cross-struc-

turing element of size 3 · 3. Finally, a morphological
contour algorithm (Matsopoulos and Marshall, 1994)

is applied slice by slice to obtain the contour points of

all anatomical features.

Lung surfaces have been selected by other researchers

as typical anatomical structures for the 3D lung registra-

tion (Betke et al., 2003; Li et al., 2003). In the present

study, the lung surfaces are excluded as features in the

registration scheme since they are not in a relative fixed
position due to the occurred deformations and they are

difficult to be automatically extracted in cases where

lung tumors invade the thoracic wall. Furthermore, lung

surfaces were finally segmented only for visualization

purposes. Thus, lung surfaces are semi-automatically ex-

tracted by applying initially the seeded region growing

technique (Adams and Bischof, 1991). Given two seed

points, one placed within the left and the other to the
right lung regions, the algorithm finds a tessellation of

the 3D image into lung regions with the property that

each connected component of a region meets exactly

each initial seed point. Subject to this constraint, the re-

gion is chosen to be as homogeneous as possible. A mor-

phological opening with a 3 · 3 structuring element is

also applied slice by slice to smooth the lung areas. Fi-

nally, binary contours of the left and the right lungs
are obtained (Matsopoulos and Marshall, 1994). The

proposed methodology has failed to segment lung re-
gions in slices where tumors are extended in the left or

right lung, attached or invaded to the thoracic wall. In

those cases, and since the tumor splits the left or the

right lung area in two parts, the larger part of the lung

was only segmented by the proposed methodology. In

order to recover the other missing part, the aforemen-
tioned procedure is repeated by placing a seeded point

in the missing lung part. All tumor boundaries are man-

ually defined, in a slice-by-slice basis, by an experienced

radiologist, both in the reference and the registered CT

datasets for the tumor volume calculations.

2.1.1. Pre-registration process

An initial pre-registration is then performed based on
the sets of points that correspond to the spine vertebra

obtained by the previous process. The selection for these

points is based on the fact that points of the spine verte-

bra are rigid and remain un-deformed during physio-

logic movement. The spine vertebra points are

extracted from the other segmented anatomical features

using an erosion operation followed by the morpholog-

ical opening by reconstruction of erosion (Zana and
Klein, 2001). Initially, morphological erosion is per-

formed to all binary slices in which the vertebrae are

connected to the surrounding ribs, with a rectangular

structuring element of dimensions 15 · 1, oriented along

the y-axis. This operation results in isolating the re-

quired structures from the surrounding bone structures.

In the next step, each slice containing the extracted fea-

tures (ribs, isolated vertebrae and blades) is morpholog-
ically filtered by: IRspines ¼ ðI � BRÞ�recI , where I is the

original binary slice, BR is a circular binary structuring

element with radius R = 20 pixels, � is the morphological

opening operation and �rec is the operation of the open-

ing by reconstruction of erosion. Initially, the original

slice is processed by a morphological opening operation,

which results in the removal of regions with size less or

equal to the size of the structuring element used, typi-
cally the spine vertebra. Then, the operation of opening

by reconstruction of erosion is applied which recon-

structs only the removed regions from the application

of the opening operation.

The pre-registration process is applied in three

dimensions. The coordinate system is defined as follows:

the x-axis corresponds from left to right, the y-axis from

back to front whereas the z-axis from head to feet (cra-
nio-caudal direction). The pre-registration is then per-

formed using the rigid transformation in conjunction

with the Powell method (Press et al., 1993), as an optimi-

zation technique (Matsopoulos et al., 2003). The final

step of the pre-registration consisted of the production

of the distance map (DM) from the reference set of

the corresponding 3D points. The DM a discrete space

in which each voxel holds a value equal to its Euclidean
distance from the closest node of the reference set of sur-

face points (Kozinska et al., 1997). The DM accelerates
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the process of matching the reference and float sets con-

sisting of N nodes each, since it reduces the problem�s
complexity from O(N2) to O(N). The pre-registration

process is applied in order to realign the two datasets

in all coordinates.

2.2. Automatic definition of correspondent points based on

SOMs

In this section, an overview of SOMs and the auto-

matic correspondence of the sets points by initializing

the Kohonen model are analytically presented.

2.2.1. Self-organizing maps: an overview

SOM is a neural network, which uses a competitive

learning algorithm to train itself in an unsupervised

manner. Kohonen first established the relevant theory

and explored possible applications (Kohonen, 1982).

The Kohonen model comprises of a 2D layer of neurons

m. Each neuron is fed by input vector (data point)
~x 2 Rn through a weight vector ~w 2 Rn. Each time a

data point is input to the network, only the neuron j

whose weight vector resembles most the input vector,

is selected to fire, according to the following rule:

j ¼ argmin
m

i¼1
ðjj~x�~wi j j2Þ: ð1Þ

The firing or winning neuron j and its neighboring

neurons i have their weight vectors ~w modified accord-

ing to the following rule:

~wiðt þ 1Þ ¼ ~wiðtÞ þ hijðjj~ri �~rj jj; tÞð~xðtÞ �~wiðtÞÞ; ð2Þ
where hijðjj~ri �~rj jj; tÞ is a kernel defined on the neural

network space as a function of the distance

ðjj~ri �~rj jjÞ between the firing neuron j and its neighbor-

ing neurons i, as well as the time, defined as the number

of iterations t. This kernel has the approximate shape of

the ‘‘Mexican hat’’ function, which, in its discrete form,

has maximum value at the position of the winning neu-
ron, whereas its value drops in a Gaussian manner as the

distance from the winning neuron increases. The width

of this function decreases monotonically with time t.

