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Abstract 
 

Security has become a crucial issue in both 

communication systems and networks. PELICAN is a 

latest developed MAC function based on RIJNDAEL 

encryption algorithm. In this work two alternative 

architectures, for the efficient VLSI implementation of 

PELICAN, are proposed. Both architectures design aim 

to high optimization, regarding requested covered area. 

Comparisons concerning performance and allocated 

resources are given, with the conventional design.  

 

 

1. Introduction 
 

With the advance of both information technology and 

data communications, security and privacy have been 

widely used in more area than ever [1]. Yet due to the 

characteristics of data transmission with no protection 

over a wired or unwired network, security issues are 

proven a matter that gains more and more importance 

everyday. This made privacy an issue of greatest interest 

for further and future applications, of every 

communication network and protocol. 

In order the special needs for security to be satisfied 

as better as possible, new security schemes are 

developed, with main scope to provide a better security 

level. At the same time, the performance issues of the 

above designs are also kept in mind, with main goal the 

most efficient optimization, concerning both speed and 

area resources. 

PELICAN has been proposed as a new MAC 

function [2]. The design philosophy behind PELICAN is 

based on the Alred construction, which has been 

introduced [3]. PELICAN introducers about the security 

of Alpha-MAC, the concrete design presented in [3], 

resulted in several suggestions for modifications. The 

modifications result in a simpler design, because the 

injection layout map is removed. Secondly, the new 

design has a slightly better performance. 

PELICAN is based on RIJNDAEL [4]. PELICAN 

instructors have chosen RIJNDAEL mainly because they 

expect it to be widely available, thanks to its status as the 

AES standard. Additionally, RIJNDAEL is efficient in 

hardware and software and it has withstood intense 

public scrutiny very well since its publication. 

This work deals with the implementation of 

PELICAN function. Especially two different 

architectures are proposed for the efficient integration of 

the function. The first one is based on two cores of the 

RIJNDAEL encryption algorithm, while the second uses 

only one. In order to have a fair and detailed comparison, 

the conventional architecture is also presented. With the 

term conventional is defined the one, that could be 

developed as a straight forward design from the 

PELICAN specifications. Both proposed and 

conventional architectures are compared in terms of both 

performance and allocated area resources.  

This paper is organized as follows: In Section 1 an 

introduction to the focussed topic is given. In Section 2 a 

theoretical background regarding the category of hash 

functions and PELICAN specifications is presented. In 

Sections 3 & 4, both conventional and proposed 

architectures are presented in detail. The implementation 

results for the proposed hardware implementations are 

given in Section 5. The paper ends with the conclusions 

which are discussed in Section 6. 

 

2. Hash Functions & PELICAN: 

    A Theoretical Background 
 

2.1. An Overview of Hash Functions Design 
 

Hash functions are widely used for digital signature 

schemes, data integrity, HMAC and other cryptographic 

purposes such as random number generators [5], [6], [7]. 

These functions map data messages of an arbitrary length 

to a hash value of fixed length. This value is called 

message digest. There have been many efforts to support 

hash functions operation on previously designed block 

ciphers, in order to avoid the construction of a new hash 

design from scratch [6]. Especially, from the integration 

point of view, when hardware implementations of an 

encryption algorithm are available, the cost of the final 

design could be decreased. This is due to the fact that in 

this case there exist a block cipher implementation, and 

with no much additional cost it is efficient to support the 

operation of such function in the same core. 
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The main philosophy behind the above design 

approach is illustrated in the next Figure 1, where the 

architecture of a hash function round is given [6]: 

 

Figure 1: Hash Function Round 

E() declares a well known secure block cipher. The 

input P, which is used as plaintext and the input K, which 

declares the cipher’s key, are combined together in order 

to produce the output X(i+1). The value of the output 

round X(i+1) is especially the value of the XORed 

output between the algorithm’s ciphertext and the 

parameter T.  

The input arbitrary length message M, firstly is 

divided into n blocks M1, …, Mn. The values of P, K, & 

T, are chosen from the set S = {V, Mi, Xi, Mi XOR Xi}, 

where V is a constant value, Xi is the output of previous 

round 

 

2.2. PELICAN Hash Function Specifications 
 

PELICAN is an ALRED construction with 

RIJNDAEL [4], restricted to a block length of 128-bit. 

