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Abstract: In this work an attempt is made to compare the spectrum of ac conductivity time series, on various 
frequencies, of low porosity geomaterial samples that were contaminated by hydrocarbon compounds and 
others that were not influenced by contaminators. The used geomaterials were Mt. Penteli marbles. The power 
spectral density was calculated for both, contaminated and not, samples with the aid of wavelet transform in 
order to achieve time-frequency localization. The shape of the log-log plot of the power spectral density show 
clear differences between the contaminated samples and those that had not been affected by the hydrocarbon 
contamination compounds.  
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1 Introduction 
Measurements of the dielectric properties, on 
geomaterials, by the use of broadband dielectric 
spectroscopy can provide information about pre-
applied physical processes and chemical 
characteristics of geomaterials [1,2]. Specifically, 
dielectric measurements have been performed to 
study water content of soils [3-5] hydrocarbon 
contamination [1,6], previously applied physical 
processes such as hydration [7] and pressure [8]. 
The main advantage of this technique is that it is a 
non-destructive testing method, enabling sample re-
examination.  
In previous studies [9,10] metastable phenomena 
yielded to dynamical processes like temperature 
change have been studied using dielectric 
spectroscopy and specifically ac conductivity time 
series analysis. During these works power spectral 
densities have been calculated by the use of Fourier 
transform.  

Others have studied and proved that hydrocarbon 
contamination and water content, have different 
fingerprints on dielectric data of ground rocks [6].  
In the present work an innovative attempt took place 
to study hydrocarbon contamination by the use of ac 
conductivity time series on various frequencies 
applied on geomaterials like Mt. Penteli marbles. 
These marbles are characterized of extremely low 
porosity [11], with few connected pores, and liquid 
contamination factors limitedly penetrate rock mass. 
The above makes more interesting the study of the 
applicability of bulk ac conductivity measurements 
on such materials to investigate hydrocarbon 
compounds contamination. Thus, time series of ac 
conductivity were recorded and the data was 
analyzed using Wavelet Transform (WT). Since 
stationarity of the time series is not verified, it is 
safer to study the ac conductivity time series with 
the aid of wavelet transform [12] rather than Fourier 
Transform.  
 
 



2  Theoretical background 
2.1 Data analysis of ac conductivity time series.  
Using Dielectric Spectroscopy technique the values 
of capacitance, C, and conductance, G, are directly 
provided by the measuring system (Agilent 4284A). 
Ac conductivity, acσ , is calculated when applying 
conductance, G, value to the following formula:  

A
dGac =σ      (1) 

where d stands for the thickness of the sample and A 
stands for the electrodes area when this is greater 
than the cross sectional area of the sample.  
Using capacitance, C, the real part of relative 
permittivity, '

rε , is calculated by the use of the 
formula  
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while 0ε corresponds to the vacuum permittivity.  
It is expected, since for each sample ac conductivity 
time series are measured for more than one 
frequency, to exhibit different absolute values of 
conductance. This is due to the universal power law 
that dominates conductivity behavior with respect to 
frequency:  

n
dcac Bff += σσ )(     (3) 

where dcσ is the dc conductivity  is a parameter 
depending on temperature and pressure and 
exponent  takes values between 0 and 1  

B

n
Typical time series can be created by sampling, with 
constant rate, single frequency ac conductivity. In 
order to be able to study the time series the data was 
corrected by removing constant trend calculating 
this way the fluctuations of ac conductivity by 
applying:  

><−=∆ )()()( ttt acacac σσσ    (4) 
 An observed signal is strict-sense stationary 
if the joint distribution of any set of samples does 
not depend on the sample's placement. 
Consequently, first order cumulative distribution 
functions, e.g., mean and variance of the signal are 
constant. Furthermore, second order cumulative 
distribution functions (such as autocorrelation and 
autocovariance) depend only on the distance in 
placement. For example, a Gaussian process is 
strict-sense stationary since it is completely 
specified by its mean and covariance function.  
Stationarity was investigated for the time series 
produced from this process in order to evaluate the 
need for appropriate time-frequency analysis 
method. Stationarity investigation was done by 

examining one first order cumulative attribute 
(amplitude distribution) and one second order 
cumulative function (autocorrelation). 
 
