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Abstract

The model relates the concentration of a polluter in the atmosphere with the field vector of wind velocity, the turbulent
diffusivity vector and the rate of mass diffusion of the polluter. An implicit finite-difference method is proposed for the numerical
solution of this one-dimensional advection-diffusion model.
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I. I NTRODUCTION

T HE concentration of air pollutants have in general been steadily increasing during the last two decades. To correctly
gauge the impact of various sources of pollutants requires careful modeling the complex physical processes associated

with the advection and diffusion of air pollution. These models are computationally demanding and require the use of stable
and accurate numerical schemes, [12], [11], [13], [15]. By considering only passive pollutants in an air pollutant transport
model the advection–diffusion system of equations can drive the dynamical evolution of the pollutant concentration in a similar
way that this is done, for example, in water flows [1], [5], [7], [5].

Let c(x, y, z, t) µg/m3 be the concentration-density of a passive polluter in the atmosphere,v = [vx, vy, vz]
T

m/s be the
vector field of the velocity of the wind, which is given from a numerical model of weather data forecast,K = [Kx,Ky,Kz]

T

be the turbulent diffusivity tensor andS µg/m3s be the source of the polluter with mass release rateq(t) in µ/h. Then the
concentration-densityc can be described from the following3D advection-diffusion (AD) equation

∂c

∂t
+ ∇ · (v c) = ∇ · (K ⊗∇ c) + S(q(t)). (1.1)

In Eq. (1.1) in order to simplify the quantityK ⊗∇ c only the diagonal terms were used. Therefore
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, (1.2)

where the factorsKx, Ky andKz can be evaluated using various methods such as to have constant values or to calculated in
the numerical weather model etc.

For the unstrained termS it can be assumed that eitherS = q(t) (locally) or the sourceS follows a Gaussian distribution,
which depends from the distanced of the local source and expands to the grid cells as follows

S(d) =
∂c

∂t
(d) =

q(t)
2πσ2

nH
e
− d2

2 σ2
n , (1.3)

whereH is the vertical expansion of the smog andσ2
n is the horizontal area of the grid cell that includes the source.

The velocity field can be available in hour intervals but a numerical scheme for Eq.(1.1) is going to need time steps ins,
therefore in order to have the velocity field for all the necessary time steps there could be a linear interpolation in time.

Eq. (1.1) for the one-dimensional problem, wherec = c(x, t), v = v(x), K = Kx = K(x), ∇c = cxi,
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reads to the following diffusion-advection equation

∂c

∂t
+

∂c

∂x
v + c

∂v

∂x
=

∂K

∂x

∂c

∂x
+ K

∂2c

∂x2
+ S ; x ∈ (L0, L1) and t > 0. (1.4)

Eq. (1.4) when
v = 0, K constant without the sourceS reduces to the classical diffusion equation

∂c

∂t
= K

∂2c

∂x2
; x ∈ (L0, L1) and t > 0, (1.5)

v = µ constant andK = 1/Re, Re being the Reynolds number leads to

∂c

∂t
+ µ

∂c

∂x
=

1
Re

∂2c

∂x2
+ S ; x ∈ (L0, L1) and t > 0. (1.6)

Initial conditions are assumed to be of the form

c (x, 0) = f(x), (1.7)

while boundary conditions
c (L0, t) = g(x) and c (L1, t) = g̃(x) ; t > 0 (1.8)

with f , g and g̃ known functions.

II. T HE NUMERICAL METHOD

Finite difference schemes is a common choice for advection-diffusion equations see, for example, [9], [13], [11], [6], [2],
[3], [4]. Explicit in time schemes are restricted by the well known CFL like stability restrictions that reduce substantially their
computational efficiency. Our scope here is to present an implicit scheme that highly relaxes this restriction.

