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Abstract—SecurID tokens have been developed by 

SDTI/RSA Security to authenticate users to a corporate 

network infrastructure. Although, thus authorization 

approach could be efficiently applied to modern networks 

such as wireless and mobile. In this work, two different 

architectures and their integrations on silicon, are proposed 

for SecurID Authenticator. Both proposed designs are 

compared with the conventional one, in terms of operating 

frequency, allocated area resources, and throughput values. 

More analytically, the paper presents two alternative design 

solutions and efficient implementations for SecurID 

Authenticator: the first is suitable for high speed 

communications, while the second supports minimized area 

applications. Both proposed architectures could be used 

alternatively to communication networks, in order to ensure 

high level of security, with special needs for high speed or 

small area resources, respectively. 

I. INTRODUCTION 

Security and privacy [1] are two of the main topics, 
that researchers have centered their interest the last years. 
Secured communications prove to be a matter of great 
importance day by day, and affect the most aspects of 
electronic and networking data transfers, via 
communication devices [2].  

Wireless networks security [3] is proven a very 
sensitive area, in the provision of electronic services. 
Before a subscriber or a user can access services in a 
administrative domain, first he registers with his ID 
(Identification Number) to take permission of a specific 
sector of provided services. In other words, the system or 
network processes first the authorization phase, in order 
the usage of certain applications to be allowed.  

Authorization defines the process of verifying object’s 
permission to perform a particular action or not. Two are 
the main alternative function mechanisms that are applied 
mainly for this purpose: 

• authentication-based schemes require, as a 
precognition, object authentication, which is utilized to 
check via Access Control Lists (ACL), whether this 
identified object is allowed to perform the requested 
actions. 

• credential-based schemes, which apply 
credentials with trustworthy information, provided by 
the algorithm performing the authorization process. 

SecurID denotes an authentication scheme, developed 
by SDTI/RSA, which now is known as RSA Security [4]. 

It is basically used as a hand held authorization device, 
which serves mainly workers in companies. The main idea 
behind this security mechanism is the combination of a 
pseudorandom token code, with the pin of the owner, in 
order the subscriber to gain access in a workstation, and 
finally in the network infrastructure of the company. This 
process cyclically works every a specified short period of 
time: for example every minute or every second a new 
pseudorandom code is generated. John Brainard, the 
SecurID developer, uses a SecurID function in order to 
achieve the requested secure level of the scheme. 
Although, SDTI/RSA has never made this function public, 
the source code of an alleged SecurID was published in 
the web, as a product of reverse engineering [5]. 

This paper proposes two alternative architectures, for 
the hardware implementation of SecurID authentication 
scheme. Both of them integrate this specific authentication 
scheme, in all terms of specified operation. The first 
proposed system architecture, named MinSecurID, is a 
compact design and utilizes the applications with 
minimized available area resources. This is achieved due 
to the feedback loop, of transformation data. The second 
proposed system architecture, called HighSecurID, 
achieves high speed performance. It is based on a pipeline 
design technique, which supports parallel transformation 
of four data blocks at the same time. Both proposed 
designs could be integrated in FPGA and ASIC hardware 
devices. In order to have a fair and detailed comparison of 
the proposed architectures, a conventional design is also 
presented and could also be integrated with the usage of 
the same type hardware devices. 

The proposed MINSecurID architecture is proven 
superior to the conventional architecture and to the 
HIGHSecurID proposed architecture at about 40-45%, and 
45-50% respectively. HIGHSecurID on the other hand, 
performs 4 times better than conventional architecture and 
the MINSecurID. This high value of throughput is 
achieved due to the applied design methodology of 
MINSecurID. 

This paper is organized as follows: In Section 1 an 

introduction to the focused topic is given. In Section 2 the 

Conventional Architecture of the SecurID is presented in 

detail. Sections 3 & 4, have been dedicated to the 

proposed system architectures. Detailed comparison 

results are given in the next Section 5, between the 

conventional architecture and the two proposed systems. 

The paper ends with the conclusions and outlook, given 

in Section 6. 
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II. CONVENTIONAL ARCHITECTURE 

The conventional architecture for SecurID hardware 

implementation is presented in the following Figure 1.  

 
The system operation starts with the time input. This 

input is a 4-byte (32-bit) vector which represents the time 

in minutes between the time of systems’ startup and he 

time Jan, 01, 1986 0.00 GMT. The Expansion Function 

uses the three least significant bytes (B1, B2, B3) of time 

input (B0B1B2B3), and produces the output of the unit 

equal to B1B2B3B3B1B2B3B3, which is a 64-bit vector.  

