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Abstract. Purpose: An image processing method was developed to investigate whether
brain SPECT images of patients with diabetes mellitus type II (DMII) and no brain
damage differ from those of normal subjects.

Materials and methods: Twenty-five DMII patients and eight healthy volunteers
underwent brain 99mTc-Bicisate SPECT examination. A semi-automatic method,
allowing for physician’s interaction, was developed to delineate specific brain regions
(ROIs) on the SPECT images. Twenty-eight features from the grey-level histogram
and the spatial-dependence matrix were computed from numerous small image-samples
collected from each specific ROI. Classification into ‘diabetics’ and ‘non-diabetics’ was
performed for each ROI separately. The classical least squares-minimum distance
(LSMD) classifier and the recently developed support vector machines (SVM) classifier
were used. System performance was evaluated by means of the leave-one-out method;
one sample was left out, the classifier was trained by the rest of the samples, and the
left-out sample was classified. By repeating for all samples, the classifier’s performance
could be tested on data not incorporated in its design.

Results: Highest classification accuracies (LSMD: 97.8%, SVM: 99.1%) were achieved at
the right occipital lobule employing two features, the standard deviation and entropy. For
the rest of the ROIs classification accuracies ranged between 84.5 and 98.6%.
Conclusion: Our findings indicate cerebral blood flow disruption in patients with DMIIL.
The proposed system may assist physicians in evaluating cerebral blood flow in patients
with DMITI undergoing brain SPECT.

Kevwords: Diabetes mellitus type II; Brain SPECT examination; Computer-based
classification

1. Introduction

Diabetes mellitus (DM) is a common disease in the industrialized countries and
it is a prominent risk factor for ischaemic cerebrovascular accidents [1], diabetes
alone being responsible for 7% of deaths in stroke patients [2]. Diabetes mellitus
often results in brain micro-blood flow disorders that may cause cerebral infarction
[3]. However, assessing the function of cerebral micro-vessels is difficult, since
they are located within the bony skull [4]. Diagnostic methods employed for eval-
uating cerebral functionality are high resolution transcranial Doppler ultrasound
(TCD), measuring blood flow velocity in the basal cerebral arteries at rest or after
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administration of vasodilatory stimulus, and photon emission computed tomogra-
phy (SPECT), utilizing perfusion agents such 99mTc-HMPAO and 99mTc-ECD
for the assessment of cerebral micro-blood flow [4]. Previous studies by brain
SPECT [5-11] have reported differences in the activity distribution between
DM patients and normal subjects, while other studies [12-14] have reported no
differences between the two groups.

In the present study we investigate whether brain SPECT images of patients
with DM type II and no clinical indications of brain damage differ from those
of healthy subjects by applying pattern recognition methods in evaluating cerebral
blood flow than classical statistical significance tests employed in previous studies.
For this, we have developed an automatic system for discriminating brain SPECT
images of patients with DMII and healthy volunteers. The aim was to analyse the
radio-pharmaceutical distribution in the brain as depicted on SPECT images, in
order to investigate probable differences in cerebral blood flow between diabetics
and non-diabetics. The count distribution was analysed by means of features de-
rived from the SPECT image grey level histogram and grey level co-occurrence
matrix [15]. These features evaluate the distribution of grey levels and the spatial
relationships of the pixels in the image. The radio-pharmaceutical count informa-
tion extracted from these features together with a classification algorithm, were
used in the design of the image analysis system. Two different software classifiers
were considered, the classical least squares-minimum distance (LSMD) classifier
[16] and the recently developed support vector machine (SVM) classifier [17-20].

2. Material and methods
2.1. Patient population

Twenty-five patients with known diabetes mellitus type II (DMII) and with
absence of clinical findings of brain damage were examined (10 women and 15
men, aged 40—-65 years old, mean 53 + 12 years). Eight healthy volunteers (three
women and five men, aged 38—66 years old) were also examined, and included as
normal controls.