Same with RIJNDAEL, PELICAN supports keys of 128-

, 160-, 192-, 224- and 256- bit. For the key lengths 128, 

24 and 32 bytes, RIJNDAEL coincides with AES. 

PELICAN can take a message m of any length and 

generates tags with length up to 128 bits. 

PELICAN operation could be distinguished in a 

number of steps. First the message is padded and split in 

the message words. These words are applied to a state 

that is initialized using a key. Afterwards undergoes a 

final step again using the key. The desired Tag is 

generated by taking the first lm bits of the 128-bit, in 

total, of the state. 

 

3. Conventional Design 
 

The conventional architecture for PELICAN MAC 

function is illustrated in the following Figure 2. The 

design of this architecture is based on PELICAN 

specifications [2], which define two different AES 

schemes: one “Full Core” of RIJNDAEL and one “Half 

Core”, which performs only four rounds of encryption. It 

has to be mentioned that the “Half Core” operates with 

round keys set to zero. All RIJNDAEL cores, Full or 

Half, work with 128-bit data states. 

The basic components of the conventional 

architecture besides the RIJNDAEL cores are the Padder 

& Splitting Unit, the XOR block chaining, and the 

Truncation Unit. 

In the Padder & Splitting Unit the message is padded 

by appending a single 1 bit, followed by the minimum 

number of zero bits so that the resulting length is a 

multiple of a vector equal to 128-bit (padding method 2 

in [3]). Afterwards, the padded data vector is split n in 

128-bit message words X1, X2, ..., Xn. The Xi message 

word serves as the one input of the i XOR Chaining 

Block. 

 

Figure 2: Conventional Design 

Based on the conventional design, n message words 

could be transformed on parallel, and in this way a new 

Tag (output) is finally produced in each clock cycle. 

In the initialization phase, the state is generated as 

follows: the 128-bit contents of the state are filled with 

binary zeroes and subsequently the state is applied to 

RIJNDAEL “Full Core”. In the next step the state is 

encrypted using the input key. 

Then, the RIJNDAEL output state is XORed with the 

first message word X1. For each additional message word 

Xi, the Iteration Function is applied to the input state, 

and then the word Xi each time is XORed with the output 

state. With the term Iteration Function is declared four 

RIJNDAEL rounds operation (“Half Core”), with round 

keys set to zero. 

In the final step the output state is applied to the last 

RIJNDAEL “Full Core” and is encrypted by using the 

initial key. In the Truncation Unit, the desired Tag is 

generated by taking the first lm bits of the 128-bit last 

state. 

 

4. PELICAN Proposed Architectures 
 

4.1. Proposed PELICAN Architecture: PA2C 
 

The first proposed architecture (PA2C-Proposed 

Architecture with 2 Cores) for PELICAN function 

implementation is shown in the next Figure 3. This 

architecture is based one two different RIJNDAEL cores. 
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One with full operation named RIJNDAEL and 

another one, called 4 RIJNDAEL Rounds, which 

performs only 4 rounds of ciphering. Between the two 

cores a 128-bit register has been placed, for temporary 

data storage. 

 

Figure 3: Proposed PELICAN Architecture: PA2C 

The proposed architecture uses a similar Padder & 

Splitting Unit, as the conventional one. This unit is 

responsible for padding the input message, according to 

PELICAN specifications, defined by the MAC Hash 

introducers [2]. The next process of this unit is also to 

split the padded message in blocks equal to 128-bit.  

These blocks are forced through the blocks outputs to 

the XOR chains. The other input of XORs are the 

ciphertexts produced by the two RIJNDAEL cores 

(“Full” and “Half”), of the previous steps. 

The output of each XOR feeds a RIJNDAEL core 

input each time, of the next step operation. 

The appropriate number of padded 128-bit blocks, 

for the initial message is modified in a serial way, 

through the use of a feedback. For this reason the outputs 

X1 and X2 of the Padder & Splitting Unit are used 

alternatively. The last padded block is modified always 

by the RIJNDAEL “Full Core”, while the corresponding 

ciphertext is forced to the Truncation Unit for the 

appropriate final modifications.  

