
Proceedings of the 2nd IEEE International Conference On Information & Communication Technologies:

From Theory To Applications (ICTTA'06), Damascus, Syria, April 24-28, 2006.

Area-Optimized Architectures & Implementation

of PELICAN MAC Function

N. Sklavos
I
, and C. Efstathiou

II

I
: Electrical & Computer Engineering Dept., University of Patras,

Greece, email: nsklavos@ieee.org

II
: Informatics Dept., Technological Educational Institute,

TEI of Athens, Greece

Abstract

Security has become a crucial issue in both

communication systems and networks. PELICAN is a

latest developed MAC function based on RIJNDAEL

encryption algorithm. In this work two alternative

architectures, for the efficient VLSI implementation of

PELICAN, are proposed. Both architectures design aim

to high optimization, regarding requested covered area.

Comparisons concerning performance and allocated

resources are given, with the conventional design.

1. Introduction

With the advance of both information technology and

data communications, security and privacy have been

widely used in more area than ever [1]. Yet due to the

characteristics of data transmission with no protection

over a wired or unwired network, security issues are

proven a matter that gains more and more importance

everyday. This made privacy an issue of greatest interest

for further and future applications, of every

communication network and protocol.

In order the special needs for security to be satisfied

as better as possible, new security schemes are

developed, with main scope to provide a better security

level. At the same time, the performance issues of the

above designs are also kept in mind, with main goal the

most efficient optimization, concerning both speed and

area resources.

PELICAN has been proposed as a new MAC

function [2]. The design philosophy behind PELICAN is

based on the Alred construction, which has been

introduced [3]. PELICAN introducers about the security

of Alpha-MAC, the concrete design presented in [3],

resulted in several suggestions for modifications. The

modifications result in a simpler design, because the

injection layout map is removed. Secondly, the new

design has a slightly better performance.

PELICAN is based on RIJNDAEL [4]. PELICAN

instructors have chosen RIJNDAEL mainly because they

expect it to be widely available, thanks to its status as the

AES standard. Additionally, RIJNDAEL is efficient in

hardware and software and it has withstood intense

public scrutiny very well since its publication.

This work deals with the implementation of

PELICAN function. Especially two different

architectures are proposed for the efficient integration of

the function. The first one is based on two cores of the

RIJNDAEL encryption algorithm, while the second uses

only one. In order to have a fair and detailed comparison,

the conventional architecture is also presented. With the

term conventional is defined the one, that could be

developed as a straight forward design from the

PELICAN specifications. Both proposed and

conventional architectures are compared in terms of both

performance and allocated area resources.

This paper is organized as follows: In Section 1 an

introduction to the focussed topic is given. In Section 2 a

theoretical background regarding the category of hash

functions and PELICAN specifications is presented. In

Sections 3 & 4, both conventional and proposed

architectures are presented in detail. The implementation

results for the proposed hardware implementations are

given in Section 5. The paper ends with the conclusions

which are discussed in Section 6.

2. Hash Functions & PELICAN:

 A Theoretical Background

2.1. An Overview of Hash Functions Design

Hash functions are widely used for digital signature

schemes, data integrity, HMAC and other cryptographic

purposes such as random number generators [5], [6], [7].

These functions map data messages of an arbitrary length

to a hash value of fixed length. This value is called

message digest. There have been many efforts to support

hash functions operation on previously designed block

ciphers, in order to avoid the construction of a new hash

design from scratch [6]. Especially, from the integration

point of view, when hardware implementations of an

encryption algorithm are available, the cost of the final

design could be decreased. This is due to the fact that in

this case there exist a block cipher implementation, and

with no much additional cost it is efficient to support the

operation of such function in the same core.

Proceedings of the 2nd IEEE International Conference On Information & Communication Technologies:

From Theory To Applications (ICTTA'06), Damascus, Syria, April 24-28, 2006.

The main philosophy behind the above design

approach is illustrated in the next Figure 1, where the

architecture of a hash function round is given [6]:

Figure 1: Hash Function Round

E() declares a well known secure block cipher. The

input P, which is used as plaintext and the input K, which

declares the cipher’s key, are combined together in order

to produce the output X(i+1). The value of the output

round X(i+1) is especially the value of the XORed

output between the algorithm’s ciphertext and the

parameter T.

The input arbitrary length message M, firstly is

divided into n blocks M1, …, Mn. The values of P, K, &

T, are chosen from the set S = {V, Mi, Xi, Mi XOR Xi},

where V is a constant value, Xi is the output of previous

round

2.2. PELICAN Hash Function Specifications

PELICAN is an ALRED construction with

RIJNDAEL [4], restricted to a block length of 128-bit.

Same with RIJNDAEL, PELICAN supports keys of 128-

, 160-, 192-, 224- and 256- bit. For the key lengths 128,

24 and 32 bytes, RIJNDAEL coincides with AES.

PELICAN can take a message m of any length and

generates tags with length up to 128 bits.