2.2. Examination procedure

Each subject underwent brain SPECT 45 min after injection 20 mCi (740
MBq) of 9mTc-Bicisate (ECD). The radio-pharmaceutical was injected intrave-
nously in a dimly lit quiet room. Following injection, the patients remained in the
injection area for 10 min while the radiotracer was accumulated in the brain. Pro-
jections were acquired on a single-head DS7 Sophy gamma camera using a 360°
rotation of the camera head resulting in 64 projection views of 25 s duration each.
Transverse slices were reconstructed from the planar projections using filtered
back-projection reconstruction algorithm with Butterworth order n=35, cut-
off =0.35 pixel ~'. Attenuation correction was employed using the Chang method
with linear coefficient equal to 0.12 em ~ '. No scatter correction was performed.
Slices were oriented parallel to the meato-orbital line. The image matrix was 16-
bit 128 x 128 pixels (pixel size x=3.2 mm, y=3.2 mm, z=3.35 mm).

2.3. I'mage segmentation
Each SPECT image was segmented into regions of interest (ROI) [21] by
means of a semi-automatic custom designed method that we especially developed
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Figure 1. Three brain SPECT transverse slices (a), (b), and (c), segmented into regions of interest
(ROIs). Each ROI was automatically divided into numerous small square image-samples, such as in (a).

(in C++) on a workstation to fit transverse slices of varying sizes (figure 1). Each
ROI was automatically drawn by the software on the SPECT image to fit approxi-
mately a specific anatomical area of the brain. To ensure anatomical accuracy in the
segmented regions, the software allowed for fine-tuning, which was performed in-
teractively by the physician. However, accuracy was affected by the SPECT’s spa-
tial resolution and by the physician’s interaction. Each ROI was next automatically
divided by the software into small square areas (samples), as the one shown in fig-
ure 1a. This provided for more representative features used in the design of the
classifiers, due to considerable variations in activity distribution within each
ROI. Thus, a large number of ‘diabetics’ and ‘non-diabetics’ image-samples were
formed for each ROI, which were used for further processing and analysis. The
size of the image-sample was chosen by trial-and-error to be 12 x 12 pixels, to con-
tain sufficient activity information without considerable variation in activity distri-
bution.

2.4. Feature genevation

From each one of the image-samples, features evaluating radio-pharmaceutical
uptake distribution were extracted by means of first- and second-order statistics
[15, 22, 23]. The first-order statistics were derived from the image-sample grey-le-
vel distribution (histogram) and they comprised the mean, standard deviation,
skewness, and kurtosis. The grey-level histogram is a function describing the fre-
quency of appearance of the grey-levels in the image-sample and, if I(x,y) is an
N, x N, image-sample, with x=1,2... N, and y=1,2.. N, it is formally given
by:

h(g) = #{(x,y) : I(x,y) = g} (1)

where # denotes the number of elements in the set, and g=0,1,2,...,N,—1, where
N, represents the number of grey-levels in the image-sample.

Regarding the second-order statistics, 12 features were computed from the co-
occurrence matrix [15] using one pixel step length. Each second-order statistic fea-
ture was represented by two values, the mean and range over the 0°, 45°, 90° and
135° co-occurrence matrices, to ensure rotation independence. The co-occurrence
matrix is a two dimensional histogram that describes the frequency of occurrence
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of all pairs of grey-levels at a relative displacement d in an image I(x,y). Its (z,5)-th
element is formally given by [22]:

P(Sﬂ(l.aj) :#{((xhyl)a (X2,y2)) : f(xlayl) = 1.7 f(x27y2) :j, X2 = X1 +5C0501
V1 = ¥ + 0sinf} (2)

where # denotes the number of elements in the set, and (6,0) are the polar co-
ordinates of the displacement vector between (x;,y1) and (x,y,). Features calcu-
lated from the co-occurrence matrix evaluate properties of image grey-level dis-
tribution, such as homogeneity, contrast, grey-level local variation, linear-
dependencies, lack of order etc. In this way, a total of 28 features were calculated
for each image-sample, four from the image-sample histogram and 24 from the
co-occurrence matrix (in fact 12 features, each being represented by two values,
the mean and range). Ideally, these features should be employed in the design of
the classifier, but since a number of them may be redundant due to mutual cor-
relations [23], an optimum number of them has to be selected to achieve highest
classification accuracy.