 

4.2. Proposed PELICAN Architecture: PA1C 
 

The second proposed architecture (PA2C-Proposed 

Architecture with 1 Core) for PELICAN function 

implementation is illustrated in the next Figure 4. This 

architecture uses one core of RIJNDAEL block cipher, 

which operates, as both “Full” and “Half” Core 

alternatively.  

This is the basic idea, in which PA1C design is based 

on. In this way the cost of a second RIJNDAEL core is 

avoided, with major allocated resources benefits as well. 

Analytical comparison results would be given in the next 

Section 5, regarding all the presented architectures. 

 

Figure 4: Proposed PELICAN Architecture: PA1C 

 

5. Implementation Results & Comparison 
 

Both conventional and proposed architectures could 

be implemented with software and also hardware 

integration platforms. Although, for the integration of 

encryption algorithms and privacy schemes, for a great 

number of reasons, regarding both security matters and 

performance issues, hardware implementations are 

mostly preferred [8]. 

It has to be mentioned, that the implementation of the 

proposed architectures is centered to integration devices 

on silicon. Although, they could also be developed with 

software description languages. Such approaches, with 

software tools, conclude to similar implementation 

results, concerning performance values and allocated 

resources requests. 

In the next Table I the requested area resources for 

the VLSI integration of Conventional, PA2C, and PA1C 

architectures are presented. 

Architectures 

Components 
Conventional PA2C PA1C 

RIJNDAEL Cores K 2 1 

XOR Blocks K-1 2 1 

Register  

(128-bit) 
K 2 1 

Padder &  

Splitting Unit 
1 1 1 

Truncation Unit 1 1 1 

Initial Key Register 1 1 1 

Table I: Area Resources 

The component with the major area needs is 

RIJNDAEL core [9]. A representative hardware 

implementation cost, using an FPGA implementation 

platform [9] is presented in the following Table II: 

 

RIJNDAEL 

Architecture 

Type 

FPGA  

Device  

(Virtex) 

CLB 

Slices 

F 

(MHz) 

Data 

Rate 

(Mbps) 

Full Rolling 
XCV300 

BG432 
2358 22 259 

Pipeline 
XCV1000 

BG560 
17314 28,5 3650 

Table II: RIJNDAEL FPGA Implementation Results
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All the other components request low area resources, 

compared with RIJNDAEL core, which are equal in total 

to the 10-15% of the whole design. So, the interest 

regarding the area resources is centered to RIJNDAEL 

core.  

Conventional architecture is proven high resources 

consumed, especially for greatest values of variable K as 

it is shown by the graph of Figure 5. In the cases that K 

is equal to 1 and 2, conventional architecture needs 

almost the same resources with proposed PA1C and 

PA2C respectively. 
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Figure 5: Area Comparison 

Despite of the fact that Conventional architecture is 

really proven high consumed, regarding area allocation, 

the performance of such architecture is very high. This is 

due to the fact that Conventional transforms K padded 

data vectors in parallel. This results to a new produced 

Tag in every clock cycle. In other words, K data words 

are completely modified in K clock cycles.  

On the other hand PA2C is based on two RIJNDAEL 

cores and needs (K+1) clock cycles, in order two new 

Tags to be produced. 

Furthermore, PA1C proposed architecture has been 

designed with one RIJNDAEL core and transforms 1 

padded data work per K clock cycles.  

The following graph of Figure 6 is representative of 

performance, regarding the three architectures. It has to 

be mentioned that for all architectures the valued of 

frequency is the same. This is due to the fact, that the 

time critical path of each architecture, is equal to 

RIJNDAEL Core delay time (tdelay). 
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Figure 6: Performance Comparison 

6. Outlook 

With the advance of both information technology and 

data communications, security and privacy have been 

widely used in more area than ever. PELICAN has been 

proposed as a new MAC function. This work deals with 

the implementation of PELICAN function. Especially 

two different architectures are proposed for the efficient 

integration of the function. In order to have a fair and 

detailed comparison, the conventional architecture is also 

presented. 
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