In this way, convergence to the global optimum is at-

tempted during the early phases of the self-training pro-

cess, whereas gradually the convergence becomes more

local as the size of the kernel decreases. Each time a

new signal is fed into the network, the neurons compete
and the one with the weight vector closest to the signal,

according to Eq. (1) is selected to fire. The firing neuron

adjusts its weight vector so that it matches even better

with the incoming signal. Its neighboring neurons mod-

ify their weight vectors so they also resemble the input

signal, but less strongly, depending on their distance

from the winner. This learning mechanism is completely

defined by the hðjj~ri �~rj jj; tÞ kernel, as it has been de-
scribed above.
2.2.2. Point correspondence based on the Kohonen model

Triangulation of sets of surface points based on Koho-

nen model: The objective of this step is the triangulation

of the sets of points corresponding to the contours of

vertebrae, ribs and blades, in both datasets. Let S2 be

the set of anatomical points in three dimensions of the
reference data, whereas S1 the set of points of the same

anatomical structures from the float data (after the

application of the pre-registration process).

The network firstly triangulates these two sets.

Fritzke (1995) originally introduced 2D triangulation

using SOMs and a class of similar techniques with or

without fixed network dimensionality, based on compet-

itive learning. Also, Camp et al. (1998) applied Fritzke�s
work to reconstruct 3D medical data towards virtual

reality applications. Neither of the two research works

introduced a direct application to 3D data registration.

Based on the Fritzke�s work, the triangulation is per-

formed by defining a SOM with the following

characteristics:

� The size of a rectangular grid of neurons N1 · N2 is
set to a desirable value that covers the characteristic

dimensions of the points of the sets S1 and S2, capable

to capture the details of the two datasets. Considering

the above, a grid of neurons of 20 rows by 100 col-

umns (20 · 100) is chosen for the specific

implementation.

� The initial weighting vectors of the neurons of the

grid are set equal to the coordinates to a set of points
of an enclosing surface with the same topology with

the surface that is to be triangulated, typically a cylin-

drical surface.

� The input to the neural network consists of the Carte-

sian coordinates of the set of points that need to be

triangulated. This process is only necessary for the

float data S1.

After the process of adaptation of the neural net-

work, the weighting vectors of the neurons have values

identical to the appropriate points of S1. A wire frame

consisting of one node for each neuron can be con-

structed, with Cartesian coordinates of each node equal

to the weight vector of the corresponding neuron. The

wire frame is triangulated due to the connectivity of

the neurons, while its nodes closely follow the set of
points to be triangulated, because of the neural network

adaptation process.

Automatic definition of corresponding points: The

search for corresponding points is based on the concept

of replicating the topology of the set S1 (set of candidate

anatomical points of the float image) on the input layer

of a SOM model. One neuron is assigned to each node

of the float set. The connections between the neurons
are identical with the connections of the wire frame (lat-

tice) of the float set. No connection between two neu-



Fig. 2. Neighborhood definition (grey areas) round the winning

neuron (black square) shown graphically in a 16 · 20 lattice of

neurons.
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rons is allowed if the two corresponding nodes are not

directly connected on the float set. The initial weight

vector of the neurons, according to Eq. (2), is the Carte-

sian co-ordinates of the corresponding wire frame nodes

in the 3D space – ~w 2 R3 – as described in the previous

subsection.
The training of the network is performed by present-

ing the network with the coordinates of randomly se-

lected points sampled from the reference set, S2 (set of

candidate set of points of the reference image). The ker-

nel that controls the learning rate of the network is de-

fined as follows. The spatial part consists of a

Gaussian function of the Euclidean distance drq = jjr�qjj
between the winner neuron r and the neighboring one, q.
This kernel is formulated as follows:

hrqðjj r � q jj; tÞ ¼ hrqðdrq; tÞ ¼ ei
ef
ei

� �t=tmax

e
� drq

r2ðtÞ; ð3Þ

where ei and ef are positive initial and final parameters

defined experimentally and tmax corresponds to the max-

imum number of iterations. The standard deviation r(t)
of the Gaussian is defined as: rðtÞ ¼ riðrf=riÞt=tmax , where
ri and rf are the initial and final values of r(t).

The lateral interactions between the winning and the

neighboring neurons, as defined by Eqs. (2) and (3), are

confined to a window of size 3 · 3 of neurons throughout

the network training (see Section 4 of the discussion for

details of the selection of the window size). The definition

of the distance function drq between the two neurons r

and q is defined as Manhattan distance (the sum of the
absolute differences of the neuron coordinates) within

the 3 · 3 neuron neighborhood. To ensure that the de-

formed float set, produced by the weight vectors of the

SOM network, is closed at the vertical boundary neurons

of the orthogonal grid, it is essential that these neurons

must interact with each other. Therefore, the definition

of a 3 · 3 neighborhood around a boundary neuron is

modified so that it wraps around the vertical boundary.
This is demonstrated for a particular case in Fig. 2, where

the winning neuron in the first column of the lattice,

shown in black, is surrounded by a 3 · 3 neighborhood

of neurons shown in gray. The displayed lattice of neu-

rons is reduced to 16 · 20 for visualization purposes.

The convergence of the SOM network during the tri-

angulation of the S1 set of points results in a triangu-

lated subset of points ðS0
1Þ, with a number of points

equal to the number of nodes of the triangulated set –

typically 2000 points. Each node of subset S0
1 corre-

sponds to a neuron of the SOM network, whose initial

weighting vector (x0,y0,z0) of S1 is equal to the initial

Cartesian coordinates of this node. In the deformed sub-

set (after SOM adaptation for automatic definition of

corresponding points), this node is displaced to new

coordinates, equal to the final weighting vector
(x1,y1,z1). The new position always coincides with a

point of the reference set, S2. The points (x0,y0,z0) and
(x1,y1,z1) constitute a pair of interpolant points. Despite

the fact that SOM lateral interactions between neurons

cause a one to one point correspondence, there is no

way to prohibit rare cases in which more than one points
from S0

1 correspond to one point of S2. However, most

such point mismatches are discarded by the application

of a distance threshold criterion that excludes corre-

sponding points that they exceed a distance more than

five voxels. This process also prohibits excessive defor-

mation of the final warped image. Thus, the total num-

ber of successful corresponding points is reduced to

approximately 500 pairs of points for all patient data
(for more details on the selection of this number of pairs

of points see Section 3).

