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Abstract: The frequency histogram of connected elements (FHCE) is a recently proposed

algorithm that has successfully been applied in various medical image segmentation tasks. The

FHCE is based on the idea that most pixels belong to the same class as their neighbouring

pixels. However, the FHCE performance relies to a great extent on the optimal selection of a

threshold parameter. Since evaluating segmentation results is a highly subjective process, a

collection of threshold values must typically be examined. No algorithm has been proposed to

automate the determination of the threshold parameter value of the FHCE. This study presents

a method based on the fuzzy C-means clustering algorithm, designed to automatically generate

optimal threshold values for the FHCE. This new approach was applied as a part of a structured

sequence of image processing steps in order to facilitate segmentation of microcalcifications in

digitized mammograms. A unique threshold value was generated for each mammogram, taking

into account the different grey-level patterns based on different compositions of various breast

tissues in it. The segmentation algorithm was tested on 100 mammograms (50 collected from the

Mammographic Image Analysis Society and 50 normal mammograms onto which a number of

simulated microcalcifications were generated). The algorithm was able to detect subtle

microcalcifications with sensitivity ranging from 93 to 98%, False alarm ratio from 3 to 5%

and false negatives variability from 2 to 3%.

Keywords: mammography, microcalcification, image enhancement, automatic thresholding,

image segmentation

1 INTRODUCTION

Diagnostic mammography is currently the most

reliable method for the early detection of breast

cancer.2 Among the most important signs indicating

the presence of malignant lesions is the existence of

masses, microcalcifications (mCs) and clusters of

mCs. However, in early stage cancer, the subtle

differences between normal and abnormal tissues

have been proven challenging for viewing even by

experienced physicians:3 up to 30% of breast lesions

are missed during routine diagnosis.4 This is one of

the reasons why mammograms are considered to be

The MS was accepted on publication on 27 October 2009.

* Corresponding author: Dimitrios Glotsos, PhD, Medical Image

and Signal Processing (medisp) Lab., Department of Medical

Instruments Technology, Technological Educational Institute of

Athens, Ag. Spyridonos Street, Egaleo 12210, Greece; email: dimglo@

teiath.gr

146

The Imaging Science Journal Vol 58 IMAG mp195 # RPS 2010 DOI: 10.1179/136821909X12581187860095



among the most difficult to interpret types of medical

images. Another important reason is the low contrast

appearance of early stage abnormalities (such as

mCs) and their low differentiation from surrounding

breast tissues.5 mCs should appear as bright spots.

However, in many cases, due to the composition of

surrounding breast tissues and imaging limitations,

mCs appear as low contrast entities.

Various screening programs6 and research studies7

have attempted to assess the importance of mCs in

breast cancer. Although different reports have been

documented, most of these studies and programmes

seem to agree on the fact than mCs, which occur in

both normal and abnormal breast tissues, constitute

early stage indications of potential abnormalities.

Among most recent studies, such as in Ref. 8, it is

reported that the frequency of malignancy for women

with high risk of breast cancer presenting mCs was

70%, which is significantly higher than other women.

The positive influence of computer-aided detection

(CAD) of mCs on the improvement of diagnosis has

been extensively investigated.9–17 Research studies18

have given different insights into the basic parts of a

CAD system: the segmentation of suspicious for

containing mCs regions of interest (ROIs) and the

characterisation of these regions as normal, benign or

malignant. These studies have mostly utilized publicly

available digital material, such as the mammographic

Image Analysis Society (MIAS)19 and Digital

Database for Screening Mammography databases.20

Computational approaches include, among others,

iterative threshold methods combined with fuzzy

logic,21 intensity-based local thresholding22 and

morphological filtering,23,24 multi-fractal analysis,

combined with mathematical morphology,25 pattern

recognition methods employing neural networks1 and

advanced contrast enhancement methods.1 Although

these studies present promising results, their applica-

tion to daily clinical practice is very difficult, since

extensive experimentation and definition of user-

input parameters (i.e. threshold value, window size

and number of iterations) are required for optimal

segmentation of microcalcifications.