The Expansion Function could be designed as a 64-bit 

register and the appropriate data transformation is a 

matter of wiring between input and outputs, with no 

additional cost. 

Before the major data transformation and a step 

previous to systems’ final output, Permutation Unit roles 

as both initialization and final process. Permutation Unit 

produces a 64-bit output Y and works as it is described 

bellow. The secret key is split into 16 vectors named 

K0,…,K15, while Permutation Out defines an 64-bit 

array called u. A used flag indicates the u(K0). The four 

previous bits of u(K0) are the 4-bit output part 

Y60Y61Y62Y63 . These 4 bits are removed from the array, 

while the pointer is increased, modulo the size of the 

array, by the next key vector K1. Once again the four 

previous bits of pointed bit are equal to the values of the 

next 4 bits of Permutation Unit output Y56Y57Y58Y59 . 

This process is continued in the same way up to the 16 

vectors of secret key, until K15 and in this way the output 

of the expansion function is determined  

As it is shown in the above Figure 1, the data 

transformation is centered in four Data Transformation 

Rounds (1 to 4). The main rounds use as inputs a 64-bit 

data value and a 64-bit key (Key1 to Key4). The KeyN 

for each round is given by XORing the key value of the 

previous round key Key(N-1), with the 64-bit data output 

of the previous round also. 

Every round consists of 64 subrounds. Each subround 

transformation uses one bit of the round key, and 

transforms the data, based on two different functions 

called R and S. Each subround i, with i=1...64, transforms 

the input data vector B(i-1) to B(i). Each data function S, 

R is used alternatively in subrounds transformations, 

according to the comparison of the values between 

KeyN(i-1) and the round’s 64-bit data vector input B(i-1): 

• In the case that these two values are equal, R 

function is the data transformation core, while 

S function stays idle.  

• In case that the above values are different S is 

transforming data, while R does not operate. 

When the 64 subrounds operation have been 

completed in the above described way, the data output 

B64 of a round has been successfully produced. S and R 

functions operation could be described as follows: 

 

Function R: 

BOUT0=((((BIN1(i-1)>>>1)-1)>>>1)-1)⊕BIN4(i-1) (1) 

BOUTj(i)=BINj(i-1) for j=1,2,3,4,5,6,7.   (2) 

 

Function S: 

BOUT0(i)=BIN4(i-1)    (1) 

BOUT4(i)=100-BIN0(i-1) mod 256   (2) 

BOUTj(i)=BINj(i-1) for j=1,2,3, ,5,6,7.  (3) 

 

For the SecurID hardware integration the conventional 

architecture could be designed, based one two separated 

units for data transformation functions S, and R. These 

two separated units’ designs are shown in the following 

Figure 2: 

 
Both functions R and S divide the 64-bit input to eight 

parts of 8-bit. These functions basically forward the 

inputs to the outputs, after certain simple steps of 

modification. Data transformation in both functions 

includes cyclical shift to the right, >>>, or to the left, 

<<<, by a constant value of positions, one in both 

functions. This process could be integrated with the use 

of an 8-bit multiplexer. Other processes that are used for 

data transformation is XORing denoted as ⊕ and 

subtraction with 01hex, which could be implemented as 

addition with FFhex . 

 

Figure 2. Architectures for R & S Subrounds Functions 
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Figure 1. Conventional Architecture 
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III. PROPOSED ARCHITECTURE MINSECURID 

Two different architectures are proposed for the 
SecurID authentication scheme. The first one, called 
MinSecurID minimizes the requested allocated area and it 
is suitable in applications with low available resources. 
The proposed MinSecurID architecture is shown in the 
next Figure 3. 

 
Compared with the conventional architecture, 

MinSecurID is based on a Modified Data Transformation 
Round which operates as all the requested 4 Data 
Modifications Rounds.  

The appropriate output of each Round(i) operation is 
used as an input for the next Round(i+1), by the use of 
feedback loop technique. For this reason a 64-bit bus is 
used for the appropriate data transportation.  

Eternal to the Modified Data Transformation Round, a 
alternative approach of designing two different 
architectures for R, S is used. Instead, of the two different 
functions of S and R (Fig. 2), a MixSR Function is used. 
Figure 4 shows the architecture of MixSR. 

 
MixSR operates as original S and R according to the 

control bits of key round values. The design of this 
architecture is based on the usage of a set of multiplexers, 
MUX, which define different data paths for the outputs 
BOUT0 and BOU1. 

