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Abstract- Monthly night averaged land surface temperature 
(LST) imagery is analyzed throughout a year-period (2008), in an 
attempt to capture the seasonal variability of LST, and 
parametrically represent and classify the African Countries. 
Segmentation outlined in an objective way the temporal variation 
of LST during the 2008, grouped in 9 zones with distinct spatial 
distribution, each one presenting a distinct annual variation of 
monthly LST. Tuberculosis incidence per county for the year 
2008 was correlated to the percentage areal occurrence of the 9 
biophysical zones. More specifically statistical analysis indicates 
that there is an increase of TB-IR per country if the percent 
occurrence of either zone 4 or zone 6 is increased.  Such evidence 
was already known, but it is the first time that this correlation 
was quantified on the basis of high resolution LST data 
comparable to the previous studies that were based on the very 
sparse meteorological stations network.  The MODIS multi-
temporal LST data can assist the modeling of the disease risk 
and disease spatial distribution as well as environmental 
modeling, climatic change studies at moderate resolution/country 
level scale. 

Keywords- Tuberculosis, environmental health, geographical 
information systems, land surface temperature, MODIS. 

 

I. INTRODUCTION 

Biophysical data includes land cover [1], land 
surface temperature (LST) [2], sea surface 
temperature, tree canopy density [3], [4], etc. These 
parameters are of great importance in assessing 
environmental change [5]. The modern operational 
space-borne sensors with spectral sensitivity in the 
thermal infra-red spectrum allow monitoring of the 
Earth’s thermal field at a moderate spatial 
resolution [6]. Thus, thermal imagery products are 
available on regular and frequent basis for both the 
land and the oceans. Data availability stimulates the 
analysis of the long time series of thermal images in 
an attempt to closely monitor regions and provide 
information about the changes in LST from multi-
temporal imagery [7], [8], [9]. 

Climate change, elevation and land cover are 
environmental factors that are strongly related to 
the spread of specific infectious diseases which 
have emerged or re-emerged in the last years in 
many countries all over the world [10]. It might be 
proved precious to the modelling of the spatial 
distribution of infectious diseases, if the biophysical 
parameters, such as LST, are included in the 
modeling processing chain.   

Since 1975, the World Health Organization 
reports, over 30 diseases have appeared that are 
new to medicine included are AIDS, Ebola, Lyme 
disease, Legionnaires’ disease, toxic Escherichia 
coli, a new hantavirus, and a rash of rapidly 
evolving antibiotic-resistant organisms, while of 
equal concern is the resurgence of old diseases, 
such as malaria and cholera [11]. Declines in social 
conditions and public health programs underlie the 
rebound of diseases transmitted person-to-person 
(e.g., tuberculosis (TB), diphtheria). It has been 
found that seasonal variation of temperature is 
correlated to the geographical distribution of TB 
[12], [13], especially in countries and continents 
where the climate variation has result the increase 
of the vulnerability of the disease.  

The Africa Continent (which is a very good 
paradigm of climate variation), extents in both the 
Northern and Eastern Hemisphere and includes 
many countries with diverse environment, land 
cover and biophysical conditions [14]. The 
quantification of knowledge related to the Africa as 
well as to the distinct countries included in the 
Continent is a key factor in an attempt to 
characterize the landscape, to assess the sensitivity 
to natural hazards and to support environmental 
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analysis and diseases risk studies at moderate 
resolution scale.   

Since temperature plays a key role to the spatial 
distribution of certain diseases while the modern 
biophysical imagery [15] provides LST data with 
increased both spatial and temporal resolution 
comparable to the sparse meteorological network 
coverage, our aim is to include LST data to the 
parametric representation of African Countries and 
correlate the derived parametric representation to 
incidents per disease per country [16]. 

Towards this end, monthly night averaged LST 
imagery will be analyzed throughout a year-period 
(2008), in an attempt to capture the seasonal 
variability of LST, segment the Africa Continent to 
climatic zones with different LST annual variability, 
and parametrically represent the African countries 
on the basis of the percent occurrence of the derived 
climatic zones. Finally, the LST parametric 
representation per country will be correlated to the 
number of incidents per 100,000 inhabitants for TB, 
a disease with severe impact to African population 
and economy.  

