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SUMMARY

This paper considers Sharot’s family of jackknives (1976) and chooses a member of it
using & minimum variance based criterion. The criterion is different from that considered
by Sharot, which is claimed to be inappropriate. Results on the variance estimator of the
jackknife are derived and compared with those of Hinkley (1978). A Monte Carlo simulation

study supports the above conclusion.

Some key words: Correlation ; Jackknife; Influence function; Vanance reduction.

1. INTRODUCTION

The jackknife is a well-known method for bias reduction and robust interval estimation.
An excellent review is given by Miller (1974). Let z,, ..., z, be independent and identically
distributed random variables with cumulative distribution function F(z,0). Let T, =
T (x,,...,2,) be an estimator of # based on n observations. Define T_; and T_,_; to be
estimators of § based on all but the :th observation and on all but the +th and jth observation
respectively. If we write

T =n137_, T =2nmn-1)}12,,T —; (i<)),
g. =nT —(n-1)T_; (+=1,...,n),
then the first- and second-order jackknives are
fv = -1 2g,, §® = }n?T,—2(n—1)*T +(n—2)°T },

respectively. Sharot (1976) suggested the family of jackknives

J(p) = 2{n(n—1)}7" '51 il 9:;(P) (1-1)
i=1l j=
with variance estimator of J(p)
S3p) = 4{n(n—1) (1-2) 2 3 g5(p) - T @)} (1-2)

where for ¢+ <
g:;(P) = pnT,+3(1—2p)(n—1) (T—i"f‘T—-j) +(p—1)(n—2) T—i—j' (1-3)

Sharot suggested the choice of J(p*), where p* is the value of p minimizing S%(p). In §2
of this paper we show, extending work of Hinkley (1978), that the g;(p) are substantially
correlated and therefore S%(p) is inappropriate as a variance estimator of J(p). In §3 we
derive asymptotically unbiased estimators of the variance of first- and second-order influence
functions to find the variance of g,;(p), In §§ 4 and 5 we propose a rule for choosing a member
from Sharot’s family and we investigate the above results by a simulation study.
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2. DERIVATION OF THE COVARIANCE MATRIX OF THE ¢;(p)

Suppose that 7', is a regular differentiable functional of the form 7', = {(F.), where F_
is the empirical distribution function. Then ¢ = T(F) and, following Hinkley (1978), we have

that

T ~08+n1 .21 filz;)+ n? '21 121 fa(;, 7)), (2-1)
j= j=1 1=
where f,(z), fy(z,¥) are the first- and second-order influence functions of T' (Hampel, 1974),
defined by the identities

[% T{(1—¢) F + EFI}] = f f(2)dF (),

[_cf_ T{(1—¢) F + sFl}]

- [[r@vaF @ ar) 2:2)

e=0
where F, is an arbitrary cumulative distribution function. We write

(i) =f1(xi) (3' = ]-: "':ﬂ'): (‘i:J) =f2(x'£?xj) (?’!.7 = 1! ...,?’%).
A detailed analysis of g,;(p) using all terms given in (2-1) gives

g:;(p) ~ 8+ 3(2) + 3(5) + T1(2,9), (2-3)
where

T:(2,5) = a, [27’3’_1!21{ El (m,l) —n(l,1) —n(l,j)} +(1,3) + (.?:.7)] +a,(1,1)
and a, = (2p—-n)[{4(n—1)(n—2)}, a, = (p—1)/(n—2). We define o,y = var{(t)}, og =
var{(s,1)} (¢ + 1) and we choose p = kn, where k is a constant, independent of n. This means
that asymptotically we are working with a family of jackknives more like a second-order
jackknife, because 1 = J(1), 9 = J(in). After some algebra we find from (2-3), omitting
terms of o(1/n), that

var{g,;(p)} = doy,+ K%y (i +37), cov{gy(p)ga@)} =ton (<y, 1<l i +)),
cov {g;;(P), u(P)} = fonn  (6<Js 1<%, L %)), (2-4)
coV {g:5(P), gim(@)} = 0 (i<jsl<m;l*1,5;m +1.5).

Expressions (2-4) reveal that asymptotically there is nonzero correlation between some of the
g.:(p). Using (2-4) and the definitions of J(p) and S5(p) we find that

var{J(p)} = n oy + 267 0yy), E{Sﬁtp)}”n_l(f’n*‘zkzﬂm): (2-5)

so that Sharot’s estimator is positively biased asymptotically, when p is chosen to give
something like a second-order jackknife. In his paper Sharot suggests choosing p to minimize

2 (p). One can see from the results presented here that the effect of this procedure is to move
p away from values close to the second-order jackknife towards those similar to the first-order
jackknife. This is due to the positive bias of S%(p) for large p, and its lack of bias for p = 1.
The choice of » by this criterion is not based on any valuable property of J(p), but simply
gets rid of » values for which S%(p) is badly biased. Only if o, is very small compared with
a,, would S%(p) be a good estimator of var{J(p)} for p of order n.