A. Grid and solution vector

For the numerical solution the regionΩ = [L0 < x < L1] × [ t > 0 ] with its boundary∂Ω consisting of the linesx = L0,
x = L1 andt = 0, is covered with a rectangular mesh,G, of points with coordinates(x, t) = (xm, tn) = (L0 + mh, nl) with
m = 0, 1, ..., N + 1 and n = 0, 1, ..., so thath = (L1 − L0) / (N + 1). The solution of Eq.(1.4) at the typical mesh point
(xm, tn) is c (xm, tn) which may be denoted, when convenient, bycn

m. The solution of an approximating difference scheme
at the same point will be denoted byCn

m, while for the purpose of analyzing stability, the numerical value ofCn
m actually

obtained (subject, for instance, to computer round-off errors) will be denoted byC̃n
m.

Let the solution vector at time levelt = tn = n` be

Cn = C (tn) = [Cn
1 , Cn

2 , ..., Cn
N ]T . (2.1)

B. The finite-difference scheme

Eq. (1.4) using central-difference approximations for the space partial derivatives, when applied to the general mesh point
(xm, tn) of the gridG, leads to the following system of ordinary differential equations
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for m = 1, 2, ..., N , which can be written in a matrix-vector form as

D C(t) = − 1
2 h

diag{vm} AC(t)− 1
2 h

diag{vm+1 − vm−1} C(t)
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4 h2
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whereD = diag{d/d t} matrix of orderN andA, B are tridiagonal matrices of orderN given by
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Cn = [Sn
1 , Sn

2 , ..., Sn
N ]T a vector of orderN and
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the vector of the boundary conditions also of orderN .
Using the recurrence relation

C (t + `) = e` D C (t) , t = `, 2 `, ... (2.6)

in which the matrix-exponential term is replaced with the(1, 0) Pad́e approximant of the form

e` D ≈ (I − `D)−1
, (2.7)

whereI the identity matrix of orderN , finally leads to

(I − `D) C (t + `) = C (t) . (2.8)

Let r = `/h andp = `/h2. Eq. (2.8) using Eq.(2.2) leads to the following linear system
[
I +

r

2
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r

2
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4
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which, when the notation of the gridG is used, gives
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2
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for m = 1, 2, ..., N .

C. The stability analysis

Following the Fourier method of analyzing stability it is considered a small error of the form

Zn
m = Cn

m − C̃n
m (2.11)

with
Zn

m = eαn`eiβmh ; i =
√−1, (2.12)

where α is complex number andβ is real. Then the von Neumann necessary criterion for stability requires the following
condition to be satisfied ∣∣eα `

∣∣ ≤ 1 + `S, (2.13)

whereS a non negative constant independent of` andh.
Let

S = max
m=1,2,...,N

Sn
m ; n = 0, 1, ... (2.14)

ThenS obviously satisfies the required condition for the constant on the right-hand side of In.(2.13). Eq. (2.10) when the
last two terms on the right-hand side, because of(2.13), are omitted, otherwise the problem is without a source, using Eqs.
(2.11)-(2.12) after canceling both sides byeαn`eiβmh leads to
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whereξ = eα` is the amplification factor.
- Eq. (2.10) for the diffusion problem given by Eq.(1.5) becomes

ξ =
(

1 + 4 pK sin2 βh

2

)−1

. (2.16)

Sincep, K > 0, condition(2.7) is always satisfied, so the method is unconditionally stable.
- Eq. (2.10) for the advection-diffusion problem given by Eq.(1.6) becomes
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so
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Then condition(2.7) is always satisfied and the scheme is, again, unconditionally stable.

III. N UMERICAL RESULTS

In this section, numerical results are presented based on the scheme presented above. In all the test problems presented
below free outflow boundary conditions are implemented.

