
14th IEEE International Conference on Electronics, Circuits and Systems (IEEE ICECS'07),

Marrakech, Morocco, December 11-14, 2007.

SecurID Authenticator: On the Hardware

Implementation Efficiency

Nicolas Sklavos

University of Patras,

Patras, Greece

email: nsklavos@ieee.org

Costas Efstathiou

Informatics Dept.,

Technological Educational Institute of Athens,

Athens, Greece

email: cefsta@teiath.gr

Abstract—SecurID tokens have been developed by

SDTI/RSA Security to authenticate users to a corporate

network infrastructure. Although, thus authorization

approach could be efficiently applied to modern networks

such as wireless and mobile. In this work, two different

architectures and their integrations on silicon, are proposed

for SecurID Authenticator. Both proposed designs are

compared with the conventional one, in terms of operating

frequency, allocated area resources, and throughput values.

More analytically, the paper presents two alternative design

solutions and efficient implementations for SecurID

Authenticator: the first is suitable for high speed

communications, while the second supports minimized area

applications. Both proposed architectures could be used

alternatively to communication networks, in order to ensure

high level of security, with special needs for high speed or

small area resources, respectively.

I. INTRODUCTION

Security and privacy [1] are two of the main topics,
that researchers have centered their interest the last years.
Secured communications prove to be a matter of great
importance day by day, and affect the most aspects of
electronic and networking data transfers, via
communication devices [2].

Wireless networks security [3] is proven a very
sensitive area, in the provision of electronic services.
Before a subscriber or a user can access services in a
administrative domain, first he registers with his ID
(Identification Number) to take permission of a specific
sector of provided services. In other words, the system or
network processes first the authorization phase, in order
the usage of certain applications to be allowed.

Authorization defines the process of verifying object’s
permission to perform a particular action or not. Two are
the main alternative function mechanisms that are applied
mainly for this purpose:

• authentication-based schemes require, as a
precognition, object authentication, which is utilized to
check via Access Control Lists (ACL), whether this
identified object is allowed to perform the requested
actions.

• credential-based schemes, which apply
credentials with trustworthy information, provided by
the algorithm performing the authorization process.

SecurID denotes an authentication scheme, developed
by SDTI/RSA, which now is known as RSA Security [4].

It is basically used as a hand held authorization device,
which serves mainly workers in companies. The main idea
behind this security mechanism is the combination of a
pseudorandom token code, with the pin of the owner, in
order the subscriber to gain access in a workstation, and
finally in the network infrastructure of the company. This
process cyclically works every a specified short period of
time: for example every minute or every second a new
pseudorandom code is generated. John Brainard, the
SecurID developer, uses a SecurID function in order to
achieve the requested secure level of the scheme.
Although, SDTI/RSA has never made this function public,
the source code of an alleged SecurID was published in
the web, as a product of reverse engineering [5].

This paper proposes two alternative architectures, for
the hardware implementation of SecurID authentication
scheme. Both of them integrate this specific authentication
scheme, in all terms of specified operation. The first
proposed system architecture, named MinSecurID, is a
compact design and utilizes the applications with
minimized available area resources. This is achieved due
to the feedback loop, of transformation data. The second
proposed system architecture, called HighSecurID,
achieves high speed performance. It is based on a pipeline
design technique, which supports parallel transformation
of four data blocks at the same time. Both proposed
designs could be integrated in FPGA and ASIC hardware
devices. In order to have a fair and detailed comparison of
the proposed architectures, a conventional design is also
presented and could also be integrated with the usage of
the same type hardware devices.

The proposed MINSecurID architecture is proven
superior to the conventional architecture and to the
HIGHSecurID proposed architecture at about 40-45%, and
45-50% respectively. HIGHSecurID on the other hand,
performs 4 times better than conventional architecture and
the MINSecurID. This high value of throughput is
achieved due to the applied design methodology of
MINSecurID.