2.5. Feature selection and classification

Best feature selection was based on the performance of the classifier. The accu-
racy of classification was evaluated exhaustively by combining features in all pos-
sible ways (e.g. 2, 3, 4 combinations) to design the classifier. The aim was to
determine the highest classification accuracy with the minimum number of fea-
tures. In the present study, highest classification accuracy was achieved by two fea-
tures, the standard deviation, describing local grey-level variation, and entropy,
showing lack of order in grey-level distribution.

The standard deviation was calculated by means of equation (3):
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where i, is the mean grey-level of the image:
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Entropy was determined by formula (5):

Ny—1 N,—1

ENT =- Y Y P(i,j)n(P(i,)) (5)

=0 =0

where P(z,5) is defined in (2).

Classifier performance was evaluated by means of the leave-one-out method
[23], and results were presented in truth tables that revealed the classifier’s discri-
minatory ability in distinguishing between ‘diabetics’ and ‘non-diabetics’ image-
samples. Classification between the two groups was performed for each ROI sepa-
rately, to map probable differences in count distribution between the two groups.
Two software classifiers were employed for comparison reasons, the classical least
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squares-minimum distance (LSMD) classifier [16], and the recently developed
support vector machines (SVM) classifier [17-20].

For the LSMD, the discriminant function for class 7 and for pattern vector x is
given by:

d
gi(x) = ox; —b; (6)
=

where d is the number of features, o;; are weight elements, b; is a threshold para-
meter, and x; are the pattern vector elements.

The weight elements o,; and the threshold parameter b; are calculated by map-
ping first the patterns from the feature space in a K-dimensional space (decision
space), where K is the number of classes. In the decision space, the members of
each class are clustered around arbitrary pre-selected points, such that the mapping
error (as expressed by the total mean-square error between the training set and the
arbitrary selected points) is minimized.

Regarding SVM, the discriminant equation is a function of kernel k(x;,Xx) and,
for the case of two classes, is given by:

N

g(x) = sign [Zoc,-y,—k(xz-, X)+b (7)

=1

where a; are weight elements, b is a threshold parameter, x; are the support vectors
(i.e. the pattern vectors that have their corresponding weights a;#0), Ng is the
number of the support vectors, and vy, € {—1, +1} depending on the class.

For the case of two classes, the weight parameters o; and the bias parameter b
are calculated by finding two hyperplanes that fulfill the following conditions: (i)
maximize the area between the hyperplanes (also called the margin); and (ii) mini-
mize the number of patterns that lie between the hyperplanes. A third hyperplane
through the middle of the margin is the decision boundary of the two classes.

In the present study the 2nd-degree polynomial function was used as kernel,
given by k(x,y)=(x-y+ 1)d where d=2, resulting in the following discriminant
function for the SVM classifier:

N,
g(x) = sign Zaiyvi(x,- X+ 1)2 +b (8)
=1

Other kernels were also tested, such as the linear or the Gaussian radial basis
function (RBF), but resulted in lower classification accuracy. RBF’s lower preci-
sion, employing the leave-one-out method, was due to overfitting.

Results and discussion

Evaluating probable changes in the function of cerebral micro-vessels in pa-
tients with DMII and no clinical evidence of brain damage, may be of value in pa-
tient management. When such patients undergo brain SPECT, radio-
pharmaceutical uptake and distribution may contain valuable information, which
may not be clearly evident by visual inspection. However, if the count distribution
as depicted on SPECT images is examined by computer image analysis methods,
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utilizing features that are difficult to perceive visually, useful information concern-
ing cerebral blood flow changes may be revealed.

In the present study, a number of features, stemming from the grey level his-
togram (first-order statistics) and from the co-occurrence matrices (second-order
statistics) were generated from image-samples of the SPECT images and were
tested for their discriminatory power in distinguishing patients with DMII from
normal controls. A representative example is shown in figure 2, which shows a plot
of two features commonly employed by physicians in everyday practice in assessing
SPECT images visually, namely mean value and standard deviation. As it can be
seen from figure 2, there is a significant overlap between ‘diabetics’ and ‘non-dia-
betics’, which actually reflects the fact that visual inspection of SPECT images by
the physicians may lead to no conclusive evidence of differences between the two
groups of subjects. When, however, a co-occurrence matrix feature, namely entro-
py, was plotted against the standard deviation (figure 3a), the two groups were
clearly separated, with an insignificant degree of overlap. Entropy signifies the lack
of order in the grey-level distribution and as it can be observed in figure 3a, entro-
py attained higher values in diabetic patients than in non-diabetics. This may lead
to the assumption that micro-blood flow in diabetics is unevenly distributed, in
comparison to the healthy subjects.