Another technological advance in the field of

medical image segmentation is the recently intro-

duced concept of the frequency histogram of con-

nected elements (FHCE).1 The FHCE algorithm is

based on the idea that most pixels belong to the same

class as their neighbouring pixels. Under this

perspective, any object that consists of only 1 pixel

has a very low probability of occurring under the

FHCE assumption. This method has been tested on

challenging medical image segmentation problems,

such as in vessels segmentation on digital subtraction

angiographies with promising results.1 The FHCE

algorithm exploits contextual information to extract

the objects of interest resembling the decision making

process of physicians, who assess the nature of mCs

by examining their spatial neighbourhood. Thus, the

FHCE could be a potential candidate solution to

automated detection of mCs.

However, the FHCE performance relies to a great

extent on the optimal selection of a threshold

parameter. Since evaluating segmentation results is

a highly subjective process, a collection of threshold

values must typically be examined, since no algorithm

has been proposed to specify and automate the

determination of the threshold parameter value. The

threshold parameter has been shown to vary sig-

nificantly not only between images of different type

but also between images within the same database

(i.e. from mammogram to mammogram). Since mCs

are considered as low contrast entities, a unique value

for the threshold parameter suitable for any mam-

mograms is very difficult, if not impossible, to define.

This study presents a method based on fuzzy C-

means (FCM) clustering algorithm, designed to auto-

matically generate optimal threshold values for the

FHCE. This new approach was applied as a part of a

structured sequence of image processing steps in order

to facilitate segmentation of mCs in digitized mammo-

grams. A unique threshold value was generated for each

mammogram, taking into account the different com-

positions of various breast tissues in each mammogram.

In this way, the algorithm is parameter-free, in the sense

that the critical value of the threshold is automatically

and independently estimated for each mammogram.

2 METHODS AND MATERIALS

The performance of the proposed algorithm in

automated mCs detection was tested on two indivi-

dual databases: The first database comprised 50

images (1024 6 1024 6 8 bit), collected from the

MIAS database.19 MIAS is considered as benchmark

database widely used by researchers, with hundreds

of citations. It contains mammograms extracted from

the UK National Breast Screening programme. The

database contains MLO views of both left and right

breasts with pathologically confirmed abnormalities
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of known coordinates (if any) and different density

types (fatty, fatty-granular and dense-granular). Classi-

fications have been made according to BIRADS

standard. Since MIAS database has been extracted

from the UK National Breast Screening programme, it

can be argued that the dataset contain cases represen-

tative of standard cases a radiologist might face in

clinical practice. The exact location (coordinates) of

mCs was known on each mammogram. The second

database comprised 50 mammograms with no abnor-

mal findings, which were obtained by a General

Electric DMR Plus mammographic unit with molyb-

denum/molybdenum (Mo/Mo) anode/filter combina-

tion and 650 mm focus to film distance and were

digitized on a Microtec Scanmaker II SP (1200 6
1200 dpi, 8 bit grey-level). All mammograms were

supplied by the Department of Medical Imaging,

EUROMEDICA Medical Centre, Athens, Greece.

On the digitized mammograms, a number of simulated

mCs were modelled and generated at various anato-

mical locations (breast parenchyma, periphery, etc.), as

it has been previously described.26

A radiologist (N. Dimitropoulos) examined the

images, indicated the number of mCs (golden standard

for the evaluation of our method) that existed on the

images, and he marked the regions that contained the

identified mCs. The marked regions were processed for

the automated segmentation of mCs.

The implementation of the proposed segmentation

algorithm was performed within a sequence of image

processing steps comprising:

N high-pass filtering,27 as a pre-filtering step for

enhancing medium-to-high frequency information

and boosting the performance of the contrast

l imited adaptive histogram equalisation

(CLAHE),28 which was designed and tuned for

contrast enhancement of mCs

N background correction,27 for suppressing struc-

tural noise, i.e. breast tissues other than mCs

N unsupervised classification,27 for the automatic

determination of the optimum threshold of the

FHCE algorithm, which performed the final

segmentation of the regions that contained mCs.