PELICAN operation could be distinguished in a

number of steps. First the message is padded and split in

the message words. These words are applied to a state

that is initialized using a key. Afterwards undergoes a

final step again using the key. The desired Tag is

generated by taking the first lm bits of the 128-bit, in

total, of the state.

3. Conventional Design

The conventional architecture for PELICAN MAC

function is illustrated in the following Figure 2. The

design of this architecture is based on PELICAN

specifications [2], which define two different AES

schemes: one “Full Core” of RIJNDAEL and one “Half

Core”, which performs only four rounds of encryption. It

has to be mentioned that the “Half Core” operates with

round keys set to zero. All RIJNDAEL cores, Full or

Half, work with 128-bit data states.

The basic components of the conventional

architecture besides the RIJNDAEL cores are the Padder

& Splitting Unit, the XOR block chaining, and the

Truncation Unit.

In the Padder & Splitting Unit the message is padded

by appending a single 1 bit, followed by the minimum

number of zero bits so that the resulting length is a

multiple of a vector equal to 128-bit (padding method 2

in [3]). Afterwards, the padded data vector is split n in

128-bit message words X1, X2, ..., Xn. The Xi message

word serves as the one input of the i XOR Chaining

Block.

Figure 2: Conventional Design

Based on the conventional design, n message words

could be transformed on parallel, and in this way a new

Tag (output) is finally produced in each clock cycle.

In the initialization phase, the state is generated as

follows: the 128-bit contents of the state are filled with

binary zeroes and subsequently the state is applied to

RIJNDAEL “Full Core”. In the next step the state is

encrypted using the input key.

Then, the RIJNDAEL output state is XORed with the

first message word X1. For each additional message word

Xi, the Iteration Function is applied to the input state,

and then the word Xi each time is XORed with the output

state. With the term Iteration Function is declared four

RIJNDAEL rounds operation (“Half Core”), with round

keys set to zero.

In the final step the output state is applied to the last

RIJNDAEL “Full Core” and is encrypted by using the

initial key. In the Truncation Unit, the desired Tag is

generated by taking the first lm bits of the 128-bit last

state.

4. PELICAN Proposed Architectures

4.1. Proposed PELICAN Architecture: PA2C

The first proposed architecture (PA2C-Proposed

Architecture with 2 Cores) for PELICAN function

implementation is shown in the next Figure 3. This

architecture is based one two different RIJNDAEL cores.

Proceedings of the 2nd IEEE International Conference On Information & Communication Technologies:

From Theory To Applications (ICTTA'06), Damascus, Syria, April 24-28, 2006.

One with full operation named RIJNDAEL and

another one, called 4 RIJNDAEL Rounds, which

performs only 4 rounds of ciphering. Between the two

cores a 128-bit register has been placed, for temporary

data storage.

Figure 3: Proposed PELICAN Architecture: PA2C

The proposed architecture uses a similar Padder &

Splitting Unit, as the conventional one. This unit is

responsible for padding the input message, according to

PELICAN specifications, defined by the MAC Hash

introducers [2]. The next process of this unit is also to

split the padded message in blocks equal to 128-bit.

These blocks are forced through the blocks outputs to

the XOR chains. The other input of XORs are the

ciphertexts produced by the two RIJNDAEL cores

(“Full” and “Half”), of the previous steps.

The output of each XOR feeds a RIJNDAEL core

input each time, of the next step operation.

The appropriate number of padded 128-bit blocks,

for the initial message is modified in a serial way,

through the use of a feedback. For this reason the outputs

X1 and X2 of the Padder & Splitting Unit are used

alternatively. The last padded block is modified always

by the RIJNDAEL “Full Core”, while the corresponding

ciphertext is forced to the Truncation Unit for the

appropriate final modifications.

4.2. Proposed PELICAN Architecture: PA1C

The second proposed architecture (PA2C-Proposed

Architecture with 1 Core) for PELICAN function

implementation is illustrated in the next Figure 4. This

architecture uses one core of RIJNDAEL block cipher,

which operates, as both “Full” and “Half” Core

alternatively.

This is the basic idea, in which PA1C design is based

on. In this way the cost of a second RIJNDAEL core is

avoided, with major allocated resources benefits as well.

Analytical comparison results would be given in the next

Section 5, regarding all the presented architectures.

Figure 4: Proposed PELICAN Architecture: PA1C

5. Implementation Results & Comparison

Both conventional and proposed architectures could

be implemented with software and also hardware

integration platforms. Although, for the integration of

encryption algorithms and privacy schemes, for a great

number of reasons, regarding both security matters and

performance issues, hardware implementations are

mostly preferred [8].

It has to be mentioned, that the implementation of the

proposed architectures is centered to integration devices

on silicon. Although, they could also be developed with

software description languages. Such approaches, with

software tools, conclude to similar implementation

results, concerning performance values and allocated

resources requests.

In the next Table I the requested area resources for

the VLSI integration of Conventional, PA2C, and PA1C

architectures are presented.

