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ABSTRACT 
 
Leaving planar rectification aside, in most practical cases of architectural photogrammetry – where mostly non-metric cameras are 
now used –  the camera interior orientation must be known. Of course, it is infeasible to anticipate every possible case and calibrate 
in advance all available (including auto-focus and zoom) lenses. Therefore, tools are required for the on-the-job estimation of interior 
orientation parameters. This paper focuses on the simplest instances, namely when no ground control is available. To this end, there 
exist both single-image methods (for images with clearly defined vanishing points) as well as a multi-image approaches (self-calibra-
ting bundle adjustment which, in principle, also allows estimating the camera interior parameters without exterior information). Most 
applications, however, still rely on the stereo pair. Thus, the question of determining camera parameters solely from point correspon-
dences on two images is addressed here. Indeed, it is known that simple point homologies in uncalibrated stereo pairs can impose the 
epipolar constraint, expressed by the ‘fundamental matrix’ (well documented in computer vision literature), and even permit partial 
self-calibration. For instance, the camera constant of normal cameras – even if different for the two images – may be recovered if the 
principal point is assumed to be known. Several non-iterative algorithms have also been presented for computing one or two camera 
constants (the principal point can, too, be localized for given camera constants). The pertinent critical configurations have also been 
studied. In this contribution, the specific question of estimating a common camera constant is treated. After using a linear algorithm 
for obtaining initial values, bundle adjustment of the stereo pair is performed for the estimation of relative orientation together with 
the camera constant as well as radial lens distortion. Relying on extensive real data, the performance of this approach for partial self-
calibration without external information is assessed against full self-calibrating bundle adjustment with control points. A comparison 
of the accuracy of 3D reconstructions with the two methods indicates that the investigated approach is capable of providing compar-
able results. Further tests are still needed, however, focusing on issues such as proximity to critical geometries or the effect of noise. 
 
 

1. INTRODUCTION 
 
Most of us active in architectural or archaeological photogram-
metry are aware that the primary question regarding camera in-
terior orientation can be safely bypassed when direct projective 
approaches are applicable. Basically, this refers to either planar 
rectification or the DLT approach (which, however, necessitates 
sufficient 3D control information). In all other cases the issue of 
camera calibration – gaining in significance with the wider use 
of non-metric digital cameras – must be coped with. Evidently, 
an attempt to anticipate the possible practical situations and pre-
calibrate available lenses for different focusing distances would 
be unrealistic – let alone auto-focusing or zoom lenses. Hence, 
tools are needed for on-the-job camera calibration. The question 
motivating the present contribution concerns the available alter-
natives in cases without sufficient ground control (or configura-
tions unsuitable for single-image calibration). 
 
A possible answer would be to use the ‘nominal’ values for the 
camera elements, namely to ignore the principal point and adopt 
the nominal focal length as camera constant. It has been indica-
ted that, if no exaggerated object relief is present, this choice is 
generally valid, provided that lens distortion has been taken into 
consideration (Karras & Mavromati, 2001). Further alternatives 
can include single-image camera calibration (if suitable vanish-
ing points exist) or, at the other extreme, multi-image self-cali-
brating bundle adjustment which, in principle, allows estimating 
all camera parameters without any control information. But as 
most applications apparently still rely on stereo pairs, the speci-
fic aspect addressed here is in fact the recovery of camera para-
meters from simple point correspondences on two images. 
 
Typically, the task of relative orientation (RO) is defined as that 
of establishing the relative position of two homologue bundles 

of rays in model space. Strictly speaking, however, this is not 
the whole truth: in order to perform a relative orientation, one is 
not compelled to assume an actual existence of formed bundles, 
i.e. full knowledge of camera interior orientation (IO). Recovery 
of relative orientation is indeed possible together with a partial 
estimation of IO. 
 