 
2.2 Wavelet transform (WT)  
The Continuous Wavelet Transform (CWT) is used 
to decompose a signal into wavelets. Whereas the 
Fourier transform decomposes a signal into infinite 
length sines and cosines, effectively losing all time-
localization information, the CWT's basis functions 
are scaled (by s) and shifted (by x) versions of the 
time-localized mother wavelet. The CWT is a 
convolution of the data sequence with a scaled and 
translated version of the mother wavelet, the ψ 
function [13]. 
In the CWT, for each value of the scale used, the 
correlation between the scaled wavelet and 
successive segments of the data stream is computed. 
The convolutions can be done up to N times at each 
scale, and must be done all N times if the FFT is 
used. The CWT consists of N spectral values for 
each scale used, each of these requiring an inverse 
FFT.  
The selection of the mother wavelet function is 
critical for the results that are expected to be 
derived. In this analysis derivative of Gaussian 
(DOG) wavelet, which uses real and optimally 
localised in both space and frequency, was chosen. 
The DOG wavelet is defined as: 
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where the order m of the wavelet is defined as the 
order of differentiation. The peak frequency (ωc) of 
DOG wavelets at scale s=0 is given [14] by: 

mc =ω      (6) 
Estimates of the power spectrum of a signal using 
wavelet coefficients can be generated. The wavelet 
approach in deriving a spectrum is similar to Fourier 
approach but time/scale decomposition is used 
instead of time/frequency. In contrast to the Fourier 
power spectrum, the wavelet power spectrum 
provides information with the local spectral content 
of the signal. The local wavelet power spectrum P  
is defined as: 
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The values P(x,s) are an estimate of the signal 
power in a region of influence defined by spatial 
width ∆c at about b and by frequency bandwidth ∆c 
around mean frequency ωc/s at scale s. To improve 
the accuracy of the estimates the local wavelet 



power spectrum is averaged over a range of 2K+1 
adjoining values to produce the averaged wavelet 
power spectrum (AWS) [14]: 

∑
+

−=

=
2

2

),(1),(

Kn

Knj

jnav sxP
R

sxP    (8) 

 
In the limiting case, the summation is over the entire 
signal and we obtain the global wavelet power 
spectrum. This can be an estimate of the value of the 
periodogram at the mean frequency smoothed by the 
wavelet at scale s. 
In practice the scale, s, and translation, x, can be 
associated with a corresponding frequency ω, and 
time, t, in order to be considered as a representation 
of the time-varying, localized energy spectrum for 
the given time series. The graphical representation 
of the above produces a 3D energy map showing the 
distribution of energy corresponding to each x,s. 
AWS can be obtained by integrating the energy map 
in time at each duration.  
 
 
3  Experimental setup 
The material used for the experiments was marble 
collected from Mt. Penteli. It is mainly composed of 
calcite (98%) and other minerals depending on the 
variety of the marble, such as muscovite, sericite 
and chlorite. Its density is 2.7 gr/cm3. A basic 
characteristic of Penteli marble is its low porosity, 
approximately 0.4%. This fact makes more 
interesting the study of hydrocarbon contamination 
by the method of ac conductivity time series 
analysis. In this work the marble specimens were 
provided in the form of tablets of thickness t=6mm 
and cross-section A=400mm2 approximately. 
The experiments were conducted on two sets of 
samples. The first set contained samples without any 
previous contamination. The samples of the second 
set were artificially contaminated by hydrocarbon 
compounds. Contamination process was performed 
as follows: The samples of the one set were sunk in 
depth of 0.4m in controlled environment with clay. 
The clay was contaminated by liquid hydrocarbon 
compounds spray continuously for a period of two 
months. Two months after this process the samples 
were removed from the clay and their surface were 
cleaned in order to perform ac conductivity 
measurements. 
Ac conductivity time series were conducted at 
10KHz and 100KHz using the Agilent 4284A LCR 
meter, accompanied by Agilent 16451B test fixture 
and further supported by a computer for data 

recording, storage and analysis. The dielectric test 
fixture that was used to hold the specimen was 
protected by a cabin providing constant temperature 
(298K), inert atmosphere by continuous effusion of 
inert gas and also low humidity. The detailed 
experimental set-up is described in previous works 
[12] 
The ac conductivity measurements were made with 
sensitivity of . All the measurements 
were made at isothermal conditions (

mS /10 9−±
K3.0298 ± ) 

controlled by PC. The sampling rate was 3samples/s 
giving a maximum detection frequency of 1.5Hz. 
For each sample and frequency a 3000 data points 
set was collected. 
 
