Ηλεκτρικός Ερεθισμός Ενευρωμένων Μυών

Παπαθανασίου Γ. BS, MS Ατζολιδάκης Στ.

Ο Ηλεκτρικός Μυικός Ερεθισμός (HME) αποτελεί ένα από τα σημαντικότερα φυσικοθεραπευτικά μέσα από την άρχη του αιώνα μας. Τις τελευταίες δεκαετίες, οι εφαρμογές του HME διευρύνονται συνεχώς και η χρήση του παρουσιάζει αυξάνοντας κλινικό και ερευνητικό ενδιαφέρον. Η οδόπλευρη κάλυψη του χείματος στα πλαίσια της σύνθεσης αυτής παρουσίασης είναι αδύνατη. Στο άρθρο που ακολουθεί θα περιγραφούν συνοπτικά οι ενδείξεις, η τεχνική, οι παράμετροι εφαρμογής και τα αποτελέσματα του HME σε άτομα χωρίς κεντρική ή περιφερειακή νευρική δλαβή. Δηλαδή, στον ερεθισμό μυικών ομάδων που διατρέ-ρουν την φυσιολογική τους νεύρωση.

Εισαγωγή

Η κλινική αξία του HME είναι ιδιαίτερα σημαντική στην αποκατάσταση κακών συνόλων του μυοσκελετικού συστήματος όπου η ακινητοποίηση του πάσχοντος μέλους ή ακόμα και του ίδιου του ασθενή αποτελεί μέρος της θεραπευτικής αγωγής. Σαν παράδειγμα, μπορούν να αναφέρθουν τα κατάγματα, οι συνδεσμικές κακώσεις (με κειρουργική ή συντελική αντιμετώπιση), τα μυοτονικα προβλήματα κλπ. Στις περιπτώσεις αυτές, ο συνήθως και διαρκής HME μεγάλου μυικού ομάδων μπορεί να βελτιώσει την ατομικική κυκλοφορία, συμβάλλοντας στην τροφική ενίσχυση των αντίστοιχων περιοχών. Επίσης, μπορεί να επιταχύνει τη φλεβική επιστροφή και να καλυπτοφώνει τη λειμαριακή κυκλοφορία αισκόντας σημαντική αντοχή-δυναμική δράση. Κατάλληλος HME μπορεί να καλωδιώσει τον ανταλλακτικό μυικό οπασμό που παρατηρείται στην περιοχή της κάκωσης. Κατ’ αυτό τον τρόπο συντελεί έμμεσα στην μέσω του πόλου που οφείλεται σε συσχέτιση μεταβολικών και σε ισχαιμικά φαινόμενα, παράγοντες που αποτελούν το γνωστό φαινόκατο υπομορμών που ακολουθεί σχεδόν κάθε μυοσκελετικό τραυματισμό.

Η συχνότητα εκφόρτισης των μυικών ομάδων του ακινητο-πομενόν μέλους με HME προβάλλει την ανάπτυξη ενδομυϊκών συμπυκνώσεων, ενώ ταυτόχρονα διαπερνά την λειτουργικότητα των ανατομικών στοιχείων που συμβάλλουν στη σωστή νευρομυϊκή επικοινωνία, όπως για παράδειγμα τη θετική κυτταρική πλάκα. Από την σπουδαιότερης κλινικής εφαρμογής του HME είναι η πρόληψη της ατροφίας, η διάτηρηση ή ακόμα και η αύξηση της μυϊκής δύναμης στην περιποίηση εκείνης της αντιπροσώπου που απαιτείται παραπεμετριακή ακινητοποίηση του ασθενή ή του πάσχοντος μέλους. Τέλος, σημαντική είναι η συνειδοφυή του HME στην επανεκτάδευση μυών που έχουν υποστεί τενοντομεταθέσεις.

Συσκευές Μυικού Ερεθισμού

Ανάλογα με το ύψος της τάσης που αποδίδουν οι συσκευές HME διακρίνονται σε υψηλή και χαμηλής τάσης. Στους χαμηλός τάσης ερεθιστές, η μέγιστη τάση δεν εξιπράζει τα 100 V περίπου, ενώ η μεγίστη ένταση τα 150 mA. Η μορφή του κύματος και η διάρκεια παλμού είναι συνήθως διαμορφωμένη. Με τις συσκευές αυτές το τόπου εί- ναι δυνατό να προκύψουν ισχυρές μυικές συστολές, αλλά την πολύμορφη εφαρμογή τους δεν συντάσσεται λόγω των σχετικά έντονων χημικών και βερεμικών αποτελεσμάτων τους.