2.3. The 3D warping method

2.3.1. Mathematical definition of the warping method

The elastic deformation of the 3D lung transformed

image with respect to the corresponding lung reference
image, is based on the calculation of a displacement Field

(F) function, defined over the volume of the transformed

image, which will be deformed. A displacement Field (F)

is a 3D vector function which assigns a spatial displace-

ment d~r to each of the transformed image voxels (x,y,z):

F ð~rÞ ¼ F ðx; y; zÞ ¼ d~rðx; y; zÞ: ð4Þ
The value of the F function is known for each posi-

tion ~rij of the points of the wire frame (interpolant

points) of the float image, prior to deformation. The

coordinates of the interpolant points coincide with the

initial weighting vector of the neurons of the SOM net-

work. The value of the F function is defined according to

the following equation:

F ð~rijÞ ¼ ~wij �~rij; for i ¼ 1; . . . ;N 1 and j ¼ 1; . . . ;N 2;

ð5Þ



244 G.K. Matsopoulos et al. / Medical Image Analysis 9 (2005) 237–254
where ~wij is the final value of the weighting vector of the

(i,j) neuron calculated by the Kohonen network. The

problem of 3D image registration is equivalent to calcu-

lating the F function for every voxel of the image, prior

to deformation. The calculation of the F, as a function

of spatial position, given its value at specific positions,
indicates a problem of multivariate interpolation.

Assuming the RBF interpolation method, the value of

the displacement field at any position ~rðx; y; zÞ of the

transformed image volume is given by

F ð~rÞ ¼
XN1

i¼1

XN2

j¼1

~amgðjj~r �~rij jjÞ þ pð~rÞ; ð6Þ

where g : Rþ ! R is a univariate function, m is a ‘‘dum-

my variable’’ defined as m = m(i,j) = (j�1)N1 + i and

pð~rÞ ¼~c0 þ~c1xþ~c2y þ~c3z is a first-degree polynomial

which is added because pure radial sums can not realize

the affine transformation. ~cn ¼ ð~cxn;~c
y
n;~c

z
nÞ, with

n = 0,1,2,3 and~am ¼ ðaxm; aym; azmÞ are the function param-

eters to be estimated. The definition of Eq. (6) has been

proven to be an effective tool for the problem of multi-
variate interpolation (Arad et al., 1994). The coefficients
~am and~cn are calculated by solving the three systems of

linear equations (one for each Cartesian axis) of size

(M + 4) · (M + 4), where M = N1 · N2:

GAx ¼ F x; ð7aÞ

GAy ¼ F y ; ð7bÞ

GAz ¼ F z; ð7cÞ
where matrix A is defined as A ¼ ð~a1;~a2; . . . ;~aM ;
~c0;~c1;~c2;~c3ÞT, ~am ¼ ðaxm; aym; azmÞ, m = 1,...,M and vectors

Ax, Ay, Az are the first, second and third column of

matrix A respectively. Vectors Fx, Fy, Fz are the first,
second and third column of matrix F respectively, where

F ¼ ðF 1; F 2; :::; F M ; 0; 0; 0; 0ÞT and F m ¼ ð~wij �~rijÞ. The
indexes i and j and m are connected according to

Eq. (7e).

G ¼

g11 g12 � � � g1M 1 x1 y1 z1
g21 g22 � � � g2M 1 x2 y2 z2
� � � � � � � � � �
� � � � � � � � � �
� � � � � � � � � �
gM1 gM2 � � � gMM 1 xM yM zM
1 1 � � � 1 0 0 0 0

x1 x2 � � � xM 0 0 0 0

y1 y2 � � � yM 0 0 0 0

z1 z2 � � � zM 0 0 0 0

2
6666666666666666664

3
7777777777777777775

;

ð7dÞ

where gmn ¼ gðjj~rij � r
*

kl jjÞ with i,k = 1,. . .,N1 and

j,l = 1,. . .,N2 and m,n = 1,. . .,M. The index m of the ele-
ment of the G matrix and the indexes i,j of the interpo-

lant points are connected as follow:

i ¼ mod
m� 1

N 1

� �
þ 1 and j ¼ div

m� 1

N 1

� �
þ 1; ð7eÞ

where mod and div are the functions returning the mod-

ulus and the integer part of the division of two real num-

bers. Similar relationships hold for the index n with k

and l indexes. The triplet (xm,ym,zm), m = 1,. . .,M are
the Euclidean coordinates of the interpolant point ~rij ,
where the indexes i and j are calculated according to

Eq. (7e).

Several approaches have been reported in the litera-

ture for the g-function, for which the three linear sys-

tems of Eqs. (7a)–(7c) have a unique solution (Arad

et al., 1994). The shifted log function is selected as the

g-function, according to the following equation:

gðtÞ ¼ logðt2 þ c2Þ
1
2 for c2 P 1ðshifted logÞ: ð8Þ

As it will become clear when the bending factor is

introduced, the value for constant c was set to 1, so that

the M first elements of the main diagonal of matrix G
are equal to 0.

The F function can be defined according to Eq. (6) for

each dimension as follows:

F ð~rÞ ¼ ðF xð~rÞ; F yð~rÞ; F zð~rÞÞ; ð9Þ
where

F xð~rÞ ¼
XN1

i¼1

XN2

j¼1

axmgðjj~r �~rij jjÞ

þ cx0 þ cx1xþ cx2y þ cx3z; ð10Þ

where m ¼ mði; jÞ ¼ ðj� 1ÞN 1 þ i: F yð~rÞ and F zð~rÞ are

defined similarly.