To put the issue in a wider framework, one should point out that 
formulating alternative mathematical models for RO has been a 
rather early task in photogrammetry, mainly in search for algo-
rithms with no need for initial values. Thus, Thompson (1959) 
has given an algebraic formulation of the coplanarity condition, 
in which the RO parameters are grouped in a 3×3 matrix, in fact 
representing the ‘essential matrix’ E (as it came to be known in 
the computer vision literature). In other formulations, the equa-
tion for computing E from ≥8 homologue points is linear, with 
its 9 elements being reduced to 8 by fixing the scale. From its 8 
elements the RO parameters – two relative base components and 
three angles forming a rotation matrix – may be extracted (Ste-
fanovic, 1973; Khlebnikova, 1983; Shih, 1992). However, it has 
also been demonstrated that the 2D epipolar geometry of image 
pairs may still be established even with unknown IO (Faugeras, 
1992; Hartley, 1992). The ‘fundamental matrix’ F (having 7 in-
dependent parameters, found from simple point homologies) es-
tablishes the epipolar constraint on the uncalibrated pair and ac-
tually allows a projectively distorted (non Euclidean) 3D recon-
struction. It is noted that Zhang (1996) was first to deal with the 
simultaneous determination of F and the polynomial of radial 
lens distortion. 
 
Furthermore, the calibration potential of simple image corres-
pondences has also been addressed. Chang (1986) gave an early 
illustration of the possibility to calculate the IO parameters with 
the simultaneous adjustment of independent pairs from the same 



camera. But it was Faugeras et al. (1992) who showed that the 
assumption of common IO in an image pair produces two inde-
pendent conditions among the elements of F and the IO parame-
ters. The resulting equations necessitate ≥3 images to give a full 
solution for IO solely from point homologies. However, if some 
camera elements are considered as fixed, partial self-calibration 
is feasible from a stereo pair, too. By fixing the principal point, 
for instance, and disregarding image skewness and aspect ratio, 
one may recover the camera constant, even if it varies between 
the two views (Hartley, 1992). Several non-iterative algorithms 
have been reported in literature for obtaining one (c) or two (c1, 
c2) camera constants from the fundamental matrix. 
 
For varying c values, Pan et al. (1995) were initially led to a 3rd 
degree equation in c2. Next, they presented a linear system in c2 
for the cases of identical and different camera constants of the 
two views (Newsam et al., 1996). They also pointed at two cri-
tical configurations, which do not allow computation of varying 
c values from F: the camera axes are coplanar with the base (a 
situation of practical importance); one camera axis is perpendi-
cular to the plane defined by the other camera axis and the base. 
Bougnoux (1998) has presented an equivalent equation. Hartley 
& Kaucic (2002) have studied the effect of a wrong assumption 
about the principal point position on the determination of diffe-
rent c values for the pair. Finally, Sturm (2001) and Sturm et al. 
(2005) formulated three different equations (one quadratic, two 
linear) for the determination of a common c from F. Studying 
critical geometries, they demonstrated that c may be calculated 
even when the camera axes are coplanar, as long as they do not 
run parallel or their point of intersection is not equidistant from 
the two projection centres. Closing, it is noted that an additional 
limitation of the approach is object planarity, in which case the 
fundamental matrix itself cannot be estimated. 
 
Generally, one may adopt the approximation that the principal 
point coincides with the image centre. On the contrary, the focal 
length may be totally unknown or the camera constant may well 
refer to some unknown zoom factor or focusing distance. Undo-
cumented  historic images also fall into this category; in such a 
case, for instance, the authors were able to obtain reliable initial 
values only thanks to existing vanishing points (Kalisperakis et 
al., 2003). Thus, in this first experimentation the focus is on the 
determination of a common camera constant from image corres-
pondences on two images. After the application of linear algo-
rithms from the literature on real data for drawing initial values, 
bundle adjustment simultaneously estimates relative orientation 
along with the camera constant and lens distortion. Using these 
IO and RO data, 3D reconstructions are finally evaluated against 
both standard bundle adjustment with self calibration and avail-
able ground truth. 
 
 

2. OUTLINE OF THE APPROACH 
 
The central projection of an object point onto the image plane is 
described by the well-known collinearity equations. Assuming a 
normal camera (unit aspect ratio, zero skewness), this object-to-
image relation involves the image rotation matrix R, the transla-
tion vector t of the projective centre and the interior orientation 
(xo, yo, c) of the camera. Coefficients (k1, k2) of radial lens dis-
tortion can optionally also be included in the model. In the case 
of relative orientation, R obviously refers to the 3 relative rota-
tions of the second image and t denotes the relative components 
of the stereo-base (a total of 5 unknowns). 
  