Στις συσκευές υψηλής τάσης, η μέγιστη ένταση μπορεί να φτάνει τα 2500 mA ενώ η μέγιστη τάση τα 500 V χωρίς

ΦΥΣΙΚΟΘΕΡΑΠΕΙΑ • ΤΟΜΟΣ 4, Νο 2 • Απρίλιος 1992
κανένα κίνδυνο για την ασφάλεια του ασθενή. Αυτό επι-
τυχάνεται με την διαμόρφωση ενός διπλού, τριγωνικού και
πολύ μικρής διάρκειας παλμού (συνήθως κάτω από
100 μους). Τα ρεύματα με τέτοιο παλμό έχουν αμελητέα
θερμικά και χημικά αποτελέσματα, το αυτό και συνιστά-
ται σε περιπτώσεις που απαιτείται πολύ άραμη καθημερινή ε-
φαρμογή. Άπο την άλλη όμως πλευρά, η μορφή και -
κυρίως - η διάρκεια του παλμού τους δεν επηρέαζε την
έκλυση ιοχωρημάτων μυϊκών συστολών, σε σύγκριση πάντα με
τα χαμηλότερα τάσης ερεθιστικά ρεύματα (Σχ. 1).

Σχήμα 1. Συγκριτική απεικόνιση παλμού ρευμάτων υψηλής και
χαμηλής τάσης.

Σύμφωνα με τον παράμετρο που ρυθμίζει ο χρήστης,
για να καθοδήσει την δόση που παρέχει μια συσκευή HE,
αυτές διακρίνονται σε σταθερής τάσης και σταθερής έντα-
σης. Δεν υπάρχουν ιδιαίτεροι λόγοι προτίμησης του ενός
ή του άλλου τύπου ερεθισμού. Φαίνεται όμως ότι οι σταθε-
ρής έντασης ερεθιστικές προσαρμόζουν μεγαλύτερη δυνατό-
τητα ελέγχου της δόσης του ρεύματος ανεξάρτητα από την
αντίσταση των ιστών. Σε κάθε περίπτωση, ο φυσικοθερα-
πευτικός πρέπει να γνωρίζει τον τύπο της συσκευής που
χρησιμοποιεί, ώστε να διασφαλίζεται η σωστή ρύθμιση
της συσκευής και η κατάλληλη εφαρμογή του ερεθισμού.

Μέθοδοι Ηλεκτρικού Μυϊκού Ερεθισμού

Στις φυσικοθεραπευτικές πράξεις διακρίνονται δύο κύριες
μέθοδοι μυϊκού HE, η μυονοπολική και η διπολική με τις
dιάφορες παραλλαγές τους.

Στη μυονοπολική μέθοδο το δύο πλεκτρόδια διακρίνον-
tαι σε ανενεργό και ενεργό. Το ανενεργό είναι κατά κα-
νόνα μεγαλύτερης επιφάνειας και αποτελεί την άνοδο,
δηλ. το θετικό πλεκτρόδιο. Τοποθετείται σε ομολόγη
με την ερεθίζομενη κεντρική περιοχή ή στην περιοχή του
κεντρικού νευρού. Το ενεργό, συνήθως μικρότερο, αποτε-
λεί την κάθοδο, δηλ. το αρνητικό πλεκτρόδιο. Τοποθε-
tείται στο κεντρικό σημείο του μυό που προκαλεί να ερεθ-
ίσει ή στην περιοχή του κεντρικού νευρού (περιφερειακά,
από το ανενεργό). Πρέπει να σημειωθεί ότι όταν κροτι-

Εικόνα 1. Παράδειγμα διπολικής εφαρμογής πλεκτρικού μυϊκού ερεθισμού.

μοποποιούνται πολυφασικά συμμετρικά ρεύματα, η διάκρι-
ση μεταξύ ενεργού και ανενεργού πλεκτρόδιου γίνεται
μόνο με βάση το μέγεθός τους, αφού το πολυκόπτονα εναλλά-
ξούνται.

Στη διπολική μέθοδο ερεθισμού χρησιμοποιούνται δύο
ιομεγέθη πλεκτρόδια, τα οποία τοποθετούνται στα άκρα
tου μυϊκού τρόπο, ώστε το ρεύμα να περνά από όσο
to δυνατό μεγαλύτερη μυϊκή μάζα (Εικ. 1). Σε μια παραλ-
lαγή της, τοποθετείται το θετικό πλεκτρόδιο στο κεντρικό
άκρο της μυϊκής μάζας ενώ το αρνητικό πάνω στο κεντρικό
σημείο του μυου.