3. NEW ESTIMATORS OF 0,; AND 0y, UNBLASED TO THE FIRST ORDER

Hinkley (1978) estimates oy, 645 by the corresponding sample moments of the estimators
of (i) and (i,4) for ¢ + 4. Using (2-1) we find that his estimator of oy, is biased to ofl/n)

—d
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because

var{(2,5)*} ~ 0gp —4n710,,, cov{{z,t—1)% (1 —1,2—-2)*}~ - 2n"10,,,

where (%,7)* is the estimator of (¢,7). Further estimators ot oy, oy, can be found by choosing
that quadratic form in g,;(p) which treats the g,(p) symmetrically and is unbiased to the
first order. Using (2-4) we find the estimators

6, = H{nn—1)(n—-2)}18,—16{n(n — 1) (n—2) (n— 3)}71S,,
a9 = 2{k(n—1)}718, — 2{k*n(n— 1) (n — 2)}718,+ Hkin(n—1) (n - 2) (n— 3)}1S,, (3'1)

where
‘82 — Ei(j{t{gij(P) gﬂ(P)'l'gﬂ( )gjl(p)'l'gn(p gj! } Sl == ZI{J gtj(P)

Sy = Ei{j{kﬂ{gﬁ(p Iu(D) +g£k(P)gﬁ(.p)+gjk(p)gﬂ(P)}-

To the first order E(6,,) = 0,4, £(6,5) = 04,. The estimators @,, and 3,, are, to the first order,
minimum norm quadratic unbiased estimators, MINQUE, of ¢,, and o,, (Rao, 1972).

4. REDUCTION OF VARIANCE ESTIMATOR IN A NEW JACKENIFE

One might think, as did Sharot, of choosing ¥ to minimize &,, and so consequently
var {J(p)} in (2-5), to the first order. Another possible choice of p is to minimize the variance
of &,,. If we assume that the g,.(p) are asymptotically multivariate normal and use (2-4), the
best choice of k is zero to the first order. In the simulations ot §5 only the case £k = 0 is
considered since the computation of » to minimize &,, 18 complicated and the results in the
case k = 0 are clearly better.

5. MoNnTE CARLO SIMULATION STUDIES

We consider estimation from the negative exponential distribution with probability density
function f(z,0) = 8e~9% and cumula,tive distribution function F(z,f). We estimate 6 by
71 = {|z dpn(x)}‘l. Then, 8 = T(F) = {{xdF(x)}*. For the functional § = T(F) we find from
(2-2)

f1(z) = 6(1—6z), Coo = B (f3) = 46°.

(5:1)

For each of n = 12, 24, 30, 40, 50, 60, 10,000 samples are generated from the negative
exponential distribution with mean u, = 1, on the ¢pc7600 of London University. Our aim
is to compare the performances of the following two members of Sharot’s family J(p) of
estimators: J = J(p) with p = 0 and J(p*) with p* chosen to minimize 8%(p). We choose
as a ‘yardstick’ the minimum variance unbiased estimator: § = (n—1)n~1%1. The results
are summarized in Tables 1 and 2.

fo(@,y) = 20(1 - 0z) (1 - by), on = Ep(fi) = &,

Table 1. Estimation of 6 = 1 in negative exponential distribuiion

Performance of JU, J(p*) Variance estimator S7(p)

Rel. Rel. St. dev.

n Estimator Mean var. MSE g? o; E{Si(p)} of S5(p) [MsE {Si(p)}}

12 JO 0-989 1-017 1.-019 0-084 0-103 0-117 0-181 0-182
J(p*) 0-987 1-:022 1-024 0-174 0-104 0-147 0-205 0-209

24 JW 1-002 1-003 1-004 0-042 0-047 0-048 0-004 0-004
J{(p*) 1-002 1-004 1-005 0-065 0-048 0-055 0-040 0-041

40 JW 1-000 1-001 1-001 0-025 0-028 0-029 0-001 0-001
J{(p*) 1-000 1-001 1-001 0-033 0-028 0-030 0-016 0-016

60 JW 1-000 1:000 1-000 0-017 0-017 0-018 0-007 0-007
J(p*) 1-000 1-000 1-000 0-020 0-018 0-019 0-008 0-008
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Table 2. 959, large sample confidence intervals for the estvmators J1 J (p*)
and their variances |

n Estimator Means of estimators E{S%(p)}
12 J D (0-979, 0-992) (0-144, 0-120)
J(p*) (0-982, 0-995) (0-142, 0-150)
24 JW (0-996, 1-004) (0-047, 0-049)
J(p*) (0-996, 1-005) (0-053, 0-055)
40 J (0-997, 1-003) (0-028, 0-030)
J(p*) (0-997, 1-004) (0-029, 0-030)
60 JW (0-997, 1-002) (0-017, 0-019)
J (p*) (0-997, 1-002) (0-018, 0-019)

From Table 1 we find that the estimator J ig superior to J(p*) with respect to bias,
variance and mean squared error. The column ¢? represents the true population variance to
o(n-1) for each of the estimators and 1s 1Y gy, + 2kEn"1oyg) = 1Yoy + 2p*n50y,), where we
find from (5-1) that o,, = 1, gy, = 4; the sampling variance for each of the estimators over
10,000 samples is o%. We may compare ¢* and o7 with the corresponding estimators of the
expected value of the variance estimators, labelled E{S%(p)} in the table. The variance
estimators are given from (1-2) for the estimator J(p*) and from (2-5) for JV, with (3-1)
used for caleulation of ¢y, and o,y. The conclusions from Table 1 are that, for every value of
n considered, the variance estimator of J is less biased and has less standard dewia-
tion and mean squared error than the variance estimator of J(p*). Hence, the estimator
JW = J(p) with p = 0 is more efficient than Sharot’s estimator J(p*).

Table 2 contains 959, large sample confidence intervals for the mean and the variance of

the estimators J© and J(p*).
Additional research is needed on the relation between Hinkley’s and MINQUE estimators “

of o, and oy, a8 n Increases.
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