As mentioned above, in the case of the pair the camera constant 
c can be extracted along with the RO parameters if the location 
of the principal point is known, or assumed to be at the image 
centre (Hartley, 1992). Estimation of the radial distortion coef-

ficients is also feasible. Here, the computation is carried out via 
a bundle adjustment (with no external control) using the colli-
nearity equations, for whose non-linear least-squares minimiza-
tion initial values are needed. For the automatic initialization of 
the algorithm above-mentioned closed-form solutions, based on 
the fundamental matrix F, are employed. The steps of the algo-
rithm applied here are as follows: 
 
1. Computation of F and subsequent estimation of the camera 

constant c (or c1, c2 for each image). 
2. Given the above results, computation of the essential matrix 

E, from which the RO parameters R and t are extracted. 
3. Using the latter as initial values, execution of self-calibrating 

bundle adjustment for finding optimal estimations for c (or 
c1, c2), R and t. 

 
Fundamental matrix and camera constant. The coplanarity con-
dition in a pair with unknown interior orientation is generalized 
via F (Hartley & Zisserman, 2000) as 
 

T 0′ =x Fx  (1)
 
whereby F is a 3×3 matrix of rank 2, while x and x′ are two ho-
mologue image points in homogenous coordinates. In order to 
compute F, the ‘8-point algorithm’ was applied (Hartley, 1997). 
With ≥8 corresponding points Eq. (1) is expanded in a linear set 
of equations 
 

Af = 0 (2)
 
where f = [f11,…,f33]T is the vector of the 9 elements of F. To 
enhance numerical stability, image coordinates are first normal-
ized by transferring their origin to the centre of gravity of the 
respective point set and by scaling them so that the RMS dis-
tance of image points from their origin equals 2. Then, Eq. (2) 
is solved for f using the singular value decomposition (SVD) of 
A under the constraint || f || = 1. This generally yields a matrix F 
of full rank; through SVD factorization and by setting the third 
singular value to zero, the final rank-deficient F is obtained. 
Coefficients of radial lens distortion are introduced into F in a 
way similar to that of Zhang (1996) and recovered along with 
the 7 independent parameters of F. The algorithm, which is no 
longer linear, is based on a Levenberg-Marquardt minimization 
of the distances from the corresponding epipolar lines. 
 
The algorithm described in Newsam et al. (1996) was used to 
estimate a common c from F. Fixing the principal point at the 
image center, c2 can be found from the roots of the following 
2nd degree polynomial: 
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In Eq. (3) the factorization is expressed as F = UDVT, ui and vi 
are the ith column of U and V, respectively; D = diag(σ1,σ2,0) 
with σ1>σ2>0 being the singular values of F; ii is the ith column 
of the 3×3 identity matrix; and m = c2 − 1. Thus, Eq. (3) is first 
solved for m, from which c is finally computed.  
 
Sturm (2001) proposed a similar algorithm for c, also based on 
the SVD factorization of F. He found three equations in c2, two 
linear and one quadratic. The invalid solutions of the latter may 
be discarded using the linear equations. 
 
In case of c varying between the two images, the most compact 



formula for estimating the values of c1 and c2 was given by 
Bougnoux (1998). Newsam et al. (1996) have proposed a dif-
ferent formulation leading to the same results. Here, however, 
results only for a common c will be given. 
 
2. Estimation of RO parameters. Once F and c are computed, 
the essential matrix E (known IO) can be determined as 
 

T′=E K FK ,    
c 0 0

0 c 0
0 0 1

 − 
 = − 
   

K  (5)

 
ignoring image skewness, aspect ratio and principal point (Hart-
ley & Zisserman, 2000). To ensure that E can be factorized into 
a rotation matrix and a translation vector (‘rigidity constraint’) 
one forces the two non-zero singular values of E to be equal to 
their mean. The question of the extraction of the RO parameters 
from the linear expression of the coplanarity condition has been 
addressed in the photogrammetric literature (Stefanovic, 1973; 
Khlebnikova, 1983; Shih, 1992). Probably the easiest way for 
drawing the RO parameters from E is through its SVD factoriza-
tion (Hartley & Zisserman, 2000). Of the four possible solutions 
only one gives intersected points in front of both cameras (one 
point suffices for finding the correct solution). 
 