The disease data are provided on a country level 
[16] and thus, the biophysical data should be also 
expressed at a country level for statistical 
evaluations to be feasible. 

 

II. METHODOLOGY 

Firstly, the study area, the spatial objects (the 
countries of Africa), the LST multi-temporal 
imagery and the TB incidents per country are 
presented. Then, the terrain is segmented to regions 
from the multi-temporal LST data, each region 
presenting a different climatic zone and these zones 
are used in spatial objects parametric representation 
and classification. Finally, the percent occurrence 
of the derived climatic zones per country is 
correlated to the number of incidents per 100,000 
inhabitants. 

A. Study area and the spatial objects 

The study area corresponds to Africa Continent 
bounded by latitudes -36o South to 38o North and 
longitudes -18o West to 52o East. 49 countries 
(spatial objects) are included within this region (Fig. 
1). Note that only the countries with significant area 
extent were included in this study [17]. Small 
islands (with area extent less than 3 times the pixel 

size of the satellite imagery used) that form 
independent states were omitted. 

 
Fig. 1. The border of the major Countries (49 objects with the greatest area 
extent) of Africa (African Maps 2010). 

B. Multi-temporal LST Data  

The LST dataset (with accuracy 1 Kelvin) 
derived from MODerate-resolution Imaging 
Spectroradiometer (MODIS) instrument on board 
the Terra polar orbiting satellite was used [6]. These 
products are available on regular and frequent basis 
for both the land and the oceans. Note that morning 
(10:30AM) and late evening (10:30PM) passes are 
available daily from the Terra satellite. 

Monthly averaged data for both the 
ascending pass (daytime) and descending pass 
(night time) are available from 2001 to date [15]. 
More specifically, the days and nights in clear-sky 
conditions and with validated LST values within a 
calendar month are composited and averaged. Thus, 
images correspond to mean monthly LST values on 
0.05 degree latitude/longitude grid (forming 5.6 km 
* 5.6 km grid at the equator) referenced to WGS84 
ellipsoid. The 12 images that correspond to the 
monthly night LST of the year 2008 were used (Fig. 
2). 
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Fig. 2. The monthly night LST images (the lighter a pixel is the greater the 

LST). LST pixel values are in the range -2 to 38 degrees Celsius.   

C. Tuberculosis Incidence Rates  

TB according to the World Health 
Organization is now the world's leading killer of 
adults; 30 million adults are expected to die from 
TB in the next 10 years [16]. With the spread of 
HIV, coupled with deterioration of conditions in 
many cities, not just in developing countries, but 
throughout the developed world as well, and the 
explosion in international travel, a resurgence of TB 
has occurred [18].  

The number of incidents per African 
country was downloaded from the World Health 
Organization database for the year 2008 [16]. The 
TB data standardized to incidence rates (IR) 
(number of incidents per 100,000 inhabitants) as 
well as the population per country are presented in 
Table I.  
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Fig. 03. The countries are categorized to 4 groups on the basis of TB-IR value 
(Table I). 

TABLE I 
POPULATION AND TB INCIDENCE RATES (IR) PER 100,000 INHABITANTS PER 

COUNTRY [16]. 