Η ανασκόπηση της διεθνούς βιβλιογραφίας αποκαλύ-
pιεί σημαντικές διαφορές σε σχέση με την αποτελεσμα-
τικότητα κάθε μέθοδου σε σύγκριση με την άλλη. Φαίνε-
etαι όμως, ότι για τον ερεθισμό μεμονωμένων και επιφα-
νειακών μυϊκών προφατίματα η μυονοπολική μέθοδος, ενώ
όταν ο στόχος της θεραπείας είναι ο ερεθισμός εκτεταμέ-
νης και μεγάλης μυϊκής ομάδας, τότε συστήνεται η διπολι-
κή μέθοδος εφαρμογής. Τελικό κριτήριο για την εφαρμο-
γή κάποιας μεθόδου είναι η πείρα του φυσικοθεραπευτή
και η απάντηση του κάθε ασθενή στις διάφορες μεθό-
dους.

Ηλεκτρόδια Μυϊκού Ερεθισμού

Τα πλεκτρόδια που συνήθως χρησιμοποιούνται στη
κλινική πράξη μπορούν να ταξινομηθούν στις εξής κατ-
γορείς:
- μεταλλικά πλεκτρόδια περιβαλλόμενα από απογεύματα υλικό
- εύκαμπτα πλεκτρόδια άνθρακα
- αυτοκόλλητα πλεκτρόδια μίας ή περισσότερων χρήσεων με ενσωματωμένο διάμεσο υλικό (ζελέ).

Τα μεταλλικά πλεκτρόδια είναι αικονομοκότερα αλλά με τη χρήση εμφανίζουν πυκνότητες, γυναικών και προ-ξοκές, σημεία δηλ. όπου αυξάνεται η πυκνότητα του ρεύματος και μπορεί να προκληθούν εγκαύματα στο δέρμα του ασθεντή. Τα πλεκτρόδια άνθρακα με διάμεσο υλικό κάπως είναι εύκαμπτα και ανθεκτικά και καθαρίζονται εύκολα μετά την εφαρμογή. Τα αυτοκόλλητα πλεκτρό-δια, ακόμα και αν προσφέρονται για πολλαπλές χρήσεις, πρέπει να χρησιμοποιούνται μόνον στους ιδιο ασθενείς επει-δή το διάμεσο υλικό που διαθέτουν δεν μπορεί να απομακρυνθεί ή να καθαριστεί.

Γενικότερα, τα πλεκτρόδια που χρησιμοποιούνται πρέ-πει να πληρούν κάποιες προϋποθέσεις, όπως:
- να έχουν επιπέδη και λεια επιφάνεια ώστε η κατανο-μή του ρεύματος στα απαντά να είναι κατά το δυνατόν ισομε-ρης.
- το απορροφημένο υλικό που τα περιβάλλει (αν υπάρ-χει τέτοιο) να εξασφαλίζει ομοιόμορφη ύγρανση και πολύ καλή επαφή τόσο με το πλεκτρόδιό όσο και με το δέρμα του ασθεντή.
- τα χειλές ή οι κρέμες που χρησιμοποιούνται σαν διά-μέσα υλικά μεταξύ σώματος και πλεκτροδίου πρέπει να ε-χουν γνωστή σύνθεση και να μην είναι ερεθιστικά για το δέρμα.
- αν είναι πολλαπλών χρήσεων, να επιτρέπουν τον ε-ναρκικό καθαρισμό τους ανάμεσα στις χρήσεις.

Σε ό,τι αφορά στο μέγεθος των πλεκτροδιών, αυτό κα-θορίζεται από την μέθοδο που ακολουθείται και από το μέγεθος του μυών της μυϊκής ομάδας που πρόκειται να ε-ρεθιστεί. Στη μονοπλακή μέθοδο, το ανενεργό πλεκτρό-διό είναι αρκετά μεγάλο, ώστε να παρέχει μικρή πυκνότη-τα ρεύματος και να μην είναι ερεθιστικό. Συνήθως έχει διαστάσεις από 10 × 10 έως 20 × 25 cm. Το ενεργό πλεκ-τρόδιό μπορεί να είναι επίπεδο ή να έχει τη μορφή υπ-λαφήτη επιφάνειας 1 έως 4 cm² και χρησιμοποιείται για τον ερεθισμό μικρών, επιβεβαιακών μυών και τον ερεθι-σμό κηπικών σημείων. Μπορεί ακόμα να έχει την μορ-φή μικρού πλεκτροδίου, διαστάσεων 4 × 6 έως 5 × 8 cm και χρησιμοποιείται για τον ερεθισμό νευρικού στελέχους ή και κηπικών σημείων. Στη διπλακή μέθοδο, τα δύο ι-σομεγένθη πλεκτρόδια που χρησιμοποιούνται πρέπει να είναι όσο το δυνατόν μεγαλύτερα ώστε να ερεθίζονται όλος ο μύος, χωρίς όμως να διασχίζονται το πλεκτρικό ερεθισμα και συσ γενονικώς των μυϊκών ομάδων.