2.1 High-pass and CLAHE filtering

High-pass filters have been shown to be efficient as a

pre-processing step in emphasizing objects with high

intensity29 (microcalcifications). In this step, several

high-pass filters were tested for determining the

filtering mask providing with best image quality.

The latter was indicated by the experienced radiolo-

gist (N. Dimitropoulos) (Figs. 1c and 2c), who took

under consideration various breast image parameters,

such as specific anatomical structures and presence of

noise or artefacts. The high-pass filtering mask that

was utilized is depicted in Fig. 3. The frequency

spectrum of the high-pass filter is shown in Fig. 4;

white, grey and black correspond to high, medium

and low spectral values respectively.

Following the high pass filtering, the CLAHE

algorithm was applied. CLAHE maximizes the

contrast throughout the image by adaptively enhan-

cing the contrast of each pixel relative to its local

neighbourhood.1 According to CLAHE, the image is

initially divided into a number of non-overlapping

contextual regions of equal sizes. For every con-

textual region, its histogram is calculated. A clip limit

for clipping histograms is then specified. The clip

limit is a threshold parameter by which the contrast

of the image can be effectively altered: a higher clip

limit increases image contrast. The histogram of

every contextual region is redistributed in such a way

that its height does not exceed the clip limit. Finally,

the neighbouring tiles are combined, using bilinear

interpolation, and the image grey-levels are modified

according to the cumulative distribution function of

each tile.27 As result of applying CLAHE on the

image, mCs, which are bright spots, become brighter

with respect to their neighbouring pixels, thus

improving mCs’ visualisation.

2.2 Background removal

In order to enhance the visibility and detectability of

mCs, a structural noise (background-tissue) removal

technique was implemented. Initially, a morphologi-

cal opening30 was applied, in order to create an image

in which the grey-pixel values corresponded to the

breast tissue. Thus, the background image was

obtained. Subsequently, the generated background

image was subtracted from the original mammo-

graphic image. The result of this procedure facilitated

the segmentation procedure, since mCs appeared as

bright white spots in a darker background.

2.3 Frequency histogram of connected elements

technique

FHCE1 relies on the concept of the morphological

component or neighbourhood, which is similar to the
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methods used in morphological image processing. If

I(i,j) is a digital image with N 6 M dimensions, then

for a given pixel (i,j), the neighbourhood of this pixel

D(i,j) is defined as

D i,jð Þ ¼D wi,j5 I i,jð Þf gN|M

� �
(1)

where w(i,j) is a user-defined window used in the

scanning process. Scanning is performed by dividing

the whole image into a set of non-overlapping

windows. The window size relies on the selection of

the morphological component. Non-overlapping

windows were selected to reduce computational

burden.

The morphological component is a very crucial

parameter in order to obtain the final desired output

(the segmented image). The morphological compo-

nent is a mask, which determines the shape of the

connected element (described below). For example, if

the Mask 1 is applied, the connected element is a line

vector mask. In this paper, five different masks30 were

tested as morphological components (Fig. 5). Owing

to the small size of masks (3 6 3) and large size of

images (1024 6 1024 and 1200 6 1200), border

pixels (one pixel wide) were considered as of limited

importance and were left untreated.

Based on the morphological component, the

connected element was defined, which is another

parameter used in the FHCE approach. The con-

nected element is any neighbourhood unit, such that

its pixels belong to the range [T2c, Tzc], where c is

an integer defining the greyscale intensity range of the

neighbourhood and T is a given greyscale value.1

Parameter c is calculated as the ratio of maximum to

minimum value occurring at every position of the

scanning window (morphological component). Thus,

there is no global value for c for each mammogram;

the value of c varies depending on neighbourhood

values at every scanning window. The number of

connected elements constitutes the FHCE histogram.