The first test problem has an analytical solution withS = 0. The analytical solution is that of a Gaussian pulse of unit
height centered atx0 = 1m in a region bounded by0 ≤ x ≤ 6 and is given by

C(x, t) =
1√

4t + 1
e−

(x−x0−ut)2

K(4t+1) , (2.19)

whereu is the velocity andK the (constant) diffusion coefficient in thex direction. The values of the various parameters used
areD = 5 · 10−3m2/s andu = 0.8m/s. The space step and time step are taken to beh = 0.02m and l = 0.01s respectively.
The distribution of the Gaussian pulse att = 5s is computed using the presented numerical scheme and compared with the
concentration distribution obtained using the exact solution in Fig 1, where we can see that the numerical solution follows
very closely the exact one.

For the next test problem we assume an area of lengthL = 200m and we impose a constant velocityu = 1m/s with the
diffusion coefficientK = 5 · 10−2m2/s. The value ofh = 0.1m and l = 0.2s. A pollutant source is placed atx = 50m with
a constant emission rateS = usqs, whereus = 20m/s the gas exit speed andqs = 0.1µg/m3 the source concentration rate.
The results are presented in Fig.2 where the advection of the pollutant can be seen at four different times.

For the same problem we assume initially thatu = 0 for the first 50s and thatK = 5 · 10−1m2/s. After 50s the (wind)
velocity changes tou = 1m/s in the positive direction. In Fig. we can see the effect of diffusion for the first 50s, the
concentration is increased locally and spreads in both directions. Then it is advected in the positive direction.

In the next problem we assume the existence of two sources located atx = 150m andx = 300m respectively in an area of
1000m. The second source has nowqs = .05µg/s. We useK = 0.1m2/s, h = 0.2m and l = 0.01s In Fig.4 we can see the
evolution of concentration in the domain, by timet = 180s the two source have contributed to an increase in the concentration
to a maximum value of3µ/m3 which gradually propagates in the rest of the domain.

For the last test case a more realistic case is presented. Assuming a domain ofL = 50km with u = 1m/s andK = 103m2/s
(a typical value of the daily atmospheric boundary layer). A source is placed atx = 25km based on Eq. (1.3) withH = 1m,
σn = h and q(t) = 2µ/m3. The computational parameters used whereh = 25m and l = 1s. The effect of the diffusion can
be clearly seen in Fig.5 as it is dominant in this case. The concentration hasn’t reach its peak value even after five hours but
has spread in all the half domain in the positive direction.

We point out that in all computations the value of the time step is highly increased when compared to other explicit schemes
usually presented in the literature.
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Fig. 1. Test Problem 1: Evolution of a Gaussian pulse (comparison with exact solution))
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Fig. 2. Test Problem 2: Evolution of pollutant concentration from a source (u = 1 andK = 5 · 10−2)
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Fig. 3. Test Problem 3: Evolution of pollutant concentration from a source (u = 0, for the first 50s, andK = 5 · 10−1)
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SIMAIOFOROS TH.-A. 
Genesis and Generation: The mathematical and philosophical theory 
of Timaios of Lokros 
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____________________________________________________________________ 
 
Minisymposium:NON-LINEAR PHYSICAL PHENOMENA:  

SOME RECENT STUDIES  
_____________________________________________________________________ 
 
FAMELIS I. TH., EHRHARDT M. and BRATSOS A. 
A discrete Adomian decomposition method for the discrete nonlinear 
Schrodinger equation 
 
BRATSOS A., PAPAKOSTAS T., FAMELIS I., DELIS A. & NATSIS D. 
An implicit numerical scheme for the atmospheric pollution 
 
BRATSOS A.G. 
A fourth order numerical scheme for the sine-Gordon equation 
 
_____________________________________________________________________ 

 
Minisymposium: DEFINING THE GRID:  
   EXPERIENCES AND FUTURE TRENDS  

_____________________________________________________________________ 
 
KOUTRAS V., PLATIS A. and GRAVVANIS G. 
Software rejuvenation on a grid computing environment for higher 
availability based on approximate inverse preconditioning 
 
CASTAIN R. 
Whither the Grid? Future directions and issues 
 
PATIL A., NORVIK C., POWER D. and MORRISON J. 
Implementing fine and coarse grained payment mechanisms using 
WebCom 
 
