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Abstract-The flow of a particle-fluid suspension in a non-uniform tube induced by 
sinusoidal peristaltic wave motion of the wall has been investigated. The equations 
governing the flow for both the fluid and particle phases have been solved and the 
expressions for the flow rate, pressure rise and friction force has been derived. It is 
shown that pressure rise increases with the particle concentration but decreases with 
increasing flow rate. In addition, the pressure rise increases indefinitely with 
amplitude ratio for any given set of other parameters. Pressure rise assumes 
considerably smaller magnitude in a non-uniform tube as compared to its 
corresponding magnitude in uniform diameter tube. Friction force possesses the 
characteristics opposite to the pressure rise for any given set of parameters. 

Key Words- Particle concentration, amplitude ratio, flow rate, pressure rise,                     
friction force. 

 

INTRODUCTION 

In both the physiological and mechanical situations, fluid transport by means 
of a progressive wave of area contraction or expansion along the wall of a distensible 
duct containing liquid or mixture, has been the subject of scientific and engineering 
research for over four decades since the first investigation of Latham (1966). 
Physiologists term the phenomenon of such transport as peristalsis. Peristaltic 
pumping has been found to be involved in many biological organs including the 
vasomotion of small blood vessels such as arterioles, venules and capillaries 
(Srivastava and Srivastava, 1984), besides its practical applications involving 
biomechanical systems such as heart-lung machine, finger and roller pumps, etc. 
Jaffrin and Shapiro (1971) explained the basic principles and clearly brought out the 
significance of various parameters governing the flow. A summary of most of the 
experimental and theoretical investigations, reported up to the year 1983, arranged 
according to the fluid, the Reynolds number, the wave number, the amplitude ratio 
and the wave shape, was presented in an excellent article by Srivastava and Srivastava 
(1984). Srivastava and Saxena (1995) have well referenced the important 
contributions to the topic between the years 1984 and 1994. Some of the recent years 
studies include the investigations of Srivastava and Srivastava (1997), Mekheimer et 
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al. (1998), Muthu et al. (2001), Srivastava (2002), Misra and Pandey (2002), Hayat et 
al. (2002,2003,2004), Mekheimer(2003), Misra and Rao (2004), Hayat et al. (2005), 
Hayat and Ali (2006 a, b), Srivastava (2007), Medhavi and coworkers (2008 a,b), 
Hayat and Coworkers (2008 a,b), Ali and Hayat (2008),Medhavi and Singh (2009a,b) 
and a few others. 

 The study of particulate suspension is very useful in understanding of a 
number of diverse physical problems concerned with powder technology, fluidization, 
and transport of solid particles by liquid and liquid slurries in chemical and nuclear 
processing, and metalized liquid fuel slurries for rocketry. The sedimentation of 
particles in a liquid is of interest in many chemical engineering processes. Recently, 
interest has developed in applying the theory of particle-fluid suspension to 
physiological flows as it provides improved understanding of the subjects such as 
diffusion of protein, the rheology of blood, the swimming of microorganism, the 
particle deposition on respiratory tract, etc. A large number of researches on the 
subject are referenced in Srivastava and Srivastava (1989). 

 Peristaltic pumping of a particle-fluid mixture has been investigated by Hung 
and Brown (1976), Srivastava and coworker (1989, 1997, 2002), Mekheimer et al. 
(1998), Medhavi and Singh (2008 b; 2009a,b) and several others. Barring the few 
(Gupta and Seshadri, 1976; Srivastava and coworkers, 1982, 1983, 1985, 1988; 
Mekheimer, 2002, etc.), most of the studies in the literature have been conducted in 
uniform geometry only whereas it is well known that in most of the practical 
applications, the flow geometry is found to be non-uniform. With increasing interest 
in particulate suspension flow due to its applications to diverse physical problems, the 
present study is therefore devoted to study the flow of a particulate suspension in a 
non-uniform tube induced by sinusoidal peristaltic waves. In view of the theoretical 
model for blood flow applied in Srivastava and Srivastava (2009) to discuss the effect 
of hematocrit on flow characteristics in a catheterized artery, it is strongly believed 
that the study conducted here may be applied to discuss the peristaltic induced flow of 
blood in small vessels of varying diameter. 