3. Bundle adjustment. The obvious merit of the above approach 
is its linearity. Regarding accuracy, however, its results are ap-
proximate and it is generally admitted that they must be essen-
tially regarded as initial values for a proper bundle adjustment. 
Thus, the approximate values for the RO parameters and c are 
introduced here into the collinearity equations within a bundle 
adjustment, incorporating estimation of radial lens distortion, to 
obtain the final refined values. 
 
A direct way to assess these results, obtained from simple im-
age homologies, is by comparing them to a standard bundle ad-
justment approach of the stereo pair with full self-calibration (c, 
xo, yo, k1, k2) using sufficient 3D control information. However, 
even more eloquent than the direct comparison of values for the 
parameter c themselves (which are correlated with the RO para-
meters) is probably the assessment of 3D reconstructions from 
the two approaches against existing external information. 
 
 

3. EXPERIMENTAL TESTS 
 
Clearly, simulations have to be carried out for a more thorough 
evaluation of this algorithm, particularly regarding closeness to 
critical configurations and noise level. Results from tests with 
simulated and real data have been given in literature (notably in 
Sturm et al., 2005), but these refer exclusively to closed-form so-
lutions. Here, it is rather the general potential of the stereo pair 
as regards calibration from point homologies which is of more 
interest. In this context, results from bundle adjustments of real 
data will be given. As a general experience from the tests, how-
ever, one can observe that in about 75% of the cases the closed-
form algorithms provided initial values which allowed the bun-
dle adjustment to converge; in the remaining cases, the closed-
form algorithms either did not supply solution, or their outcome 
could not serve as approximations leading to convergence. Fur-
thermore, 3D reconstruction directly from the closed-form algo-
rithms exhibited an accuracy which was inferior, by a factor of 
5−10, compared to the rigorous approach. In some cases, the in-
troduction of radial lens distortion into the computation of F re-
sulted in a certain accuracy improvement. 
 
All image groups used here, whose characteristics are shown in 
Table 1, had been acquired with the same camera on four occa-

sions for different purposes (Figure 1 shows a typical pair). In 
all cases, ground control was at hand (signalised in three cases, 
detail points in the fourth). This allowed to weaken the effect of 
noisy measurements of homologue points, but also to assess the 
actual accuracy of reconstruction. As illustrated at the example 
of Figure 2, object points were well-distributed in 3D (not close 
to planarity); referring to Table 1, z shows the mean ratio of the 
maximum difference in depth to the imaging distance. 
 

Figure 1. A typical stereo pair of the first image group. 
 

 
Figure 2. Imaging configuration of the first image group. 

 
On the other hand, the image axes of the stereo pairs were gene-
rally not far from coplanarity; in Table 1, s represents the mean 
skewness of image axes expressed as % of the mean distance of 
the projective centres from the point of ‘best intersection’ of the 
camera axes (i.e. the mid-point of their shortest distance). The 
mean ratio of these distances is d. It is clear that configurations 
are basically close to a coplanarity of image axes, while the two 
perspective centres are not far from being equidistant from the 
‘common’ point of the camera axes. 
 

Table 1. Characteristics of the 4 image groups 
        σo: mean standard error of relative orientation 
        z: maximum extension in depth as % of imaging distance 
        s: skewness of axes as % of the imaging distance 
       d: ratio of the two imaging distances 

group number 
of points

σo 
(pixel) z (%) s (%) d  

1 25 0.20 35 1.6 0.93 
2 25 0.22 20 3.1 0.95 
3 35 0.26 40 3.1 0.85 
4 16 0.19 40 3.0 0.95 

 
In all cases focusing was fixed (yet slightly different in the first 
group). The groups included a variety of geometries, particular-
ly regarding the convergence of image axes. Out of a total of 57 
tested stereo pairs, 6 provided no solution, mainly due to critical 
geometry (e.g. axis convergence less than 1°, projective centres 
practically equidistant from axes intersection). For the remain-
ing 51 stereo pairs, the mean c values along with their standard 



deviations are given in Table 2, for the cases without and with 
use of geodetic control (cR and cC, respectively). The values for 
c estimated without control clearly exhibit a considerably wider 
dispersion about their mean, as also illustrated in Figure 3. 
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Figure 3. Results for the camera constant from stereo pairs 
without (black dots) and with control points. 