CHOUHAN P., PATIL ARCH., PATIL AD. and MORRISON J. 
WebCom core information module 
 
PARASHAR M. and PIERSON J.-M. 
When the Grid becomes pervasive: A vision on pervasive grids 
 
SANCHEZ A., MONTES J., GUEANT P. and PEREZ M. 
Lessons learnt from cluster computing: How they can be applied to 
grid environments 
 
VINTER B. 
The grid taken literally 
 
VAFOPOULOS M., GRAVVANIS G. and PLATIS A. 
New directions in computing on demand (CoD) 
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PETSOUNIS K. 
Introduction to Data Analysis and Parallel Computing with MATLAB 
 
_____________________________________________________________________  

Minisymposium: RECENT INNOVATIONS IN BUSINESS  

AND INDUSTRIAL STATISTICS 
_____________________________________________________________________ 
 
PSARAKIS S., KIANI M. and PANARETOS J. 
Contribution to monitor the standard deviation of a quality 
characteristic 
 
ZAMBA G., TSIAMYRTZIS P. and HAWKINS D. 
Bayesian statistical process control: An application to syndromic 
surveillance 
 
MYTALAS G. and ZAZANIS M. 
Quality inspection and cycle times in Manufacturing systems 
 
ANTZOULAKOS D., KOUTRAS M. and RAKINTZIS A. 
A new start-up demonstration test 
 
KASKAVELIS E. and ARVANITIS A. 
Process monitoring and fault detection using multivariate statistical 
process control –Case study from ELVAL aluminium DC casting 
process 
 
BERSIMIS F., BERSIMIS S. and PSARAKIS S. 
Multivariate control charts: A comparative study 
 
NIKOLOPOULOS C, and YANNACOPOULOS A. 
Optimal advertising policy in stochastic environments 
 
SACHLAS A., PAPAIOANNOU T. and BERSIMIS S, 
Controlling non-normal multivariate processes using information theoretic control 
charts 

 
TSIPTSIS K. 
Data mining in the framework of analytical CRM 
 
PSARAKIS S., PANARETOS J. and KIANI M. 
A control chart for monitoring process variability  
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_____________________________________________________________________ 
 

Minisymposium: HYBRID INTELLIGENT SYSTEMS AND 
KNOWLEDGE MANAGEMENT  

_____________________________________________________________________ 
 
KARAGIANNOPOULOS M., ANYFANTIS D., KOTSIANTIS S. and 
PINTELAS P. 
Feature selection for regression problems 
 
TSIRIDIS D., ZAHARAKIS I. and KAMEAS A. 
The role of indirect communication in emerging collective behaviours 
 
KANELLOPOULOS D. 
Intelligent multimedia adaption for universal multimedia access 
 
LAZARINIS F. 
Adding adaptive behaviour using information retrieval techniques to 
Greek e-shop search engines 
 
TZELEPIS D. and TAMPAKAS V. 
Using text mining techniques for analysing financial reports 
 
_____________________________________________________________________ 

 
Minisymposium:ADVANCED TOPICS IN COMMUNICATIONS 

_____________________________________________________________________ 
 
JIAYUE HE, MUNG CHIANG and REXFORD J. 
Don’t optimize existing protocols, design optimizable protocols 
 
DONG-WON SHIN, CHONG E.K.P. and SIEGEL H.J. 
Multi-postpath-based lookahead multiconstraint QoS routing 
 
CHERUBINI G. 
Reliable resynchronization of sequential decoders 
 
MANIKAS A., ELISSAIOS G.  and EFSTATHOPOULOS G. 
A signal-subspace steering vector beamformer robust to pointing errors 
 
GURCAN M., WELIWITEGODA D. and CHANDRA G. 
Minimum distance improvement method for sequential detectors 
 