This paper is organized as follows: In Section 1 an

introduction to the focused topic is given. In Section 2 the

Conventional Architecture of the SecurID is presented in

detail. Sections 3 & 4, have been dedicated to the

proposed system architectures. Detailed comparison

results are given in the next Section 5, between the

conventional architecture and the two proposed systems.

The paper ends with the conclusions and outlook, given

in Section 6.

14th IEEE International Conference on Electronics, Circuits and Systems (IEEE ICECS'07),

Marrakech, Morocco, December 11-14, 2007.

II. CONVENTIONAL ARCHITECTURE

The conventional architecture for SecurID hardware

implementation is presented in the following Figure 1.

The system operation starts with the time input. This

input is a 4-byte (32-bit) vector which represents the time

in minutes between the time of systems’ startup and he

time Jan, 01, 1986 0.00 GMT. The Expansion Function

uses the three least significant bytes (B1, B2, B3) of time

input (B0B1B2B3), and produces the output of the unit

equal to B1B2B3B3B1B2B3B3, which is a 64-bit vector.

The Expansion Function could be designed as a 64-bit

register and the appropriate data transformation is a

matter of wiring between input and outputs, with no

additional cost.

Before the major data transformation and a step

previous to systems’ final output, Permutation Unit roles

as both initialization and final process. Permutation Unit

produces a 64-bit output Y and works as it is described

bellow. The secret key is split into 16 vectors named

K0,…,K15, while Permutation Out defines an 64-bit

array called u. A used flag indicates the u(K0). The four

previous bits of u(K0) are the 4-bit output part

Y60Y61Y62Y63 . These 4 bits are removed from the array,

while the pointer is increased, modulo the size of the

array, by the next key vector K1. Once again the four

previous bits of pointed bit are equal to the values of the

next 4 bits of Permutation Unit output Y56Y57Y58Y59 .

This process is continued in the same way up to the 16

vectors of secret key, until K15 and in this way the output

of the expansion function is determined

As it is shown in the above Figure 1, the data

transformation is centered in four Data Transformation

Rounds (1 to 4). The main rounds use as inputs a 64-bit

data value and a 64-bit key (Key1 to Key4). The KeyN

for each round is given by XORing the key value of the

previous round key Key(N-1), with the 64-bit data output

of the previous round also.

Every round consists of 64 subrounds. Each subround

transformation uses one bit of the round key, and

transforms the data, based on two different functions

called R and S. Each subround i, with i=1...64, transforms

the input data vector B(i-1) to B(i). Each data function S,

R is used alternatively in subrounds transformations,

according to the comparison of the values between

KeyN(i-1) and the round’s 64-bit data vector input B(i-1):

• In the case that these two values are equal, R

function is the data transformation core, while

S function stays idle.

• In case that the above values are different S is

transforming data, while R does not operate.

When the 64 subrounds operation have been

completed in the above described way, the data output

B64 of a round has been successfully produced. S and R

functions operation could be described as follows:

Function R:

BOUT0=((((BIN1(i-1)>>>1)-1)>>>1)-1)⊕BIN4(i-1) (1)

BOUTj(i)=BINj(i-1) for j=1,2,3,4,5,6,7. (2)

Function S:

BOUT0(i)=BIN4(i-1) (1)

BOUT4(i)=100-BIN0(i-1) mod 256 (2)

BOUTj(i)=BINj(i-1) for j=1,2,3, ,5,6,7. (3)

For the SecurID hardware integration the conventional

architecture could be designed, based one two separated

units for data transformation functions S, and R. These

two separated units’ designs are shown in the following

Figure 2:

Both functions R and S divide the 64-bit input to eight

parts of 8-bit. These functions basically forward the

inputs to the outputs, after certain simple steps of

modification. Data transformation in both functions

includes cyclical shift to the right, >>>, or to the left,

<<<, by a constant value of positions, one in both

functions. This process could be integrated with the use

of an 8-bit multiplexer. Other processes that are used for

data transformation is XORing denoted as ⊕ and

subtraction with 01hex, which could be implemented as

addition with FFhex .