 
This is more marked in the fourth case (which generally appears 
as less precise, probably because of involving fewer points and 
non-signalised control), with a standard deviation of 3% (as op-
posed to 1.5% in the other cases). This is due to the presence of 
two extreme values for c, whose omission reduces the standard 

deviation to the half). On the other hand, the differences of the 
mean values for c are indeed quite small (they nowhere exceed 
0.5%). This is an indication that, in the absence of control in-
formation, simple image correspondences might provide accept-
able estimations for the camera constant, though with an under-
standably higher uncertainty. It is also noted that the lens distor-
tion curves from the two approaches were practically identical. 
 

Table 2. Bundle adjustment with and without control 
    cR: mean camera constant from adjustments without control 
    cC: mean camera constant from adjustments with control 
    rR: mean RMS of residuals of 3D similarity transformation 
   rC: mean RMS deviations from control points 
group number 

of pairs cR (pixel) cC (pixel) rR (mm) rC (mm)

1 16 2589 ± 39 2579 ± 2 0.9 0.1 
2 13 2564 ± 37 2573 ± 4 1.2 0.1 
3 6 2566 ± 39 2568 ± 4 2.1 1.0 
4 16 2558 ± 81 2571 ± 6 3.5 0.8 

 
As already pointed out, however, a direct comparison of values 
originating from different adjustments is not always clarifying. 
Besides, one cannot generally assert within which exact limits a 
difference in the value of the camera constant is indeed of signi-
ficance or not. In this spirit, the results have also been evaluated 
against the control points. Thus, rC in Table 2 denotes the mean 
RMS differences of points which were estimated photogramme-
trically, with full bundle adjustments, from their known 3D geo-
detic coordinates. On the contrary, when no external control in-
formation was used the reconstructed models were subject to 3D 
similarity transformation. The mean RMS coordinate differences 
rR of points thus transformed from their geodetically measured 
values are also given in Table 2. 
 
The results incorporated in rR have been obtained independently 
of geodetically measured control. Hence, they obviously cannot 
be expected to be as close to the control points as the points re-
constructed in a procedure, which actually compels  homologue 
image rays to intersect at given geodetic coordinates. Further, in 
the first instance the principal point has been ignored (its aver-
age displacement from the image centre was ~10 pixel in both 
directions). In addition, the depth extension of objects was large 
and this enhances the effect of IO errors. In view of the above, 
this reconstruction, which makes no use of external information 
and relies on partly uncalibrated stereo pairs, is regarded as in-
deed satisfactory. The image scales represented mean pixel di-
mensions <3 mm on the object, i.e. they were suitable for pro-
ducts of scale 1:20. The rR values given above are also compati-
ble with this requirement. 
 
 

4. CONCLUDING REMARKS 
 
This contribution has addressed the question of relative orienta-
tion of stereo pairs, focusing on the specific issue of unknown 
camera constant c (and radial lens distortion) in the absence of 
object control. This aspect is not only of theoretical but also of 
practical interest. Generally, one might fix the principal point at 
the image centre, but in several instances the camera constant c 
cannot be reliably assumed, e.g. when using a zooming lens or 
historic images. The published closed-form algorithms applied 
here gave results which, as regards c (and subsequent 3D recon-
struction), are understandably far from being correct; however, 
in most cases they were indeed capable of automatically provid-
ing useable approximate values. Based on these, bundle adjust-
ment without external control allowed to drastically refining the 
estimation of c and 3D model reconstruction. The experimental 
results, involving 51 stereo pairs, are from the same camera but 
cover a large range of configurations. They indicated that c, al-
though its mean values tend towards those from rigorous bundle 



adjustment with control points, is determined with considerable 
uncertainty; yet, it does not appear to be directly influenced by 
closeness to certain critical geometries. Radial lens distortion is 
estimated reliably. What is probably more significant, however, 
is the indication that generally acceptable reconstructions might 
indeed be expected from partly uncalibrated stereo pairs. 
 
Of course, further tests are required to assess the potential of the 
simple stereo pair as regards reconstruction and partial calibra-
tion. For instance, here all point sets were far from being planar, 
while the noise level of image measurements was indeed low; 
these aspects should be further studied, along with a more syste-
matic consideration of configurations close to being critical. Fi-
nally, initial examples with real data in cases with two different 
camera constants have given rather satisfactory results; this in-
vestigation, too, has to be further pursued. 
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