African countries Population TB IR per 100,000 

Algeria 33,351,000 25.92 

Angola 16,557,000 136.27 

Benin 8,760,000 33.86 

Botswana 1,858,000 180.36 

Burkina 14,359,000 19.19 

Burundi 8,173,000 44.17 

Cameroon 18,175,000 78.31 

Central  African Republic 4,265,000 99.23 

Chad 10,468,000 31.61 

Congo 3,689,000 91.38 

Cote D'Ivoire 60,644,000 114.57 

Equatorial Guinea 496,000 109.07 

Eritrea 4,692,000 17.88 

Ethiopia 81,021,000 50.35 

Gabon 1,311,000 114.57 

Ghana 23,008,000 34.35 

Guinea 9,181,000 71.46 

Guinea-Bissau 1,646,000 74.30 

Kenya 36,553,000 100.71 

Lesotho 1,995,000 193.58 

Liberia 3,579,000 84.88 

Madagascar 19,159,000 80.33 

Malawi 13,571,000 56.20 

African countries Population TB IR per 100,000 

Mali 11,968,000 39.56 

Mauritania 3,044,000 52.73 

Mozambique 20,971,000 89.76 

Namibia 2,047,000 235.86 

Niger 13,737,000 42.61 

Nigeria 144,720,000 31.80 

Rwanda 9,464,000 44.09 

Senegal 12,072,000 62.82 

Sierra Leone 5,743,000 101.45 

South Africa 48,282,000 287.48 

Swaziland 1,134,000 273.81 

Tanzania 39,459,000 61.26 

Togo 6,410,000 34.85 

Uganda 29,899,000 76.14 

Zambia 11,696,000 112.95 

Zimbabwe 13,228,000 74.31 

D. Terrain Segmentation from Multi-Temporal LST Data 

K-Means cluster analysis was used in order 
to partition the 12-dimensional imagery into K 
exclusive clusters. It begins by initializing cluster 
centroids, then assigns each pixel to the cluster 
whose centroid is nearest, updates the cluster 

centroids, then repeats the process until the 
stopping criteria are satisfied [19]. It uses Euclidian 
distance for calculating the distances between 
pixels and cluster centroids.  The underling idea of 
cluster analysis is that the cluster centroids 
represent the mean expression of the derived 
clusters.  

The 12 thermal images (Fig. 2) presented a 
common arithmetic range of values in the interval [-
2, 39] degrees Celsius and there is no need for data 
standardization [20]. In the current implementation 
of the method, small clusters with area extent 
(occurrence) less than 0.5% were eliminated by 
merging them with larger clusters that are closest to 
their centroids, while the stopping criterion was 
defined as the percentage of the migrating pixels 
during a specific iteration (if it was less than 0.1% 
of the entire image pixels the clustering was 
terminated).  Eight clusters were mapped after 84 
iterations. The cluster centroids (Table II) are 
presented in Fig. 4a and 4b.while their spatial 
distribution of the 9 cluster is given in Fig.5a. 

TABLE III 
THE  CENTROID PER CLUSTER (FIG.2) AND THE CORRESPONDING OVERALL 

OCCURRENCE DEFINED AS PERCENT AREA OCCUPIED BY EACH CLUSTER (FIG. 
4A). 

Cluster Centroid (degrees Celsius) 
Month 

1 2 3 4 5 6 7 8 9 

January 5.0 2.8 22.1 20.1 20.9 15.3 17.8 17.3 10.5

February 8.7 5.3 23.7 19.6 21.7 15.2 19.7 18.0 14.0

March 13.6 9.8 24.5 18.2 21.3 13.6 22.0 17.6 17.3

April 17.7 13.6 25.3 16.2 21.3 12.0 24.6 17.2 21.4

May 22.0 17.6 24.9 11.5 19.8 8.2 26.9 16.4 24.6

June 25.0 20.6 23.8 9.7 19.4 7.1 26.8 15.8 26.7

July 27.1 23.6 22.4 9.6 18.4 6.9 26.9 15.1 27.9

August 27.5 23.8 21.9 10.9 18.7 7.9 25.9 15.8 27.3

September 24.4 19.7 22.6 14.6 19.4 10.4 26.6 16.8 26.4

October 19.7 16.5 22.9 17.8 20.6 12.0 25.7 17.2 23.0

November 12.0 9.7 20.8 19.0 20.0 13.5 20.3 15.4 15.5

December 6.7 4.9 19.7 20.2 19.4 14.5 16.5 15.0 10.8

Occurrence % 13.0 5.0 14.5 9.9 20.1 4.8 10.4 9.2 13.0
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Fig. 4a. The 9 cluster centroids presented as mean LST per month curves. In 
order to assist interpretation the centroids of clusters 1, 2, 7 and 9 are 
presented separately here. 

 

 
Fig. 4b. Representation of clusters 3, 4, 5, 6 and 8. 