In (Arad et al., 1994), a measure of bending energy

was defined and a relative parameter was introduced,

called bending factor k, which balances the requirement

for exact matching of the interpolant points. The intro-

duction of the bending factor k requires the G matrix
(Eq. (7d)) to be redefined so that the M first main diag-

onal elements of matrix G are set to k: gmm = k,
m = 1,. . .,M (thus the requirement for setting c = 1).

When the bending factor is zero, k = 0, the calculated

F results in an exact match of the interpolant points at

the expense of a possibly high total spatial bending mea-

surement, of the image space. When k approaches large

positive values, the sum of square distances between ac-
tual and calculated positions of the interpolant points is

minimized, while the total spatial bending measurement,

kept below a threshold value which depends on k, or
equivalently, the geometric transformation approaches

the affine one. The value of the bending factor k is esti-

mated by visual inspection of the deformed image (Rohr

et al., 2001). Fig. 3 confirms these arguments for a syn-

thetic grid image, containing six (6) interpolant points
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(crossed bullets in the figure). Four interpolant points re-

main fixed, whereas the other two interpolant points

move towards each other, as shown in top left image.

The warped images are shown in the top right image

and in the two bottom images for increasing values of

the bending factor k corresponding from the pure RBF
interpolation method (top right image) to the affine

transformation approximation (bottom right image).

2.3.2. Implementation issues of the proposed non-rigid

registration scheme

The proposed elastic deformation scheme, based on

the SOM adaptation, can be summarized in pseudocode,

as follows:

Segmentation of the reference data pro-

duces a set of surface points, S2

Segmentation of the transformed data pro-

duces a set of surface points, S1

Triangulation of S1

Obtain the DM of the set S2

Pre-registration and triangulation of S1

into the coordinate frame of S2
Fig. 3. Effect of the bending factor k on image warping. Top left: the synthet

interpolant points. Top right: for k = 0.005. Bottom left: for k = 0.05. Botto
Perform the elastic deformation method,

based on the Kohonen model, as follows:

Sample the set S2 and store the sampled

points into a queue Q

Construct a layer of neurons by assigning

one neuron to each node of the triangu-

lated S1 and establish connections of

each neuron with its neighbors of the tri-

angulation of S1

Assign an initial weight vector to each

neuron, containing the current Euclidean

coordinates of the corresponding S1 node

Time = 0

While (time<threshold) do

Update the network kernel according to

Eq.(3)

Present the network with the coordinates

of a random point from queue Q

Select a winning neuron according to

Eq.(1)

Update the weighting vectors of the win-

ner and its neighbors according to Eq.(2)

Time = time + 1
ic grid image showing initial (marked with �x�) and final position of the

m right: for k = 5 (affine transformation approximation).
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Set as interpolant points the final and the

initial weight vector of each neuron, for

which the magnitude of the vector differ-

ence is equal to or less than five voxels

in respect to the reference set

Set bending factor k = 0.05

Calculate the interpolation coefficients,

according to Eq. (7) to define the dis-

placement Field (Eq.(6)) using the g-func-

tion of Eq.(8)

Calculate the displacement Field for every

voxel of the transformed image, according

to Eq.(10), to register the float image to

the reference image

The kernel that controls the learning rate of the

Kohonen neural network is defined according to Eq.

(3) with parameters ei = 0.5, ef = 0.005 , ri = 3.0 and

rf = 0.1 , for tmax = 50,000 maximum number of itera-

tions and are obtained experimentally for all pairs.

These values of the parameters are in accordance to

Fritzke (1995). The g-function of Eq. (6) is selected
to be the shifted log function, defined in Eq. (8), with

c = 1. The value of the bending factor k is selected to

be k = 0.05, for all data pairs. This experimentally

chosen value, in conjunction with the filter that rejects

interpolant points whose magnitude of displacement

vector is greater than five voxels, was optimal under

a qualitative assessment performed by an expert

oncologist. Higher values of k result in a transforma-
tion, which resembles the affine, thus loosing the de-

sired property of elasticity, whereas lower values

result in a deformation with high measure of the total

spatial bending, leading to physically meaningless

results. In the later case, deformation may cause the

transformed set to be warped so that it matches the

reference set, whereas ignoring any anatomic informa-

tion. This argument is in agreement with the test
images displayed in Fig. 3.
3. Results

3.1. Patient data

The inclusion criteria for the patients entering the
study were the following: patient with NSCLC histo-

logically proven with Stage III of disease (TNM classi-

fication); age ranging from 40 to 60 years; Karnofsky

performance status >70 (Movsas et al., 2003). The pa-

tients signed a consent form for participating in the

study. The study design in clinical terms included two

CT scans: one at the baseline of radiotherapy schedule

and a second one four weeks thereafter. The patients
were treated with radiotherapy in a treatment schedule

of six weeks (2 Gy per fraction, five days a week, 60
Gy total dose). Initially, 17 patients were enrolled in

the study. However, two patients were excluded from

the study. These patients suffered from dyspnoea

related to radiation induced pneymonitis and were

unable to undergone the second session of CT scan

four weeks after the baseline. Thus, their performance
status was lower than 70 and they were excluded from

the study.

Fifteen (15) patients were finally selected for the pres-

ent study from the Department of Radiology, Medical

School of University of Athens, at the Areteion Hospi-

tal. The patients were diagnosed having lung tumors

and they were under radiotherapy treatment. For the

evaluation of the proposed methodology, the CT image
data of each patient at baseline of radiotherapy was se-

lected as a reference image, whereas the CT data at four

weeks from the baseline treatment and during the radi-

ation schedule were chosen as transformed data.