 
4 Results 
The ac conductivity time series were corrected for 
line-trends. The produced time-series are illustrated 
below (fig.1, fig.2): 

 
Fig. 1: Ac conductivity (100kHz) time series.  
 

 
Fig. 2: Ac conductivity (10KHz) time series. 



In order to quantify WT as an appropriate method 
for analysis, some simple tests are useful to 
investigate the existence of non-stationarity in our 
signals. The first one may be to observe the 
amplitude distribution. If the distribution is proved 
to be non-Gaussian then the signal is not strictly 
stationary [15-17]. Fig.3 illustrates the calculated 
histograms for each one of the time series. The 
second test is based on the shape of the 
autocorrelation function (ACF). If a time series is 
non-stationary then the ACF (after lag 1) will 
decrease slowly [17,18]. Fig.4 shows the produced 
ACFs. 

 
Fig. 3: Histograms of the detrended amplitude of the ac 
conductivity time series for a) 100kHz, contaminated 
sample, b) 100kHz, uncontaminated sample, c) 10kHz, 
contaminated sample, b) 10kHz, uncontaminated sample. 
 

 
Fig. 4: ACFs for ac conductivity time series for a) 
100kHz, contaminated sample, b) 100kHz, 
uncontaminated sample, c) 10kHz contaminated sample, 
b) 10kHz, uncontaminated sample. 
 

Plot of Fig. 3 makes clear that ac conductivity 
distribution is not Gaussian. This fact manifests that 
the signal is not stationary. ACF tests were also 
applied to verify non-stationarity as this was 
concluded from distribution tests. Fig. 4 shows the 

ACF of the contaminated samples to decrease 
slowly, which verifies that the signal is non-
stationary. Since the two of the investigated time 
series proved to be non-stationary spectral analysis 
based on wavelet transform was chosen as more 
suitable than Fourier transform.  
The wavelet spectrums calculated using 
WAVEPACK [14]. For each sample, contaminated 
and uncontaminated, the wavelet spectrum is 
calculated for both measured ac conductivity 
frequencies (10KHz and 100KHz). The produced 
spectrums in log-log plots of power spectral density 
vs. frequency are shown below (fig.5, fig.6) 
 

 
Fig. 5: AWS for uncontaminated (empty circle) and 
contaminated sample (solid circle) at 10KHz 
 

Fig. 6: AWS for uncontaminated (empty circle) and 
contaminated sample (solid circle) at 100KHz 



 
From the above calculated wavelet spectrum a clear 
diversification between contaminated and 
uncontaminated samples in either measuring 
frequencies can be identified. The slope of the 
spectrum for the contaminated sample follows a 
rapid decrease as frequency increases and especially 
at the interval 0.01Hz to 0.15Hz. Contrary to that 
the slope of the spectrum for the uncontaminated 
sample shows a slow decrease which is by far 
different from the slope of contaminated sample. 
This behavior exists in 10KHz as well as at 
100KHz. 

Future work can acquire more ac conductivity 
measurements from different low porosity materials 
as well as from same samples with different level of 
contamination in order to identify the variation of 
spectrum’s slope according to them.  

5  Conclusion 
The identification of hydrocardon contamination in 
low porosity materials with the aid of wavelet 
transform is presented. The calculation of power 
spectral densities in wavelet domain reveals an 
important diversification according to the slope 
spectrum between contaminated and 
uncontaminated samples. This promising result can 
guide us in a recognition scheme where we may 
identify polluted or contaminated materials using ac 
conductivity measurements and examining the slope 
of the wavelet spectrum from ac conductivity time 
series. 
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