FORMULATION OF THE PROBLEM 

Consider the flow of a particulate suspension through a diverging tube with a 
sinusoidal wave travelling down its wall. The geometry of the wall surface is 
described (Fig.1) as 

   H (z, t)   = a (z) + b sin 

2

 (z – ct),                          (1) 

             with         a (z) = ao+ kz,                            (2) 

 

where a(z) is the tube radius at any axial distance z from the inlet, ao is radius of the 
tube at the inlet (i.e., at z=0), k (<<1) is a constant whose magnitude depends on the 
length of the tube, exit and inlet dimensions, b is the amplitude of the wave, λ is the 
wavelength, c is the wave propagation speed and t is the time.   
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 Using a continuum approach, the equations governing the linear momentum 
and the mass for both the fluid and particulate phases are expressed (Drew, 1979; 
Srivastava and coworkers, 1989, 2009) as  
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where  2 ≡ (1/r) r/  (r r/  )+ 22 z/   is the two-dimensional Laplacian operator 

in cylindrical polar coordinate system; (r,z) are cylindrical polar coordinates with z 
measured along the tube axis and r perpendicular to the axis of the tube; (uf, vf) 
denotes the fluid phase and (up, vp)  particulate phase velocity components along (z, r) 
directions, respectively; ρf and ρp be the actual densities of the material constituting 
fluid and particulate phases, respectively ; C denotes the volume fraction of the 
particles, (1-C) ρf be the fluid phase and   C ρp the particulate phase densities; p 
denotes the pressure; μs (C)   μs be the suspension viscosity and S being the drag 
coefficient of interaction for the force exerted by one phase on the other. The 
concentration of the particles is assumed to be small enough so that the particle-
particle impact due to the Brownian motion may be neglected. The volume fraction 
density of the particle, C is chosen to be a constant which is a good approximation for 
the low concentration of small particles (Batchelor; 1974, 1976). 

 The empirical relation for the suspension viscosity, μs and the expression of 
the drag coefficient of interaction, S for the present study are selected (Charm and 
Kurland, 1974; Tam, 1969; Srivastava and Srivastava, 2009) as 

               s  = o /(1–mC),   

               m=0.070 exp [ 2.49C+ (1107/T) exp (-1.69C) ],                                         (9)  
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where o  is the fluid (suspending medium) viscosity, bo is the radius of a particle and 

T is measured in absolute scale of the temperature (K). The viscosity of the 
suspension  expressed by the formula (9) is found to be accurate up to C=0.6 (Charm 
and Kurland, 1974; Medhavi and Singh, 2008b). 

 The introduction of the following dimensionless variables 

                  z' = z/ ,r'= r/ao ,  t'=ct/ , (u'f, u'p) = ( pf u,u )/c,   

                 (v'f,v'p)=  ( pf v,v )/cao , p'=p a 2
o / oc , ,/ os      

                  S'=Sa o
2
o / ,  /ao , R e = c oof /a  ,                                                                   

into equations (3)–(8), after dropping the primes, yields  
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 The Reynolds number, Re is quite small when the wavelength is large (Jaffrin 
and Shapiro, 1971), and therefore, the inertial convective acceleration terms may be 
neglected in comparison to the viscous terms (Shapiro, et al. 1969). Thus, under the 
long wavelength approximation (i.e.,  <<1), the equations (11)-(16) governing the 
flow in the laboratory frame of reference in its non-dimensional form reduce to  
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 The non-dimensional boundary conditions are   
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                                                          ANALYSIS 

 The expressions for the velocity profiles, uf and up obtained as the solution of 
equations (17) and (18), subject to the boundary conditions (20) and (21), are given as   
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 The instantaneous volumetric flow rate, q (z, t) is thus calculated as 
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with   = S/)C1(C8  , a non-dimensional suspension parameter. 

 The pressure rise, )t(pL  and the friction force at the wall, FL (t) in a tube of 

length L in their non-dimensional form are given by 
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 An application of equation (25) into equations (26) and (27), yields  
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 The expressions for the pressure rise and the friction force for a particle-fluid 
mixture in a uniform diameter tube may be obtained from relations (28) and (29) by 
setting K=0. In the absence of particle phase (i.e., C=0), the expressions given in 
equations (28) and (29) reduce to the results obtained in Gupta and Seshadri (1976) 
for a Newtonian fluid in non-uniform tube . Also, with K=0 and C=0 in equations (28) 
and (29), the results corresponding to Shapiro et al.(1969) in the laboratory frame of 
reference are derived from the present study. 