Figure 2. Architectures for R & S Subrounds Functions

System

Clock

Time Input

32-bit

Expansion

Function

Expanded Out

64-bit

Permutation

Unit

Secret Key

64-bit

Data Transformation

Round 1

Data Transformation

Round 2

Data Transformation

Round 3

Data Transformation

Round 4

Conversion

Unit

Expanded Out

64-bit

Permutation

Unit

Produced Codes

Register

XOR

XOR

XOR

XOR

Figure 1. Conventional Architecture

14th IEEE International Conference on Electronics, Circuits and Systems (IEEE ICECS'07),

Marrakech, Morocco, December 11-14, 2007.

III. PROPOSED ARCHITECTURE MINSECURID

Two different architectures are proposed for the
SecurID authentication scheme. The first one, called
MinSecurID minimizes the requested allocated area and it
is suitable in applications with low available resources.
The proposed MinSecurID architecture is shown in the
next Figure 3.

Compared with the conventional architecture,

MinSecurID is based on a Modified Data Transformation
Round which operates as all the requested 4 Data
Modifications Rounds.

The appropriate output of each Round(i) operation is
used as an input for the next Round(i+1), by the use of
feedback loop technique. For this reason a 64-bit bus is
used for the appropriate data transportation.

Eternal to the Modified Data Transformation Round, a
alternative approach of designing two different
architectures for R, S is used. Instead, of the two different
functions of S and R (Fig. 2), a MixSR Function is used.
Figure 4 shows the architecture of MixSR.

MixSR operates as original S and R according to the

control bits of key round values. The design of this
architecture is based on the usage of a set of multiplexers,
MUX, which define different data paths for the outputs
BOUT0 and BOU1.

IV. PROPOSED ARCHITECTURE HIGHSECURID

For applications with special needs of speed, which are
concluded to high values of throughput and operating
frequency also another architecture is proposed. This is
called HighSecurID and it is illustrated in Figure 5.

HighSecurID uses a chain of Data Transformation

Rounds and 64-bit registers. In this way the output data of
each round are temporarily stored. In each clock cycle
4x64-bits could be transformed at the same time. A new
set of produced codes is generated also every clock cycle.

Other units such as Expansion Function, Conversion
Unit and Permutation Unit are the same with compatible
architecture and they are operating in a similar way,
according to SecurID specifications.

It has to be mentioned that for the 4 Data
Transformation Rounds, HighSecurID uses the proposed
architecture of MixSR Unit (Figure 4). In this way, an
area reduction is also achieved for the HighSecurID
architecture also.

V. COMPARISONS: AREA, TIME, SPEED

Regarding area resources conventional architecture

uses almost the same resources with HighSecurID. The

second one, uses more 4 x registers of 64-bit, as well as 4

x 2 multiplexers of 8-bit each one.

MinSecurID uses 3 less Data Transformation Rounds

than conventional and HighSecurID also, due to the

applied feedback loop design (Fig. 3).

All the three examined architectures use also a

number of common units such as: Key Unit, Expansion

Function, Permutation Unit and Conversion Unit.

Table I presents analytically the allocated area

resources of each one architecture, in terms of used

components.

System

Clock

Time Input

32-bit

Expansion

Function

Expanded Out

64-bit

Permutation

Unit

Secret Key

64-bit

Data Transformation

Round 1

Data Transformation

Round 2

Data Transformation

Round 3

Data Transformation

Round 4

Conversion

Unit

Expanded Out

64-bit

Permutation

Unit

Produced Codes

Register

XOR

XOR

XOR

XOR

Key1

Key2

Key3

Key4

64-bit Register

64-bit Register

64-bit Register

64-bit Register

Figure 5. Proposed HighSecurID Architecture

Figure 4. Proposed MixSR Architecture

Figure 3. Proposed MinSecurID Architecture

14th IEEE International Conference on Electronics, Circuits and Systems (IEEE ICECS'07),

Marrakech, Morocco, December 11-14, 2007.

Both proposed architectures, as well as conventional

one could be integrated with software and also hardware

integration platforms, such as FPGAs of Xilinx [6].