The highest classification accuracy with the minimum number of features was
achieved for the feature combination ‘standard deviation—mean entropy’ in the
area of the cuneus at the right occipital lobule (region 1 in figure 1). The LSMD
classifier (see table 1) classified correctly all ‘non-diabetics’ image-samples (167/
167) and 53 out of 58 ‘diabetics’ image-samples giving an overall accuracy of
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Figure 2. ‘Standard deviation—Mean’ plot (normalized values) corresponding to the right occipital
lobule (region 1 in Figure 1(c)).
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Figure 3. ‘Standard deviation—Entropy’ plots (normalized values) and decision boundaries drawn by
(a) the LSMD classifier and (b) the SVM classifier, for the ROI corresponding to the right
occipital lobule.

97.8% (220/225). The fact that the five ‘diabetics’ image-samples were misclassified
as ‘non-diabetics’ is probably indicative that DMII in asymptomatic patients does
not always induce changes in micro-vessel function that could affect brain blood
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Table 1. Truth table demonstrating LSMD classification of samples corresponding to the right occipi-
tal lobule of diabetics and non-diabetics using the best feature combination (standard deviation —entro-

py)-

LSMD classification

Patient group Diabetics Non-diabetics Accuracy
Non-diabetics 0 167 100%
Diabetics 53 5 91.4%
Overall accuracy 97.8%

Table 2. Truth table demonstrating SVM classification of samples corresponding to the right occipital
lobule of diabetics and non-diabetics using the best feature combination (standard deviation—entropy).

SVM classification

Patient group Diabetics Non-diabetics Accuracy
Non-diabetics 0 167 100%
Diabetics 56 2 96.6%
Overall accuracy 99.1%
1% 89.5% 94.5% 91.2%

97.0% 84.5% 98.4% 96.1%
95.6% 90.8% 96.6% 94.0%
96.7%
(a) (b)
Figure 4. Classification accuracies achieved in different ROIs by (a) the LSMD and (b) the SVM
classifiers.

flow. The SVM classifier (see table 2) classified correctly all ‘non-diabetics’ image-
samples (167/167) and 56 out of 58 ‘diabetics’ image-samples giving an overall ac-
curacy of 99.1% (223/225). When comparing these results (tables 1 and 2), the
SVM classifier, due to its non-linear nature of the kernel used (2nd-degree poly-
nomial), outperformed the LSMD by classifying correctly all normals and missing
out only two ‘diabetics’ samples, which are situated well within the group distribu-
tion of the non-diabetics in figure 3b.

In the rest of the ROIs, overall accuracies in correctly discriminating between
‘diabetics’ and ‘non-diabetics’ image-samples varied between 84.5% and 98.6% as
indicatively shown in figure 4. Indications that differences in cerebral brain func-
tion between diabetics and normals may exist have also been reported by previous
workers, although their findings are contradicting. In a previous study [24] em-
ploying brain SPECT images of patients with DM type 11, the average regional
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cerebral brain function in the cerebrum and cerebellum was significantly lower in
diabetics than in non-diabetics, even in the absence of findings indicative of cere-
bral infarction on a CT study. In an other study concerning DMII [25], patients
without previous history of cerebrovascular disease showed subclinical cerebral ab-
normalities on brain magnetic resonance imaging. In contrast, a previous study [4]
found no differences between DMII patients and non-diabetics in measurements
of the resting cerebral blood flow velocity, employing brain SPECT.

In conclusion, our findings indicate the existence of differences in brain activity
distribution between patients with DMII and normal subjects. These differences
were found by evaluating count distribution features from the brain SPECT
images, such as entropy, that are not easily discernable by visual inspection. The
usefulness of the present system is its ability to semi-automatically segment ROIs
on brain SPECT images and then provide physicians with a second opinion con-
cerning changes in brain activity distribution of patients with DMII. Its final test-
ing ground will be the clinical environment, where many new cases of DMII will
be presented.
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