For ten (10) of the patients, called Group A, the fol-

lowing protocol was applied: The reference CT data

were acquired with instructions given to patients for

expiration, according to the specific clinical protocol,
since it was a diagnostic CT. No specific instructions

were given to the patients in terms of inspiration, during

acquisition of the post treatment CT. The CT trans-

formed data were acquired at four weeks from the ref-

erence data. For the rest five (5) patients, called

Group B, the clinical protocol was modified as follows:

No specific instructions were given to the patients in

terms of inspiration, during any CT acquisition. This
was done in order to evaluate the proposed elastic reg-

istration scheme during real conditions in a routine clin-

ical procedure.

In all patients, the lung tumor was more than 3 cm in

diameter in the one lobe (left or right), invading the

chest wall with metastases to contralateral mediastinal

lymphnodes (Stage III). The reproducibility of the pa-

tient approximate set-up in the CT gantry was assured
to a relative degree of accuracy, by using ink skin mark-

ers, resulting from the simulation of the radiation ther-

apy. These markers were not radio-opaque markers

and consequently they were not used for image

registration.

The patient data were acquired with a multi-helical

Philips CT using a 10 mm collimator and were recon-

structed in 1.25 mm increments using a high-frequency
reconstruction algorithm. The images were acquired

with a 512 · 512 matrix representing the acquired size

along the x- and y-axes and were quantized using 12 bits

per pixel. The slice thickness was 4 mm with zero slice

spacing finally corresponding to the size along the z-

axis. All the patient data contained 32 slices. The voxel

size of all the data was 0.5 · 0.5 · 4.0 (in mm). Finally,

during this study, it was deemed necessary that the CT
data covered the whole tumor area with a reasonable

margin in the z-direction.
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3.2. Elastic registration results

The performance of the proposed elastic registration

scheme presented in the previous sections is visually

demonstrated in terms of transverse sections. In Fig. 4,

the vertebrae, the ribs and the shoulder blade contours
for a typical transverse section of the matched images

of Patient-11 of Group B are displayed at different

phases of the proposed registration. In the top left, the

relative position of the extracted anatomical feature

contours of the reference slice (white colored contours)

and the transformed slice (grey colored contours), at

the same z-coordinate, is displayed, before the applica-

tion of the registration scheme. It must be pointed out
that the segmented anatomical features in the corre-

sponding transverse slices of the figure at the same

z-coordinate were non-identical due to the different po-

sition of the patient before acquisition, the internal mo-

tion because the patient was not at the same phase of

respiration and the sparse sampling along the z-axis

(voxel size along the z-axis of 4 mm). In the top right,

the relative potion of these contours is shown after the
application of the pre-registration method using the ri-

gid transformation. It can be noticed that even though

the points of the spine vertebra are mainly aligned and

some minor corrections are made at the cranio-caudal

direction, the remaining rib and shoulder blade contours

are still unmatched due to the deformation. Finally, the

effect of the application of the non-rigid registration
Fig. 4. Performance of the elastic registration scheme for Patient-11 of Group

reference (white colored contours) and the float (grey colored contours) slices

application of the rigid registration. Bottom: relative position of the contou
scheme can be seen from the relative position of the ana-

tomical contours in the lower image. Any minor mis-

matches after the application of the non-rigid

registration scheme were mainly due to the selection of

the bending factor k of the warping method rather than

the correspondence using SOMs.
Fig. 5 demonstrates the effect of the proposed non-

rigid registration, based on RBFs, on a number of corre-

sponding interpolant points as defined by the SOM

adaptation. Despite the fact that the proposed non-rigid

deformation is purely 3D, the effect of elastic transforma-

tion is visualized on a randomly selected transform slice

of a patient. The top image shows the vertebrae, ribs

and blades contours of the reference transverse slice
superimposed on the float slice at the same z-coordinate,

before non-rigid registration. In the same figure, the cor-

responding points of the image to be transformed (square

marks), whose z-coordinate is equal to the slice coordi-

nate, are shown along with the corresponding points of

the reference image (circles). It has to be mentioned that

only the pairs of interpolant points that lie exactly on

these slices are visualized; although all interpolant points
whose z-coordinate has the same integer part with the

slice z-coordinate, take part in the calculation of the elas-

tic registration. The lower image of Fig. 5 visualizes the

deformed float CT slice at the same z-coordinate with

the reference one, after the application of the proposed

non-rigid registration scheme. In this case, the vertebrae,

ribs and blade contours of the reference slice are correctly
B. Top left: relative position of the extracted feature contours from the

before registration. Top right: relative position of the contours after the

rs after the application of the proposed elastic registration scheme.
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matched with the corresponding anatomical features of

the deformed slice. The corresponding interpolant points

with distance greater than five voxels have not been fil-

tered out for the purposes of the figure. As it can be seen,

the pair of interpolant points of the spine vertebra

seemed to almost coincide, partly due to the application
of the rigid transformation. Also, correspondence has

been achieved for the rest interpolant points correspond-

ing to the ribs and blades. Any minor spatial mismatches

may be mainly due to the selection of the bending factor

used in the warping method.

The performance of the proposed methodology is

also shown in Fig. 6 for typical transverse corresponding

slices of Patient-11 of Group B, by overlaying the lung
contours of the reference data. As it is stated in the pre-

vious section, the superimposition of the lung contours

was only for purpose of visual assessment. All results

were visually inspected and evaluated by clinical radia-

tion oncologists. In the top row of the figure, the refer-

ence slice (left image), the corresponding slice to be

transformed (middle image) before registration, and

the deformed slice (right image), after elastic registra-
tion, are displayed. The x- and y-coordinates of the dis-

placement field are visualized in the form of a deformed
Fig. 5. Correspondence of interpolant points for a randomly selected lung CT

and blades contours of the reference transverse slice superimposed on the

circular points belong to the reference slice while the rectangular ones to

corresponding slices. Bottom image: vertebrae, ribs and blades contours of th

the same z-coordinate, after the application of the nonrigid registration sche
wire frame, on the right images. It can be seen that the

reference lung contours are aligned with the deformed

corresponding float slice.