 
Fig. 5a. The spatial distribution of the 9 clusters derived by the segmentation 
of the 12 monthly night LST imagery 

E. LST Representation of Spatial Objects  

Countries form polygons (Fig. 1). Each 
polygon is projected to the cluster image (Fig. 5a). 
Then the percent of area (occurrence) occupied by 
each cluster per country is computed (Table III). 
Finally K-Means cluster analysis is applied to the 
parametric representation of countries (Table III) 
and 5 groups of country objects are defined (Fig. 
5b). 

TABLE IIIII 
CLUSTER OCCURRENCE DEFINED AS PERCENT AREA PER COUNTRY 

OCCUPIED BY EACH OF THE 9 CLUSTERS (FIG. 4A). THE CLUSTERS (COLUMNS) 

WERE RANKED (2, 1, 9, 7, 3, 5, 8, 4, 6) ACCORDING TO THEIR SPATIAL 

DISTRIBUTION (IN A NORTH TO SOUTH DIRECTION). FOR THE COUNTRIES 

LABELED WITH THE ASTERISK (*) THERE ARE NO TUBERCULOSIS DATA IN 

WHO DATABASE  (TABLE I). 

Cluster occurrence (%) per country. 
Country 

2 1 9 7 3 5 8 4 6 

Algeria 21.3 51.7 26.1 0.87           

Angola        0.3 17.1 38.3 37.5 6.6 

Benin      0.05 86.3 13.6   0.0   

Botswana          1.2 1.0 91.6 6.3 

Burkina      36.0 63.0 1.0       

Burundi 6.9   0.4     3.0 81.6   8.2 

Cameroon      1.1 13.7 61.0 19.6 3.4 1.2 

Central  
African 
Republic 

   0.19 23.0 72.0 4.8   

Chad 0.8 4.3 22.5 38.5 29.7 3.6 0.6   

Cote 
D'Ivoire 

       44.4 54.0 0.64 0.9   

Dem. Rep. 
Of Gongo* 

1.6 0.3 0.5  5.7 64.2 25.3 1.3 1.0 

Djibouti*      76.9 23.1         

Egypt* 15.5 57.9 20.4 6.2           

Equatorial  
Guinea 

     51.1 35.5 3.0 10.4

Eritrea    0.2 42.8 41.8 9.8 5.4   0.1 

Ethiopia      4.1 33.7 22.9 25.2 0.9 13.2

Gabon 0.3       1.4 81.7 16.4 0.1 0.1 

Ghana        54.9 44.9  0.08   

Guinea       32.6 60.1 6.4 0.8   

Guinea-
Bissau 

   7.9 49.5 37.9 2.4 2.2  

Kenya 0.1       57.6 19.5 15.3 0.1 7.3 

Lesotho                100 

Liberia          88.5 4.4 6.9 0.1 

Libya* 15.2 73.2 11.5 0.1           

Madagascar   0.3  3.6 49.1 28.4 3.9 14.7

Malawi 2.0 2.6 4.1    24.7 45.1 19.9 1.6 
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Cluster occurrence (%) per country. 
Country 