In the ideal situation, optimum results could be

obtained if the distributions of the pixels in the

1 Steps of segmentation procedure using the proposed methodology: (a) original images contain-

ing (MCCs); (b) region of interest (ROI); (c) the enhanced ROI using the high-pass and

CLAHE filters; (d) after background removal; (e) segmented image using the FHCE algorithm
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FHCE histogram were well apart, constituting two

peaks corresponding to background and mCs. Then,

the final segmentation could be obtained by setting a

threshold value between those two peaks.

The threshold of the FHCE algorithm was calcu-

lated using an FCM algorithm that was designed to

seek for two data clusters of connected elements: the

first cluster that corresponded to connected elements

belonging to mCs and the second cluster related to the

surrounding background class. According to the

aforementioned procedure, the optimum threshold

parameter resulted as the intersection of the median of

the two cluster centroids with the greyscale axis.

3 Appropriate high-pass filter proved to be efficient as

a pre-processing step in emphasizing objects with

high intensity

2 Mammogram containing simulated microcalcifications: (a) original images containing simulated

mCs; (b) region of interest (ROI); (c) the enhanced ROI using the high-pass and CLAHE fil-

ters; (d) after background removal; (e) segmented image using the FHCE algorithm

4 Frequency spectrum of the utilized high-pass filter.

White, grey and black corresponds to high, medium,

and low spectral values respectively
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The FCM is an iterative clustering algorithm,

which finds cluster centres (centroids) that minimize

the dissimilarity function

J(U , c1, c2, :::, cc)~
Xc

i~1

Ji~
Xc

i~1

Xn

j~1

um
ij d2

ij (2)

where ci is the centroid of cluster i, di,j is the Euclidian

distance between the ith centroid (ci) and jth data point,

ui,j is the element of a fuzzy membership function matrix

U5ui,j with values 0(ui,j(1, and m is a weighting

exponent (the value of m was experimentally deter-

mined for optimum results as m52).

During iteration, the algorithm modifies the cluster

centres and changes the data memberships until the

dissimilarity function is minimized.

2.4 Evaluation

To evaluate the results, the segmented binary objects

correctly identified as mCs by the present method

were considered as true positives (TP). False positives

(FP), false negatives (FN) and true negatives (TN)

cases represented the erroneously segmented or

missed mCs respectively. Additionally, the terms of

sensitivity and the false alarm ratio (FAR) were

evaluated

Sensitivity~
TP

TPzFN

FAR~
FP

FPzTN

(3)

3 RESULTS

The algorithm was able to detect subtle mCs and

its results were most promising. In Table 1, the

evaluation results of the proposed segmentation

method are demonstrated. Sensitivity ranged between

93 and 98%. The FAR was 3–5% and FN variability

was 2–3%.

The morphological component is a very significant

parameter in the resulting image. The best result

(Fig. 6d–f) was gained utilizing Mask 1, Mask 2 and

Mask 3 in the ROI pre-defined by the radiologist,

which contained mMs.

The required steps for obtaining the resulting

segmented image are depicted below. In the original

image, a ROI was specified (Figs. 1a and 2a). In this

ROI (Figs. 1b and 2b), the pre-processing step was

accomplished by applying the high-pass and the

CLAHE filters (Figs. 1c and 2c). Figures 1d and 2d

demonstrate image background removal. Eventually,

the resulting image was introduced to the modified

FHCE algorithm, in order to obtain the segmented

one (Figs. 1e and 2e).

4 DISCUSSION

FHCE has already been proven powerful in medical

image segmentation tasks.1 However, it presents a

major challenge, that is, the determination of a

threshold parameter suitable for dividing the histo-

gram of connected elements into different biologically

meaningful regions. The threshold value is user-

dependent. After extensive experimentation with

various user-defined thresholds for the task of mCs

segmentation in digitized mammograms, two impor-

tant observations were made:

1. FHCE gave promising results in mCs segmenta-

tion, but there was no global threshold value

applicable for all mammograms; threshold values

changed significantly from mammogram to

mammogram, especially for breasts with different

parenchyma compositions.