IV. PROPOSED ARCHITECTURE HIGHSECURID 

For applications with special needs of speed, which are 
concluded to high values of throughput and operating 
frequency also another architecture is proposed. This is 
called HighSecurID and it is illustrated in Figure 5. 

 
HighSecurID uses a chain of Data Transformation 

Rounds and 64-bit registers. In this way the output data of 
each round are temporarily stored. In each clock cycle 
4x64-bits could be transformed at the same time. A new 
set of produced codes is generated also every clock cycle. 

Other units such as Expansion Function, Conversion 
Unit and Permutation Unit are the same with compatible 
architecture and they are operating in a similar way, 
according to SecurID specifications. 

It has to be mentioned that for the 4 Data 
Transformation Rounds, HighSecurID uses the proposed 
architecture of MixSR Unit (Figure 4). In this way, an 
area reduction is also achieved for the HighSecurID 
architecture also. 

V. COMPARISONS: AREA, TIME, SPEED 

Regarding area resources conventional architecture 

uses almost the same resources with HighSecurID. The 

second one, uses more 4 x registers of 64-bit, as well as 4 

x 2 multiplexers of 8-bit each one. 

MinSecurID uses 3 less Data Transformation Rounds 

than conventional and HighSecurID also, due to the 

applied feedback loop design (Fig. 3). 

All the three examined architectures use also a 

number of common units such as: Key Unit, Expansion 

Function, Permutation Unit and Conversion Unit. 

Table I presents analytically the allocated area 

resources of each one architecture, in terms of used 

components. 
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Figure 5. Proposed HighSecurID Architecture 

 
Figure 4. Proposed MixSR Architecture 

 
Figure 3. Proposed MinSecurID Architecture 
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Both proposed architectures, as well as conventional 

one could be integrated with software and also hardware 

integration platforms, such as FPGAs of Xilinx [6]. 

Although, for the integration of encryption algorithms 

and privacy schemes, for a great number of reasons, 

regarding both security matters and performance issues, 

hardware implementations are mostly preferred.  
Based on the above implementation results proposed 

MINSecurID architecture is proven superior to the 
compatible architecture and to the HIGHSecurID 
proposed architecture at about 40-45%, 45-50% 
respectively, due to the reduced number of used Data 
Transformation Rounds (one instead of 4). It has to be 
mentioned that Data Transformation Round is the most 
critical component regarding area cost. The following 
Figure 6 illustrates the comparisons results of the three 
examined architectures, concerning allocated resources 
terms of integration. 

 
HIGHSecurID on the other hand, performs 4 times 

better than conventional architecture and MINSecurID 
one. This high value of throughput is achieved based on 
the applied design methodology of MINSecurID, which 
supports the data transformation of 4 data blocks at the 
clock cycle, instead of the one per clock cycle that both 
conventional and MINSecurID transform. 

Regarding the operation frequency of the proposed 
designs, MINSecurID has almost the same time critical 
path with the HIGHSecurID, equal at about to one 

transformation round total delay. This consults to the 
almost the same operation frequency values for both 
proposed designs. Conventional architecture has time 
critical path four times worst than the two proposed 
designs. This is due to the fact that the time critical path of 
conventional designs covers the data transformation of 
four rounds at once. In HIGHSecurID design, such delay 
is avoided based on the cascaded registers chain, which 
has been applied. MINSecurID has a short time critical 
delay path, equal to one round data transformation, due to 
the used feedback logic technique. In Figure 7, detailed 
time comparison results are illustrated, regarding 
frequency and throughput values. 

 

VI. CONCLUSIONS & OUTLOOK 

Security is a primary issue of today’s communication 
networks, in the provision of the subscribed services. 
Authentication is a very critical process, prior to the use of 
the services for each user. This work proposes two 
alternative architectures, efficient for hardware 
implementations for SecurID authentication schemes. In 
addition, the design of the conventional architecture is 
also presented. The first performs efficiently in cases of 
low available area resources, while the second is superior 
regarding the performance values. Each one of the 
proposed architectures could be used respectively, 
according to area or performance issues criteria. 
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Figure 7. Comparisons Results – Time and Performance Terms 
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TABLE I.   
AREA COMPARISON 

ARCHITECTURES UNITS 

& 

COMPONENTS Compatible 
Proposed 

MinSecurID 

Proposed 

HighSecurID 

Secret Key I I I 

XOR Blocks 4 I 4 

Permutation 

Unit 
I I I 

Expansion 

Function 
I I I 

Conversion Unit I I I 

Data 

Transformation 

Round 

4 I 4 

Extra - 8 x 8-bit MUXs 
4 x 64 Registers 
8 x 8-bit MUXs 

 