2 1 9 7 3 5 8 4 6 

Mali 0.05 0.8 43.0 38.6 15.1 2.2 0.3     

Mauritania 0.4 14.7 58.0 26.4 0.2 0.3 0.1     

Morocco* 62.5 20.7 12.5      4.3     

Mozambique  0.2 0.2   1.3 76.3 10.2 11.7 0.1 

Namibia        0.3 9.9 7.6 69.2 13.0

Niger  3.3 48.9 40.4 5.2 1.9 0.2     

Nigeria    1.6 15.4 45.5 32.0 2.3 3.1 0.1 

Rep. Of 
Congo 

0.1     12.5 77.4 10.0    

Rwanda 0.9         0.4 73.6   25.2

Senegal    0.2 39.4 46.2 14.0 0.3     

Sierra Leone        1.1 80.2 4.8 13.9   

Somalia*    0.1 13.4 76.0 8.9 1.5     

South Africa          1.2 2.4 37.9 58.5

Sudan*  4.9 19.3 29.2 35.9 9.8 0.6 0.3 0.01

Swaziland          4.5 36.2 42.4 16.9

Tanzania 1.9 0.5 0.5  0.6 48.8 42.6 1.1 4.0 

Gambia*      14.5 51.3 33.9   0.3   

Togo        66.4 33.6       

Tunisia* 70.6 27.3 2.1             

Uganda 3.5       0.8 36.7 54.2 0.2 4.7 

Western 
Sahara* 

6.6 29.7 46.7 0.5  0.3 16.1   

Zambia 1.0 0.02 0.1  0.14 15.5 27.4 55.2 0.6 

Zimbabwe     0.1 0.1  21.7 2.5 72.3 3.2 

 

 

Fig. 5b. The 5 groups of African countries derived by K-Means cluster 
analysis applied to the objects parametric representation scheme presented in 
Table III.  

F.  TB IR correlation to climatic zones occurrence per 
country 

Figure 6 indicates that there is an increase of TB-
IR per country if the percent occurrence of either 
zone 4 or zone 6 is increased. This relationship 
appears to be stronger for zone 4.  

The correlation coefficient (r) between the 
percent area of zone 4 and the TB-IR per country 
equals to 0.589. The relationship between the 
correlated attributes will be further explored by 
assuming a linear regression model given in below 
equation indicating that,  

Percent of Zone 4 = 76.72 + (1.523* TB-IR) 
(Equation.1) 

The test statistics for the significance of the 
regression model is distributed as the variance ratio 
(F) between the regression variance to residual 
variance [22]. The null hypothesis under the test is 
that of no explanation of the variability of TB-IR in 
terms of percent of zone 4.  

 
Fig. 06. TB-IR per country (Table I) is increased with the percent of the area 
occupied by the zones 4 and 6 (Table III, Figure 3).  

The computed variance ratio for the equation 1 
equals to 10.068 (Table IV).  

TABLE IVV 
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ANALYSIS OF VARIATION (ANOVA) FOR THE LINEAR REGRESSION OF TB-IR 

VERSUS PERCENT OF ZONE 4 PER COUNTRY (EQUATION 1). 

 ANOVA df SS MS F 

Regression 1 37235.82 37235.82 10.06871 

Residual 19 70265.25 3698171  

Total 20 107501.1     

 
The variance ratio is far greater than the tabled F 

critical value at 0.01 significance level for (1, 19) 
degrees of freedom and the null hypothesis is 
rejected. Figure 7 also proves graphically the linear 
correlation between the variables, although some 
outliers exist.  

Figure 8 identifies that the countries with 
maximized TB-IR value (TB-IR>110) according to 
Table I also present maximized percent occurrence 
of zone 4 (Table III) and are spatially distributed in 
the southwest Africa.  

 

 
Fig. 07. The linear regression of TB-IR versus the percent occurrence of zone 
4 per country.  

 
Fig. 08. The countries in dark grey are formed by objects with both increased 
TB-IR value (TB-IR>110 - Table I) and percent occurrence of zone 4 (Table 

III) while the countries in light grey present intermediate TB-IR value and 
percent occurrence of zone 4 per country that is lower than the percent 
occurrence of zone 6 (Table III). Zimbabwe is exception since the percent 
occurrence of zone 6 per country is lower than the percent occurrence of zone 
4. 

The southeast African countries, across the 
Indian Ocean, present intermediate TB-IR values 
while the percent occurrence of zone 4 per country 
is lower than the percent occurrence of zone 6 
(Table III). Zimbabwe is an exception (Figures 1 
and 8) since the percent occurrence of zone 6 per 
country is lower than the percent occurrence of 
zone 4. 