PAPAZOGLOU P., KARRAS D. and PAPADEMETRIOU R. 
Efficient Simulation methodologies for wireless multimedia communications systems 
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_____________________________________________________________________ 
Minisymposium: COMPUTATIONAL ADVANCES IN FINANCE  

AND MANAGEMENT 
_____________________________________________________________________ 
PSILLAKI M., TSOLAS I. and MARGARITIS D.. 
Evaluation of credit risk based on firm performance 
 
PAPADEMETRIOU R., OSBORN A. and CHALVATZIS I. 
MagLab- An Intelligent Management Learning Environment   
 
ANGELIDIS T. and TESSAROMATIS N. 
Beta and specific risk forecasting: Implications for portfolio 
Management 
 
LIPITAKIS A. and PHILLIPS P. 
E-business strategies and adaptive algorithmic schemes 
 
TSERKEZOS D. and THANOU E. 
Portfolio Management: An investigation of the implications of measurement 
errors in stock prices on the creation, management andevaluation of stock 
portfolios, using stochastic simulations 
 
ZAPRANIS A. and ALEXANDRIDIS A. 
Modelling temperature time-dependent mean reversion with neural networks in the 
context of derivatives pricing 

FRANGOS N., VRONTOS S. and YANNACOPOULOS A. 
A computational approach for the calculation of value at risk using a partial 
differential equation   
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Contributed Papers 
_____________________________________________________________________ 

COMPUTATIONAL MATHEMATICS  
AND ITS APPLICATIONS 

___________________________________________________________ 
 
SUN W., WU J. and ZHANG X. 
Nonconforming spline collocation methods in irregular domains 
 
DEMETRIOU I.C. and LIPITAKIS E.A. 
Least squares data fitting by using the signs of divided differences 
 
APOSTOLOPOULOU M., SOTIROPOULOS D. and BOTSARIS C. 
A curvilinear method for large scale optimization problems 
 
GRAPSA T.N. and MALIHOUTSAKI E.N. 
A Newton’s method without direct evaluation of nonlinear function 
values 
 
NIKOLOPOULOS C.V. and ZOURARIS G. 
Numerical solution of a non-local elliptic problem modelling a 
thermistor with a finite element and a finite volume method 
 
ZOURARIS G.E. 
A linearly implicit Finite Element method for a Klein-Gordon-
Schrodinger type system 
 
LI F.-L., HU X.-Y. and ZHANG L. 
Left and right inverse eigenpairs problem for the symmetrizable 
matrices 
 
MAKROGLOU ATH. and KONSTANTINIDES D. 
Second order Volterra integro-differential equations arising in ultimate 
ruin theory: An overview combined with numerical treatment  
 
TYRTYSHNIKOV E., OSELEDETS I and ZAMARASHKIN N. 
A new paradigm for construction of structured preconditioners 
 
HADJIDIMOS A. and TZOUMAS M. 
Using Extrapolation for the solution of the linear complementary 
problem 
 
NOUTSOS D. 
On Stein-Rosenberg type theorems for nonnegative splittings 
 
VASSALOS P., NOUTSOS D. and SERRA CAPIZZANO S. 
The conditioning of FD matrix sequences coming from semi-elliptic 
differential equations 
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SIFALAKIS A., FULTON S., PAPADOPOULOU E. & D SARIDAKIS Y. 
On the iterative analysis of the generalized Dirichlet-Neumann map 
for Elliptic PDE’s 
 
 
 

FINANCIAL COMPUTING AND METHODOLOGIES  

_____________________________________________________________________ 
 
MANSINI R., OGRYCZAK W. and GRAZIA SPERANZA M. 
Tail Gini’s risk measures and related linear programming models for 
portfolio optimization 
 
BARTKOWIAK A. 
Comparing the distribution of the WIG20 and S&P500 index 
 
PEFFERLY R.J. 
Government debt collection metrics in the Estonian Market 
 
LISGARA E.G. and ANDROULAKIS G.S. 
An applied methodology for the prediction of time series’ local optima 
 