2. The values of connected elements that the FHCE

computed were found to tend to cluster into two

major groups: one group corresponding to con-

nected elements of mCs and another group

corresponding to connected elements of sur-

rounding breast, independently of the composi-

tion of the breast parenchyma.

5 Various masks tested to be used as morphological

components

Table 1 Microcalcification detection performance in 100

mammograms

Evaluation parameters Range (%)

Sensitivity 93–98
True positives (TP) 93–98
False positives (FP) 3–5
False alarm ratio (FAR) 3–5
False negatives (FN) 2–3
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The latter observation was integrated within the

FHCE by incorporating an unsupervised FCM

classifier that converged automatically to a certain

threshold value for each image. This value was

assumed to be the intersection of the median between

the two clusters centroids with the greyscale axis.

It has to be stressed that manual threshold selection

by the experienced radiologist resulted in inferior

sensitivity (85–91%) in mC detection than the pro-

posed automatic approach (93–98%); since compar-

ison was based on ground-truth data (MIAS and

simulated with mC images), it is argued the FCM

driven selection process results in an optimal threshold

taking into account the individuality of each mam-

mogram (regarding both composition of different

breasts and specification of imaging system acquiring

mammograms).

Apart from the threshold value, another important

setting for the FHCE algorithm is the morphological

component selection. Five different morphological

components were tested. Experimental results

highlighted the ‘cross-shaped’ mask (Mask 3), the ‘x-

shaped’ mask (Mask 4) and the ‘box-shaped’ mask

(Mask 5) as the most efficient. The ‘horizontal’ (Mask

1) and ‘vertical line-shaped’ (Mask 2) components did

not work satisfactory. These components encode

properties of horizontal and vertical directionality,

mixing mCs with vessels spreading across the horizontal

or vertical direction (Fig. 6b and c). On the other hand,

the 3 pixel sized masks (cross, x and box) successfully

eliminated vessels and surrounding breast tissue, while

preserving mCs, which are small-sized compact-shaped

structures with no directional preference (Fig. 6d–f).

Since mCs are tiny deposits of calcium within the

breast, one would expect that their detection would

be relatively straightforward. mCs should appear in

the mammographic image as bright objects due to the

existence of calcium. However, very frequently mCs

are missed in most mammograms, especially when

their location lies within dense breast tissues.20,31–33

The simulated mCs images proved to be helpful to the

evaluation of the proposed method for various types

6 ROI containing microcalcifications (a) segmented using the five different morphological compo-

nents (b–f)
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of breast parenchyma and especially in dense breast

tissues. The simulation model20,32,34 allowed for the

creation of mCs of various intensities, sizes, shapes

and number of mCs per cluster. By computing the

mean grey level of pixels belonging to the background

(surrounding tissue), mCs were generated with pixels

intensities ranging from five to 20 times higher

compared to background. mCs generated with lower

pixel intensities simulated early stage abnormalities

located into dense breast tissues. In this way, it was

possible to quantitatively assess the pixel intensity that

a mCs should exhibit with respect to surrounding

background, in order to be detectable by the proposed

algorithm. This minimum fraction was defined as 6/1,

meaning that mCs with six times higher pixel intensity

compared to the surrounding breast tissue were

detectable. The mCs that were simulated differed from

the background in a range from 2 to 10 grey-pixel

values. The overall sensitivity of the proposed

segmentation procedure ranged from 93 to 98% with

two to three FN. FN mostly occurred in areas of low

optical density. These results are in line with those

reported in the literature9–17 ranging from 92 to 95.8%;

however, it has to be stressed that our method merits,

compared to the above studies, in three major issues:

1. It is parameter-free in the sense that the critical

value of the threshold parameter, which most

studies eventually use at some point, is auto-

matically estimated.

2. It is independent of the position of mCs within

the breast anatomy.

3. It uses the concept of contextual segmentation

that resembles the diagnostic procedure, followed

by physicians during visual detection of mCs.

Thus, the proposed segmentation scheme has great

potential to be used in conjunction to visual inspection

for the detection of mMs in routine diagnosis.
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