 

III. DISCUSSION OF THE RESULTS  

The interpretation of thermal terrain segmentation 
(both the spatial distribution of clusters in Fig. 5a 
and the cluster centroids in Table II and Figures 4a 
and 4b) reveal the seasonal differences observed in 
between the northern and southern hemisphere and 
map in an objective way the borders of the 
identified zones. The centroid LST curves for 
clusters 1, 2, 7 and 9 correspond to typical northern 
hemisphere curves (with maximum LST observed 
during the summer period while minimum LST is 
evident during the winter). The centroid curves are 
ranked in increasing LST order from 2 to 1, 9 and 7 
(Fig. 4a). Figures 4a and 4b indicate that the 
warmer the LST centroid-co-ordinates are, the 
southern the cluster’s spatial distribution is. 

On the contrary, the clusters 4 and 6 are spatially 
distributed in southern part of the continent (Fig. 4b) 
and present centroid curves that are typical of the 
southern hemisphere (maximum LST values are 
observed during the winter period, while minimum 
LST values are observed during the summer). The 
centroid curves (Fig. 4b) of clusters 3, 5 and 8 
(spatially distributed in the central part of Africa), 
present maximum centroid co-ordinates in both the 
spring and the autumn season while the relative 
LST differences between the various seasons are 
minimum. This pattern corresponds rather to the 
tropical climatic zone. 

Thus, thermal terrain segmentation from multi-
temporal monthly night imagery, outline in an 
objective way both the temporal variation of LST 
during the 2008 as well as the spatial distribution of 
climatic zones. 

Table III, contains the LST signature for each 
African country. The LST signature actually reveals 
the percent of the country occupied by the regions 
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belonging to each of the 9 clusters defined in Fig. 
5a. The K means cluster analysis applied to the LST 
countries signature (Table III), and grouped 
countries to 5 groups with almost similar LST 
signatures. The Cluster 1 is formed by the northern 
African countries, (Egypt, Libya, etc.), while cluster 
2 corresponds to South Africa. The clusters 3, 4 and 
5 are spatially distributed in between clusters 1 and 
2 (Fig. 5b). This information is of particular interest 
in planning, environmental assessment and climatic 
change studies since it indicates the balance of the 
various regional LST zones that are evident within 
each country.  

On the other hand a correlation was established 
among TB-IR and specific climatic zones as they 
were defined from the LST clustering. Such 
evidence was already known, but it is the first time 
that this correlation was quantified on the basis of 
high resolution LST data comparable to the 
previous studies that were based on the very sparse 
meteorological stations network.  

TB-IR values are maximized for the southern 
hemisphere and they are correlated to the 
occurrence of the climatic zone with LST signature 
corresponding to clusters 4 and 6. These clusters 
present an annual variation of LST that is typical of 
the southern hemisphere while cluster 6 is colder 
that cluster 4 (Fig. 3b). TB-IR values are 
maximized for the southern and western African 
countries with maximized occurrence of cluster 4. It 
seems that there is a correlation in between TB-IR 
values and LST annual variation although 
additional biophysical and socioeconomic factors 
should be taken into account. 

IV. CONCLUSIONS 

In this study the biophysical data was expressed 
at a country level for statistical evaluations to be 
feasible, since TB-IR data are available per country 
[16]. 

The thermal terrain segmentation was achieved 
on the basis of MODIS monthly averaged LST 
from the night (10:30 PM) passes that are available 
from the Terra satellite. Note that noon (1:30 AM) 
and night (1:30 PM) passes are also available daily 
from the Aqua satellite that also carries a MODIS 
instrument. These datasets are available since 2001 
and so monthly variations of LST four times (10:30 
AM, 1:30 AM, 10:30 PM, 1:30 PM) per day might 

be studied and correlated to vegetation, agriculture, 
and land cover studies at moderate resolution scale. 

Thermal terrain segmentation from multi-
temporal monthly night imagery, outline in an 
objective way both the temporal variation of LST 
during the 2008 as well as the spatial distribution of 
LST zones. The country LST signatures derived for 
2008 are a tool for environmental comparisons 
between different countries while clustering 
grouped African countries to subsets presenting 
similar night monthly LST variation. On the other 
hand the LST signatures were correlated to TB-IR 
values.  Modern biophysical imagery will play a 
key role in the monitoring of both the climatic 
zones and TB-IR values variation that are of 
particular interest due to the upcoming climatic 
change. 
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