Another pair of corresponding slices of the same pa-

tient is displayed in the second row. The lung tumor cov-

ers the left lung area and it attaches the thoracic wall as
it can be observed in the reference (left image) and float

(middle image) slices displayed, respectively. The elastic

registration result is shown in the right image, where the

majority of the lung contours of the reference slice are

aligned with the deformed slice. The displacement field

along the x- and y-axes is also visualized. It can also

be observed that minor mismatches occurred at the left

lung close to the spine below from the area of the tumor.
These mismatches were due to the fact that the informa-

tion input to the warping method originated from the

interpolant points based on the spine and the ribs and

not from the tumor itself.

The performance of the proposed elastic registration

algorithm was also visually assessed in terms of lung tu-

mor surfaces for the case of Patient-1 from Group A.

Since the patient diagnosed with Stage III NSCLC, the
tumor area is attached to the chest wall, automatic seg-

mentation of these volumes was a difficult task to per-
transverse slice for Patient-11 of Group B. Top image: vertebrae, ribs

float slice at the same z-coordinate, before nonrigid registration. The

the float slice. The visualized interpolant points lie exactly on the

e reference transverse slice superimposed on the deformed float slice at

me.



Fig. 6. Demonstration of the automatic elastic registration scheme based on the interpolant points for typical corresponding slices of Patient 11 of

Group B by overlaying the lung contours of the reference data: reference slices (left images), float slices, before registration (middle images),

deformed slices, after elastic registration (right images). The x- and y-coordinates of the displacement field are visualized in the form of a deformed

wire frame, on the right images.
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form with sufficient accuracy. Thus, an experienced radi-

ologist manually segmented the tumor contour in all CT

datasets and then a triangulation process is performed

using the modified Marching Cubes algorithm (Deliba-

sis et al., 2001) to reconstruct the tumor surface. The

same procedure was applied for all CT datasets, refer-

ence, float (without elastic registration) and deformed
(after elastic registration) sets, respectively. In Fig. 7,

the lung tumor surfaces are displayed in VRML 2.0 for-

mat, where the left surface corresponds to the tumor of

the reference data, the middle to the float data, and the

right to the deformed data. As it can be observed for the

specific patient, the deformed tumor recovers any defor-

mation, compared to the float tumor volume (reduction

of 8% in respect to the reference volume), and it resem-
bles the reference tumor surface with a reduction of 35%

of the volume due to radiotherapy treatment. Thus, the

majority of the deformations occurred during acquisi-

tion can be recovered by the application of the proposed

elastic registration scheme.
Fig. 7. Lung tumor surfaces for CT data of Patient-1 of Group A. Left: refere

registration). Right: deformed volume surface (after elastic registration).
Furthermore, the performance of the SOM applica-

tion, in finding correct correspondence between surface

points of two CT sets, is mainly influenced by the two

parameters: the window size, for the lateral interactions

between the winning and the neighboring neurons, and

the number of iterations. In Fig. 8, the number of sur-

face points successfully corresponded by the application
of the SOM network is displayed against changes of the

window size (upper figure) and the number of iterations

(lower figure) for a patient data. It can be seen that a size

of 3 · 3 window is finally selected as it results to a higher

number of successful corresponding points (495 surface

points) and less computational complexity (compared to

a 5 · 5 size window with 500 corresponding points and

to a 7 · 7 size window with 497 corresponding points).
The number of iterations is kept the same. Also, a max-

imum number of 50,000 iterations are finally used giving

the best results in terms of number of successful corre-

sponding points (495 corresponding surface points).

Further increment of the number of iterations does
nce volume surface. Middle: transformed volume surface (before elastic
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not improve the performance of the SOM network. The

total time of registration is approximately 9 min on a

typical personal computer (Pentium IV, 768 RAM) dis-

tributed among the tasks as following: pre-registration:

1 min, determination of corresponding pairs of points:

0.5 min, application of elastic registration 7.5 min.
The performance of the proposed elastic registration

scheme (called hereafter SOM-RBFs) is quantitatively

assessed for completeness purposes, against the imple-

mentation of the surface registration based on the rigid

transformation (called hereafter as surface-based regis-

tration). The performance of the SOM-RBFs method

is compared to the simple rigid transformation using

the average distance of the vertebrae, rib and shoulder
blade contours as a common measure of match

(MOM). The MOM is calculated be applying the trans-

formation T under investigation (elastic or rigid) to the

contours of the image to be transformed, which consti-

tute set of points S1, and calculate the average distance

of the selected anatomical feature contours between

the contours of the float image and the contours

of the reference image (equivalently set of points S2),
using the DM of S2. The DM is the result of the distance

transform and is an image of the same dimensions of its

input binary image. Each voxel of the DM holds the va-

lue of distance from the closest non-zero voxel of the in-

put binary image (Matsopoulos et al., 2003).

The aforementioned MOM can be mathematically

formulated according to the formula:
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Fig. 8. Performance of the SOM network, in terms of the number of

successful correspondence points, between surface points of the

reference and transformed CT sets of a patient, against the window

size and the number of iterations.
MOM ¼ 1

N

X
ðxi ;yi ;ziÞ2S1

DMðT ðxi; yi; ziÞÞ; ð11Þ

where N is the number of points in S1 and

DM = DT(S2).

In Table 1, the MOM for all patient data is calcu-

lated, in mm. The values of MOM for both methods

are averaged over 10 independent executions for all im-

age pairs to compensate for the stochastic (randomized)

nature of the optimization method. It can be observed

that the values of the average distance of the SOM-
RBFs method are systematically lower than those of

the surface-based registration method resulting an aver-

age MOM of around 6 mm for the early elastic method

and around 11 mm for the later surface-based method,

respectively. These findings confirm the application of

a non-rigid registration method against a rigid-based

method since the latter cannot recover the deformations

occurred. Also, the values of the standard deviation
indicate that the performance of the SOM-RBFs meth-

od is more consistent than the surface-based registration

method (0.498 and 1.519 mm, respectively).