Η απόσταση μεταξύ των πλεκτροδίων πρέπει να είναι τέτοια, ώστε να επιτρέπεται αφ' ενός η εντονότερη και πληρέστερη δυνατή συστολή και αφ' ετέρου να διεγεί-ται όλος ο μύος. Είναι γνωστό ότι όσο μικρότερη είναι η α-πόσταση ανάμεσα στα πλεκτρόδια, τόσο μεγαλύτερη είναι η πυκνότητα του ρεύματος που διέρχεται και συνεπώς τό-
παρέχονται σε σειρά των 10 msec με πάδο 10 msec συνθής. Δίνονται έτσι μια ερεθιστική συχνότητα 50 Hz. Ο
νομισμάτικος «φωτικός τύπος» γιατί χρησιμοποιήθηκαν αρχικά από τον Συνδετικό Ερευνητή Κοζί, ο οποίος υπο-
στήριξε ότι είναι αποτελεσματικότερα από τα κλασικά τύ-
που ρεύματα. Πολλοί δυτικοί ερευνητές χρησιμοποίησαν παράοχα ρεύματα με λιγότερο ενθαρρυντικά αποτελέ-
σματα. 5, 6
Σήμερα αποτελεί κοινό τόπο στον HME η χρήση όσων
ορθογώνιας μορφής, είτε σαν μονοβασικό διακοπτόμενο λογισμα, είτε σαν διαβολικό με συμμετρικό ή ασύμμετρο παλ-
μό. Οι διαβολικοί παλμοί έχουν το πλεονέκτημα ότι η αρ-
ετική φάση εξουδετερώνει μερικά ή όλα τα χημικά α-
πότελεσμάτα της θετικής φάσης, καθιστώντας τα ρεύματα του τύπου αυτού περισσότερο ανεκτικά σε πολύσωρο εφαρ-
μηχ. Ως είναι σημαντικό χρόνο ανάλυσης της έντασης του ρεύματος (τριγυμνικός ή τριτεσσειδείς) δεν μπορούν να ερεθίσουν αποτελεσματικά τους εναπομένους μισές (λόγω προσαρμογής)6, 7 και για το λόγο αυτό δεν χρησι-
μοποιούνται.

Διάρκεια Όψης
Η ελάχιστη διάρκεια πλεκτρικού ερεθίσματος που απαι-
tεται για να προκληθεί μική συστολή σε ενενεανεύμενες
μικρές ινές (MI) είναι 10 msec. Στην πράξη όμως οι χρόνοι που χρησιμοποιούνται είναι πολύ μεγαλύτεροι. Σε μεγά-
λες σχετικές μικρές μάζες, πλεκτρικά ερεθίσματα μικρής
dιάρκειας θα ερεθίσουν κυρίως τις εισπανειακές ινές, που
dέχονται ρεύμα μεγαλύτερης πυκνότητας (και σύμφωνα με
tον καμπύλη έντασης — διάρκειας ερεθίσματος χρειάζο-
tαι διακεκριμένα ερεθίσματα για να διενεργοῦν) και τις
μεγάλες διαμέτρου μικρές ινές, που σύμφωνα με πολ-
λούς συγγραφείς ενεργοποιούνται πλεκτρικά ευκολότερα
από τις μικρότερες. Από την άλλη πλευρά, πολύ μεγάλης
dιάρκειας ερεθίσματα θα προκαλέσουν έντονα χημικά και
θερμικά αποτελέσματα χωρίς να δίνουν ικανότητες
κινητικής απαντήσεως.
'Εστω, παρ’ ότι στη βιβλιογραφία δεν υπάρχει κοινό πα-
ραδειγματική θέληση της διάρκειας ερεθισμάτων, οι περίο-
δοείκος ερεθιστικές μικρών ινών διάρκειας 0.5-2
msec. Στην πράξη, ερεθισμάτα διάρκειας 0.8-1.0 msec φαίνεται να συνδυάζουν καλύτερα την αποτελεσματικό-
tη με την μειωμένη δυσφορία που προκαλούν στον ασθε-
nή (Οχι 4). 8, 9

Συχνότητα Ερεθισμού
Σύμφωνα με την φυσιολογία των μικρών ινών, η τάση
που αναπτύσσει ο μυς κατά τον τέλειο τέτανο είναι μεγαλύ-
tερη από αυτήν που αναπτύσσεται κατά τον ατελή τέτανο ή
τις αιθές συστολές. Επομένως, η συχνότητα ερεθισμού εν-
άντι ενενεανεύμενον μι κατά τέτοια που να προ-

Σχήμα 4. Διαφορές στην ένταση της εκλογμένης συστολής με
τη χρήση διαφορετικής διάρκειας παλμού (από Παπαθανασίου &
συν., 1990).