_____________________________________________________________________ 
 

COMPUTER MATHEMATICS, PROGRAMMING  
AND SOFTWARE APPLICATIONS  

_____________________________________________________________________ 
 
VOUDOURIS D., SAMPSON M. and PAPAKONSTANTINOU G. 
Variable reordering for reversible wave cascades 
 
PANAGOPOULOS I., PAVLATOS C., DIMOPOULOS A. and 
PAPAKONSTANTINOU G. 
Hardware solution of a first-order Diophantine equation 
 
SAMPSON M., VOUDOURIS D., KALATHAS M. & 
PAPAKONSTANTINOU G. 
A Quantum algorithm for finding minimal exclusive-or expressions for 
incompletely specified Boolean functions 
 
TSELEPIS I., BEKAKOS M., NIKITAKIS A. and LIPITAKIS E.A. 
MD5 hash algorithm hardware realization on a reconfigurable FPGA 
platform 
 
SALAMANOS N., ALEXOGIANNI E. and VAZIRGIANNIS M. 
AD-SHARE: An advertising method in P2P systems based on 
reputation management 
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_____________________________________________________________________ 

COMPUTING & ALGORITHMIC METHODOLOGIES  
  WITH APPLICATIONS  

_____________________________________________________________________ 
 
VERGINIS D.G. 
Confidence intervals for nonparametric quantile estimators 
 
HARHALAKIS S., SAMARAS N. and FRAGIADAKI E. 
An extended evaluation of a collection of TCP congestion control 
algorithms 
 
HARHALAKIS S., SAMARAS N. and FRAGIADAKI E. 
An improved method for experimental evaluations of TCP congestion 
control algorithms 
 
MARGARIS A., SOURAVLAS S., KOTSIALOS E. & ROUMELIOTIS M. 
WinSPT- A software tool for speech signal processing 
 
LIPITAKIS A. 
Adaptive algorithmic methods and dynamical singular perturbation 
techniques for e-business problems and strategic management 
methodologies 
 
_____________________________________________________________________ 

BIO-INFORMATICS, SIMULATION AND  
  INFO-MEDICAL APPLICATIONS  

_____________________________________________________________________ 
 
ANDREADIS I., SPYROU G., ANTARAKI A., GIANNAKOPOULOU G., 
KOULOHERI D., ZOGRAFOS G., NIKITA K. and LIGOMENIDES P.A. 
Combining SVM and rule based classifiers for optimal classification in 
breast cancer diagnosis 
 
VALAVANIS I., SPYROU G. and NIKITA K. 
Investigating the structure of protein similarly networks both on 
sequence and structure level 
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PARALLEL & DISTRIBUTED COMPUTING   
   AND APPLICATIONS  

_____________________________________________________________________ 
 
DENIS C., JEZEQUEL F. and SCOTT N.S. 
High performance computation: Numerical music or numerical noise? 
 
VIOLENTIS J., KOUTRAS V., PLATIS A. and GRAVVANIS G. 
Asymptotic availability of an electrical substation via a semi-Markov 
process computed by generalized approximate inverse preconditioning 
 
MICHAILIDIS P.D. and MARGARITIS K.G. 
Parallelization of multiple string matching on a cluster platform 
 
SOURAVLAS S., KOTSIALOS E., MARGARIS A. & ROUMELIOTIS M. 
On simulating parallel algorithms with VHDL 

 
_____________________________________________________________________ 

 
DYNAMICAL SYSTEMS AND PROGRAMMING MODELS  

_____________________________________________________________________ 
 
BENMAKROUHA F. and HESPEL CH. 
Validation of a particular class of dynamical systems 
 
BENMAKROUHA F. and HESPEL CH. 
Generating formal power series and stability of bilinear systems 
 
PRANEVICIUS H. and SUTIENE K. 
The effect of copula on scenario tree structure 
 

 
 

* * * * * * * * * * * * 
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