Although, for the integration of encryption algorithms

and privacy schemes, for a great number of reasons,

regarding both security matters and performance issues,

hardware implementations are mostly preferred.
Based on the above implementation results proposed

MINSecurID architecture is proven superior to the
compatible architecture and to the HIGHSecurID
proposed architecture at about 40-45%, 45-50%
respectively, due to the reduced number of used Data
Transformation Rounds (one instead of 4). It has to be
mentioned that Data Transformation Round is the most
critical component regarding area cost. The following
Figure 6 illustrates the comparisons results of the three
examined architectures, concerning allocated resources
terms of integration.

HIGHSecurID on the other hand, performs 4 times

better than conventional architecture and MINSecurID
one. This high value of throughput is achieved based on
the applied design methodology of MINSecurID, which
supports the data transformation of 4 data blocks at the
clock cycle, instead of the one per clock cycle that both
conventional and MINSecurID transform.

Regarding the operation frequency of the proposed
designs, MINSecurID has almost the same time critical
path with the HIGHSecurID, equal at about to one

transformation round total delay. This consults to the
almost the same operation frequency values for both
proposed designs. Conventional architecture has time
critical path four times worst than the two proposed
designs. This is due to the fact that the time critical path of
conventional designs covers the data transformation of
four rounds at once. In HIGHSecurID design, such delay
is avoided based on the cascaded registers chain, which
has been applied. MINSecurID has a short time critical
delay path, equal to one round data transformation, due to
the used feedback logic technique. In Figure 7, detailed
time comparison results are illustrated, regarding
frequency and throughput values.

VI. CONCLUSIONS & OUTLOOK

Security is a primary issue of today’s communication
networks, in the provision of the subscribed services.
Authentication is a very critical process, prior to the use of
the services for each user. This work proposes two
alternative architectures, efficient for hardware
implementations for SecurID authentication schemes. In
addition, the design of the conventional architecture is
also presented. The first performs efficiently in cases of
low available area resources, while the second is superior
regarding the performance values. Each one of the
proposed architectures could be used respectively,
according to area or performance issues criteria.

ACKNOWLEDGMENT

This work is co-funded by 75% from the E.E., and

25% from the Greek Government under the framework of

the Education and Initial Vocational Training Program-

Archimedes.

REFERENCES

[1] Bruce Schneier, Applied Cryptography – Protocols, Algorithms

and Source Code in C, Second Edition, John Wiley and Sons,
New York, 1996.

[2] N. Sklavos, O. Koufopavlou, "Mobile Communications World:
Security Implementations Aspects - A State of the Art", CSJM
Journal, Institute of Mathematics and Computer Science, Vol. 11,
Number 2 (32), pp. 168-187, 2003.

[3] N. Sklavos, X. Zhang, Handbook of Wireless Security: From

Specifications to Implementations, CRC-Press, A Taylor &
Francis Group, ISBN: 084938771X, 2007.

[4] RSA Security Website, SecurID, 2006.

[5] IC. Wiener, “Sample SecurID token emulator with token secret
import,” post to BugTraq, http://archives.neohapsis.com/
archives/bugtraq/2000-12/0428.html, 2000.

[6] Xilinx 2007, www.xilinx.com.

4x

400%

Conventional

Architecture

Proposed

MINSecurID

Proposed

HIGHSpeedID

Throughput

Frequency

Figure 7. Comparisons Results – Time and Performance Terms

40-50%

0

10

20

30

40

50

60

70

80

90

100

Conventional

Architecture

Proposed

MINSecurID

Proposed

HIGHSpeedID

Figure 6. Comparisons Results – Area Terms

TABLE I.
AREA COMPARISON

ARCHITECTURES UNITS

&

COMPONENTS Compatible
Proposed

MinSecurID

Proposed

HighSecurID

Secret Key I I I

XOR Blocks 4 I 4

Permutation

Unit
I I I

Expansion

Function
I I I

Conversion Unit I I I

Data

Transformation

Round

4 I 4

Extra - 8 x 8-bit MUXs
4 x 64 Registers
8 x 8-bit MUXs