Architectures

Components
Conventional PA2C PA1C

RIJNDAEL Cores K 2 1

XOR Blocks K-1 2 1

Register

(128-bit)
K 2 1

Padder &

Splitting Unit
1 1 1

Truncation Unit 1 1 1

Initial Key Register 1 1 1

Table I: Area Resources

The component with the major area needs is

RIJNDAEL core [9]. A representative hardware

implementation cost, using an FPGA implementation

platform [9] is presented in the following Table II:

RIJNDAEL

Architecture

Type

FPGA

Device

(Virtex)

CLB

Slices

F

(MHz)

Data

Rate

(Mbps)

Full Rolling
XCV300

BG432
2358 22 259

Pipeline
XCV1000

BG560
17314 28,5 3650

Table II: RIJNDAEL FPGA Implementation Results

Proceedings of the 2nd IEEE International Conference On Information & Communication Technologies:

From Theory To Applications (ICTTA'06), Damascus, Syria, April 24-28, 2006.

All the other components request low area resources,

compared with RIJNDAEL core, which are equal in total

to the 10-15% of the whole design. So, the interest

regarding the area resources is centered to RIJNDAEL

core.

Conventional architecture is proven high resources

consumed, especially for greatest values of variable K as

it is shown by the graph of Figure 5. In the cases that K

is equal to 1 and 2, conventional architecture needs

almost the same resources with proposed PA1C and

PA2C respectively.

Value K

A
ll
o

c
a

te
d

 R
e
s

o
u

rc
e
s

Conventional

PA2C

PA1C

Figure 5: Area Comparison

Despite of the fact that Conventional architecture is

really proven high consumed, regarding area allocation,

the performance of such architecture is very high. This is

due to the fact that Conventional transforms K padded

data vectors in parallel. This results to a new produced

Tag in every clock cycle. In other words, K data words

are completely modified in K clock cycles.

On the other hand PA2C is based on two RIJNDAEL

cores and needs (K+1) clock cycles, in order two new

Tags to be produced.

Furthermore, PA1C proposed architecture has been

designed with one RIJNDAEL core and transforms 1

padded data work per K clock cycles.

The following graph of Figure 6 is representative of

performance, regarding the three architectures. It has to

be mentioned that for all architectures the valued of

frequency is the same. This is due to the fact, that the

time critical path of each architecture, is equal to

RIJNDAEL Core delay time (tdelay).

Value K

P
e
rf

o
rm

a
n

c
e

 b
it
s

/
c
lo

c
k

 c
y
c
le

s

Conventional

PA2C

PA1C

Figure 6: Performance Comparison

6. Outlook

With the advance of both information technology and

data communications, security and privacy have been

widely used in more area than ever. PELICAN has been

proposed as a new MAC function. This work deals with

the implementation of PELICAN function. Especially

two different architectures are proposed for the efficient

integration of the function. In order to have a fair and

detailed comparison, the conventional architecture is also

presented.

7. Acknowledgment

This work is co-funded by 75% from the E.E., and 25%

from the Greek Government under the framework of the

Education and Initial Vocational Training Program-

Archimedes.

8. References

[1] N. Sklavos, and O. Koufopavlou, "Mobile Communications

World: Security Implementations Aspects - A State of the Art",

CSJM Journal, Institute of Mathematics and Computer

Science, Vol. 11, Number 2 (32), pp. 168-187, 2003.

[2] J. Daemen and V. Rijmen, “The Pelican MAC Function”,

Cryptology ePrint Archive, 088/2005.

[3] J. Daemen and V. Rijmen, “A new MAC Construction

Alred and a Specific Instance Alpha-MAC,”, Fast Software

Encryption 2005, LNCS H. Gilbert, H. Handschuh, Eds.,

Springer-Verlag, to appear.

[4] Federal Information Processing Standard 197, Advanced

Encryption Standard (AES), NIST, U.S. Department of

Commerce, November 2001.

[5] Bruce Schneier, Applied Cryptography – Protocols,

Algorithms and Source Code in C, Second Edition, John Wiley

and Sons, New York, 1996.

[6] S. Bakhtiari, R.Safavi-Naini, J. Pieprzyk, “Cryptographic

Hash Functions: A Survey”, Technical Report 95-09,

Department of Computer Science, University of Wollongong,

July 1995.

[7] ISO/IEC 9797-1, Information technology - Security

Techniques - Message Authentication Codes (MACs) - Part 1:

Mechanisms using a block cipher, ISO 1999.

[8] N. Sklavos, K. Touliou, and C. Efstathiou, "Exploiting

Cryptographic Architectures over Hardware Vs. Software

Implementations: Advantages and Trade-Offs", proceedings of

the 5th International Conference on Applications of Electrical

Engineering (AEE '06), Prague, Czech Republic, March 12-14,

2006.

[9] N. Sklavos and O. Koufopavlou, “Architectures and VLSI

Implementations of the AES-Proposal Rijndael”, IEEE

Transactions on Computers, Vol. 51, Issue 12, pp. 1454-1459,

2002.