'Ενταση Ρεύματος
Το ύψος της έντασης του ρεύματος ρυθμίζεται με βάση
την επιθυμητή ένταση της προκαλούμενης συστολής και
θέθει την ανοχή του υποκείμενου στον ερεθισμό αυ-
τού. Άλλοι παράγοντες που συνεπτυσμόνται (σε σχέση
και με τη διάρκεια της εφαρμογής) είναι η αποφυγή
tης γρήγορης μικρής κόπωσης και του ερεθισμού του δέρμα-
τος.
Η ένταση της μικρής συστολής πρέπει να ξεπερνά κά-
τοιες ισχύς για να μπορεί να χρησιμοποιηθεί διαφορετικά.
Και στο θέμα αυτό οι γνώσεις των ερευνητών διιποτάνται.
Πιο συγκεκριμένα, υπάρχουν συγγραφείς που υποθέτουν ότι απαιτούνται μέγιστες συστολές για να
επιπλέουν τα καλύτερα αποτελέσματα. 1, 2, 5 Όπως και
άλλοι που υποστήριζαν ότι ο HME μπορεί να έχει απα-
ντικικά αποτελέσματα με ένταση συστολής της τάξης του
5% της μέγιστης εθελοντικής συστολής. 5 Οι περισσότεροι
πάνω θεωρούν σαν ελάχιστο όριο το 35-50% της μέγιστης εθελοντικής συστολής.

Στην καθημερινή κλινική πράξη, ο ακριβής υπολογισμός τόσο των μέγιστων εθελοντικών, όσο και των πληκτρικά εκλεύμονων συστολών είναι συνήθως αδύνατος. Στις περιπτώσεις αυτές κρίνεται αποτελεύτει διάφοροι περιοριστικοί παράγοντες που τους υπάρχουν, η ανθρώπινη ασθενής και η εμπειρία του Φυσικοθεραπευτή. Στόχος παραμέτρουν οι, κατά το δυνατό, ικανότητα και πλήρες μυϊκής συστολής.

Διάρκεια Συστολής

Η διάρκεια της μυϊκής συστολής στον ΗΕ ταυτίζεται με τη διάρκεια της παλμοσειράς, δηλαδή με το χρονικό διάστημα στο οποίο παρέχονται πληκτρικά ερεθισμοί στον ΗΕ. Για να είναι αποτελεσματικός ο ερεθισμός, τουλάχιστον σε θρακυκρότητα εφαρμογής, απαιτούνται συστολές διάρκειας 5-6 sec. 14 Διάφοροι ερευνητές έχουν χρησιμοποιήσει συστολές διάρκειας 1,5 έως 15 sec, καθώς να τεκμηριώνει η υπεροχή κάποιας από τις τιμές αυτές. Σε παρατηρήσεις πάνω εφαρμογές (πολύφορος μεταγενεσιακός ερεθισμός), όπου η ένταση της συστολής είναι υπομέτρητη προστέθει διάρκεια συστολής (3-6 sec). Όταν

Συστολές ανά Συνεδρεία - Αρθρίμος Συνεδρείων

Σε προγράμματα ΗΕ με υπομείγνοις προσπαθείς δίνονται συστολές 60-100 συστολές ανά συνεδρείο, ενώ σε προγράμματα μέγιστους προσπαθείς οι συστολές περιορίζονται στα 10-15 sec. Σε ορισμένες περιπτώσεις απαιτούνται δύο συνεδρεία την ημέρα και οι συστολές μπορούν να τεκμηριωθούν τις 400-600ημερήσιος.

Συνήθως 10-20 συνεδρεία είναι αρκετές για τα περισσότερα προγράμματα ΗΕ. Είναι διαθέσιμες ευνοϊκή η τη σε περιπτώσεις προσπαθείς, όπως και σε πολλές ακατάλληλα συνεδρεία του ασθενή ή του πάσχοντος μέλους, ο ΗΕ συνεχίζεται για χρονικό διάστημα κρίνεται αναγκαίο.

ΒΙΒΛΙΟΓΡΑΦΙΑ