Finally, the lung tumor volumes (in %) in respect to

the reference data (baseline examination corresponding

to 100%) for all patients are shown in Fig. 9. According

to this figure, the tumor volumes of the transformed

data for each patient (CT data of each patient at an
examination during the radiotherapy treatment) are ini-

tially calculated before the application of the elastic reg-

istration (white bars). To estimate the tumor volumes,

an experienced radiologist traced the tumor contours

at each slice delineating the gross tumor volume
Table 1

Average distance (MOM – in mm) for the all CT patient datasets by

applying the SOM-RBFs algorithm and the surface-based registration

method

Patient CT data Measure of match (MOM) – average distance

of extracted feature points (in mm)

Elastic matching

scheme

Surface-based

registration

SOM-RBFs Rigid transformation

Patient – 1 5.650 9.120

Patient – 2 6.340 11.345

Patient – 3 5.879 10.550

Patient – 4 6.760 12.455

Patient – 5 5.578 9.432

Patient – 6 6.768 12.756

Patient – 7 6.891 13.889

Patient – 8 5.762 10.378

Patient – 9 5.854 10.421

Patient – 10 6.078 11.798

Patient – 11 6.225 12.005

Patient – 12 5.776 11.228

Patient – 13 5.449 11.243

Patient – 14 5.995 11.134

Patient – 15 5.887 12.045

Average MOM 6.059 11.320

SD of MOM 0.450 1.251
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Fig. 9. Lung tumor volume (in %) with respect to the reference data of

all patients of the Groups A and B, with and without the application of

the elastic registration scheme. The white bars correspond to the

volumes before registration while the grey bars to the volumes after

elastic registration.
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(GTV). Using a fill algorithm (Foley et al., 1996), the

pixels enclosed in the contour are concerted into voxels

by incorporating the slice thickness information. The

number of these voxels is used as an estimate of the lung

tumor volume. The application of the proposed elastic

registration scheme results an estimation of the tumor

volume (measured on the deformed CT data) since er-
rors due to inspiration and/or movements have been

eliminated by the elastic registration method (grey bars).

At this point it has to be mentioned that the observed

tumor volume reductions, resulting from corrections

after the application of elastic registration can be ex-

plained as follows for the two groups of patients:

According to Fig. 9, the tumor volume correction result-

ing from elastic registration have a negative sign for all
10 patients of Group A. This was due to the fact that the

measured tumor volume results from the initial tumor

volume, which is affected by two factors: the irradiation

during the period of four weeks and the physiologic

movement effect. The first factor always reduces the vol-

ume, whereas the second factor, in the case of patients

belonging to the Group A, tends to increase the volume

due to instructions in terms of respiration, given to pa-
tients during image acquisition. Furthermore, at Group

A, the expansion of the rib cage due to inspiration phase

of the post-treatment CT (second factor) is expected and

proven to be smaller than the shrinkage of the volume

due to radiotherapy treatment (first factor). As it can

be seen from the upper graph of Fig. 9, tumor volume
corrections up to 8% were obtained for four patients,

while corrections up to 12% were recorded for the rest

patients; thus an average change of 11% in respect to

each corresponding reference dataset were due to the

physiologic movements for the patients of Group A.

In the case of patients of Group B, the elastically de-

formed tumor volume randomly fluctuates round the

float data tumor volume, since no instructions, in terms
of respiration, were given to the patients. Specifically,

for the cases where the elastic correction increases the

tumor volume of the float data, it is observed that the

elastically pre-registered data were reduced to lower le-

vel than in patients of Group A. This is explained by

the fact that the physiologic movement effect is added

to the irradiation factor.
4. Discussion

In this paper, an automatic elastic registration scheme

is proposed applied on thoracic CT data of patients diag-

nosed with NSCLC. The scheme includes the novel

application of the SOMs in order to establish correspon-

dence between automated segmented structures in con-
junction with the implementation of a Radial Basis

Function as a warping method. Results have shown that

the elastic registration scheme can recover deformations

occurred due to inspiration and/or any physiological

movements. Furthermore, the proposed methodology

has been compared against a surface-based registration

method, using the rigid transformation, and quantitative

results show its advantageous performance.
A key issue addressed to any point-based non-rigid

registration method is the establishment of a correspon-

dence between candidate surface points segmented from

the data. In similar data registration applications, where

motion and deformation of anatomical organs occur,

such as registration of thoracic CT data (Betke et al.,

2003) and registration of breast MR images with corre-

sponding mammographic images (Behrenbruch et al.,
2003), a neighborhood localization search method was

used in conjunction with the ICP algorithm in order to

obtain the closest correspondence between the surface

points. Furthermore, the properties of point distinctive-

ness, point to point similarity, and point pair consis-

tency have been incorporated into steps for the

automatic extraction of corresponding point pairs of

2D medical images in order the parameters that define
a transformation of one image onto the other to be esti-

mated (Likar and Pernus, 1999). In our approach, the
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correspondence between candidate surface points is

established with the novel application of SOMs.

According to the proposed methodology, a Kohonen

neural network is initialized to establish correspondence

between surface points segmented from the reference and

transformed sets. The application of the Kohonen model
for automatic determination of the correspondence of

surface points expands the idea described in (Fritzke,

1995; Camp et al., 1998) for surface triangulation. Using

a 2D implementation of a Kohonen network, adjacent

surface points in R3 are mapped to adjacent neurons of

the network by setting the neurons� weight vectors equal
to the points Cartesian coordinates. The problem of

automatic corresponding point determination can then
be formulated as one of adapting the SOM associated

with the set of points from the float image, using the ex-

tracted set of points from the reference image. After suc-

cessful adaptation, a one-to-one correspondence

between these points that coincide with the SOM weight

vectors at the initial state is readily obtainable. Automa-

tion of approach, preservation of surface topology,

selectable number of corresponding points, equal distri-
bution and one-to-one point correspondence are the sub-

stantial advantages of the proposed technique.