NUMERICAL RESULTS AND DISCUSSION 

 In order to discuss the results of the study quantitatively, computer codes are 
now developed for the numerical evaluations of the analytical results for pressure rise, 

)t(pL  and friction force )t(FL , obtained in equations (28) and (29) respectively, for 
various parameter values at the temperature of 25.5oC . The form of the instantaneous 
flow rate q (z, t) assumed to be periodic in (z-t) as (Gupta and Seshadri, 1976; 
Srivastava and Srivastava, 1988; Mekheimer, 2002) 
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      +  2  Sin 2  2  (z – t),                     (30) 

where Q/  is the time average of the flow over one period of the wave. The above 
form of q (z, t) has been assumed in view of the fact that a constant value of q (z, t) 
gives )t(pL negative and consequently, there would be no pumping action in the 

tube wall. We now compute the dimensionless pressure rise, )t(pL and friction 

force, )t(FL  over the tube length for various values of the dimensionless flow 
average, Q/ , amplitude ratio,   and the particle concentration, C, using the form of 

q (z, t) given in equation (30). The average rise in pressure, Lp and friction force, LF  

are then evaluated by averaging )t(pL  and )t(FL , respectively, over one period of 
the wave. Now using the parameter values (Srivastava and Srivastava, 1984, 1988; 
Mekheimer, 2002) 

             ao = 0.01 cm,  L== 10 cm,  k = 0.5  ao/L  = 0.0005, 

the integrals involved in equations (28) and (29) are evaluated numerically and some 
of the critical results obtained are displayed graphically in Figs. 2-11. 

 The pressure rise, )t(pL decreases with increasing flow rate, Q for a given 
particle concentration, C but increases with the particle concentration, C for any given 
flow rate, Q (Fig. 2). The flow characteristic, )t(pL assumes much smaller magnitude 
in a non-uniform tube than its corresponding magnitude in a uniform tube (Figs. 2 and 
3).  
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average pressure rise, )t(pL versus time averaged flow rate, Q has been shown in 
Fig.4 in a non- The The uniform tube which indicates a linear relationship between 

)t(pL and Q and thus the maximum flow rate is achieved at zero pressure rise and 

maximum pressure occurs at zero flow rate. The average pressure rise, Lp  increases 
indefinitely with increasing    
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amplitude ratio,   for any given flow rate, Q and the particle concentration, C (Fig. 
5). The flow characteristic, Lp assumes a very high asymptotic value at about  = 0.6 
in both the uniform and non-uniform tube (Figs. 5 and 6). 
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             However, Lp  assumes considerable smaller magnitude in a non-uniform 
tube than its corresponding magnitude in a uniform diameter tube. The average 
pressure rise, Lp versus C have been plotted in Figs. 7 and 8 for non-uniform and 

uniform tubes, respectively. Lp  is found to be increasing with the particle 
concentration, C at zero flow rate for a given amplitude ratio,  . The nature in the 
variation of Lp with C is highly influenced with decreasing amplitude ratio,   for 
any given non-zero value of the average flow rate, Q. One notices that Lp increases 
with amplitude ratio,   for any given flow rate, Q (Figs.7 and 8).\ 
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The friction force, )t(FL increases with the time averaged flow rate, Q for a 
given particle concentration, C, but decreases with increasing particle concentration, 
C for any given value of the flow rate, Q (Fig. 9). Friction force, )t(FL  assumes higher 
magnitude in uniform tube than its 
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FIG.11 Friction force-flow rate relationship for different  and C
       in a non uniform tube. 

FL
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corresponding value in non-uniform tube (Fig. 9 and 10). It is noticed that the average 
friction force FL increases with the flow rate, Q for any given particle concentration, C 
and the amplitude ratio,  . A linear relationship between the average friction force, 
FL and the flow rate, Q is noticed from Fig.11. An inspection of Figs. 2 and 9 reveals 
that the friction force, )t(FL possesses character opposite to that of the pressure rise, 

)t(pL for any given set of parameters. A similar conclusion is drawn in the case of 

their averaged values of pressure rise, Lp and friction force, FL from Figs.4 and 11. 

CONCLUSIONS 

 The flow of a particle-fluid mixture by means of peristaltic wave motion of the 
wall in a non-uniform tube has been discussed. The pressure rise decreases with the 
increasing flow rate for a given particle concentration but increases with the particle 
concentration for any given flow rate. A linear relationship exists between averaged 
pressure rise and the averaged flow rate. The friction force possesses the 
characteristics opposite to that of the pressure rise with respect to any parameter. The 
flow characteristics (pressure rise, averaged pressure rise, friction force, and averaged 
friction force) assume much smaller magnitude in a non-uniform tube than its 
corresponding value in uniform diameter tube. The flow equations considered to 
conduct the study corresponds to the macroscopic two-phase blood flow in narrow 
arteries. From the published literature, it is known that peristalsis contributes 
significantly towards the flow in small vessels. It is therefore strongly believed that 



e-Περιοδικό Επιστήμης & Τεχνολογίας                                                                                      
e-Journal of Science & Technology (e-JST) 

 

                                      (2), 6,   2011                                                                                                       90 
 
 
 

90

the results of the present analysis may be applied to explain the peristaltic pumping of 
blood in small arteries.     
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