Nevertheless, it has to be pointed out that the paper is

mainly focused on the introduction of SOMs towards

the definition of automatic point correspondence rather

than comparing methodologies with other existing ones.

A future study must be carried out comparing methodol-

ogies for automatic point correspondence.
Crucial aspects that may affect the performance of a

registration scheme applied on data under motion, like

thoracic CT data, are the appropriate selection of the

candidate corresponding points and the selection of

the transformation that captures the true geometry of

the lungs. In (Murphy et al., 2002), four fiducials have

been implanted to each lung tumor in order the motion

of the tumors to be recorded. This technique cannot be
applicable for registering lung data in a routine clinical

environment. In (Betke et al., 2003), 2D anatomical

common structures such as the trachea, sternum and

spine have been used as templates in order an initial reg-

istration to be achieved slice by slice. Then, a surface-

based registration was applied by segmenting the lung

surfaces. The performance of the initial registration

based on these 2D common structures much depends
on the protocol for acquiring the data; thus this detec-

tion method does not guarantee that the corresponding

points are the same physical points, as it was also

pointed out by the authors. Also, in (Betke et al.,

2003), even though the initial alignment seems to work

satisfactory with these structures, lateral chest struc-

tures, like the ribs, and/or 3D structures may be the

solution to more accurate results in all image planes.
In (Li et al., 2003) and (Fan et al., 2001), matching of

airway brunch points, used as landmarks, were per-
formed. The matching process was performed manually,

limiting the usage of the whole registration method and

also it cannot be applicable in cases where the lung tu-

mor covers the lung area, as with the cases that are

examined in the present paper. In our approach, the

selection of candidate points was done in order firstly
to be easily distinguished from the background, sec-

ondly to be paired so that accurate deformation infor-

mation of the current point is available and thirdly to

be uniformly distributed within the data. Vertebral

spine, thoracic ribs and shoulder blades have been used

as 3D common structures in the proposed elastic regis-

tration scheme, after they have been automatically seg-

mented slice by slice. Furthermore, the selection of 3D
points originated from these structures reduces inaccu-

racies introduced during registration since they are bet-

ter approximate the same physical points.

In terms of transformation employed for the thoracic

registration, in (Betke et al., 2003), a rigid transforma-

tion has been applied in order to globally register the

lung CT data. Affine transformations were also em-

ployed in (Murphy et al., 2002, 2003). These transforma-
tions seemed to work satisfactory for these specific

applications, where breath-holding of the patient and

fast helical CT images have been used. Additionally,

other researchers argue that non-rigid registration are

the most suitable to recover the lung motion mainly

due to the respiration (Rohr, 2000; Rohr et al., 2003).

In the present study, a radial basis function, using the

shifted log function, has been employed for the elastic
registration of the lung CT data. This deformation model

provides the advantage of coping with local deforma-

tions against the TPS method, which yields minimal

bending energy properties measured over the whole im-

age (Fornefett et al., 2001). To cope with local deforma-

tions, the landmarks used in the proposed registration

scheme were well distributed over the image to prevent

deformations in regions where no change is desired. Fi-
nally, the quantitative results by comparing the proposed

elastic method against a widely used surface-based regis-

tration methods using the rigid transformation con-

firmed that the application of non-rigid registration is

more suitable for the case of registering thoracic CT data

where deformations occurred due to inspiration.

During the 3D implementation of the proposed warp-

ing method, two parameters must be considered: the
choice of the g-function and the introduction of the bend-

ing factor k. In the proposed implementation, the shifted

log function has been selected as the g-function. Alterna-

tively, the Gaussian g-function, g(t) = exp(t2/r2) for r > 0

may also be used, despite its strong locality effect,

although further experimentation of the value of the stan-

dard deviation r could resolve this issue.

The bending factor k is an important parameter of
the proposed elastic deformation method as it controls

the degree of the total image warping (Rohr et al.,
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2001). A constant value of k has been selected during the

registration of all lung CT datasets and it has been ob-

tained experimentally. Alternatively, it is possible to se-

lected different values of k for each interpolant point. By

allowing the bending factor k to vary, a weighted warp-

ing could be obtained which will capture local deformi-
ties of specific areas of interest whereas relaxing the

requirement for exact interpolant point matching in

the rest of the image. Future experimentation with vary-

ing parameters of the k could contribute to a more

objective interpretation of the elastic registration meth-

od as well as to a quantitatively analysis of the informa-

tion combined.

Another advantage of applying an elastic registration
scheme on lung CT data is the estimation of tumor vol-

ume changes during radiotherapy treatment for all pa-

tients. It is well documented that lung tumors are

difficult to be visualized at different sessions due to the

movement of lesions located near the lung tumor area

(Shimizu et al., 2000). In our experiments, changes of

the tumor volume in respect to each reference dataset

was found for all patients, which indicate inspiration
and/or movement of the patient during acquisition of

the data. Thus, the practical implementation of this

scheme could provide estimations of lung tumor vol-

umes since the scheme recovers these volumes from

any added errors due to inspiration or any other move-

ment of the patient. The usefulness of these findings in

terms of a radiotherapy treatment planning system for

the redesign of the treatment at different stages of the
radiotherapy, remain to be explored.

Our ongoing effort in this research is aimed at

developing a more robust registration framework in

the context of larger and more diverse validation

study. In the near feature, we intend to enhance the

proposed non-rigid registration scheme with the com-

bination of anatomical structure-based and intensity-

based methods, the investigation of similarity
measures, and/or the integration of uncertainties and

error information.
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