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NATURAL CONVECTION IN A 2D ENCLOSURE WITH
SINUSOIDAL UPPER WALL TEMPERATURE

L. E. Sarris, 1. Lekakis, and N. S. Vlachos

Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical
and Industrial Engineering, University of Thessaly, Volos, Greece

Natural convection in a two-dimensional, rectangular enclosure with sinusoidal tempera-
ture profile on the upper wall and adiabatic conditions on the bottom and sidewalls is
numerically investigated. The applied sinusoidal temperature is symmetric with respect to
the midplane of the enclosure. Numerical calculations are produced for Rayleigh numbers
in the range 10° to 10°, and results are presented in the form of streamlines, isotherm
contours, and distributions of local Nusselt number. The circulation patterns are shown to
increase in intensity, and their centers to move toward the upper wall corners with in-
creasing Rayleigh number. As a result, the thermal boundary layer is confined near the
upper wall regions. The values of the maximum and the minimum local Nusselt number at
the upper wall are shown to increase with increasing Rayleigh number. Finally, an increase
in the enclosure aspect ratio produces an analogous increase of the fluid circulation
intensity.

INTRODUCTION

Natural convection in fluid-filled rectangular enclosures has received con-
siderable attention in recent years because of its relation to the thermal performance
of many engineering installations. This work was motivated by the need to under-
stand the heat transfer characteristics in glass melting tanks, where a number of
burners placed above the glass tank create periodic temperature profiles on the
surface of the glass melt; see Sarris et al. [1] and Jian et al. [2].

The studies of natural convection in fluid-filled cavities primarily have been
concentrated on cases of heating from the bottom wall or sidewalls; see Ostrach [3].
A limited amount of work has been reported on the more complex case of cooling
from the top wall, mainly with simultaneous heating of a sidewall; see Aydin et al.
[4]. There exist several studies in the literature on the natural convection with peri-
odic temperature conditions imposed upon the bottom or sidewalls. For example,
Poulikakos [5] studied an enclosure with its left sidewall differentially heated, one
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NOMENCLATURE

g gravitational acceleration o thermal diffusivity
H height of the enclosure B coefficient of thermal expansion
L length of the enclosure & thickness of the thermal boundary layer
Nu Nusselt number (€] nondimensional temperature
P pressure of the fluid v fluid kinematic viscosity
P dimensionless pressure p fluid density
Pr Prandtl number 0] generalized variable
Ra Rayleigh number \ stream function
T fluid temperature v nondimensional stream function
Tw(x) upper wall temperature

distribution Subscripts
u, v velocity components in x- and c cold

y-directions h hot
U,V  dimensionless velocity components ij coordinate indices
X,y spatial coordinates mp middle plane
X, Y dimensionless coordinates t thermal

half of the wall is heated and the other half is cooled, and the remaining walls are
insulated. He showed that a penetrating thermal layer is formed, the size of which is a
function of Rayleigh number and aspect ratio of the enclosure. Bilgen et al. [6] used a
system of discrete temperature sources placed periodically on the bottom wall of a
shallow cavity. Lakhal et al. [7] also studied transient natural convection heat transfer
in a square enclosure with part of the bottom wall under uniform time-varying
temperature conditions. Lage and Bejan [8] studied enclosures with one sidewall
heated using a pulsating heat flux and the other sidewall cooled at constant tem-
perature. They showed that at high Rayleigh numbers, the buoyancy driven flow has
the tendency to resonate to the periodic heating that has been supplied from the side.

Uniform heating on the top wall of an enclosure results in flow stratification,
but nonuniform heating produces counter-rotating circulation patterns. Studies of
natural convection in molten glass cells with periodic heating from above and spe-
cified temperature on the sidewalls for Rayleigh numbers up to 107 were made by
Wright and Rawson [9] and Burley et al. [10]. Periodic heating from above has strong
implications for the glass industry, where the main objective is to increase the mixing
of the glass melt.

In this study, natural convection in enclosures with periodic heating from
above over the entire top wall and adiabatic bottom and sidewall boundary condi-
tions is studied for the first time as it appears in the literature. Periodic heating from
the upper wall is expected to produce a pair of well-defined circulation patterns,
while adiabatic conditions on the other boundaries ensure that only the upper wall
heating controls the flow. The effect of Rayleigh number on the flow patterns and the
resulting heat transfer is determined. In addition the effect of the enclosure aspect
ratio is studied for the value of Rayleigh numbers from 10° to 10°.

PROBLEM SPECIFICATION

A two-dimensional rectangular enclosure completely filled with a viscous fluid
is considered, as shown in Figure 1. The side and bottom walls are assumed to be
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Figure 1. Flow configuration and boundary conditions.

adiabatic while a sinusoidal temperature distribution 7,,(x) is applied on the top wall
as follows:

T,(x) = T+A7T<1—cos<2”7x>> (1)

where T, is the minimum value of the imposed temperature distribution, AT is the
temperature difference between the maximum and the minimum temperatures of the
upper wall, and L is the length of the enclosure.

MATHEMATICAL FORMULATION

The present flow is considered laminar and two dimensional, while the usual
Boussinesq approximation for treatment of the buoyant term in the momentum
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Figure 2. Variation of Wmax with grid size for Ra= 10°, 10°, and 10%.

equation is adopted. The governing equations and the boundary conditions are cast
in dimensionless form using the following dimensionless variables:

) H VH
y=% y=2L p=4# =2 (2)
H H o o
2 _
_pH T T.
P= Q=" 3
po? AT ()

where P and ® are the nondimensional pressure and temperature, respectively, and
U and V are the nondimensional velocity components in the x- and y-directions,
respectively.

With the above-defined variables the governing equations become

Continuity

ou |, or
EL AR i
0X 0Y 4

X-momentum

oU  dU oP
T R o 2
U3 Vsy Sy T PVU (5)
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Figure 3. Effect of grid size on the maximum and minimum Nu at the top wall for Ra = 10°, 10°, and 10°.

Y-momentum

v 14
4 =
U@X V@Y
Energy
U6_®
oX

P
———+PrV*V + RaPr® (6)
oY
20
+V—=Ve 7
oy (7)

where Pr = v/oa and Ra:gBATH3/Voc are the Prandtl and Rayleigh numbers,

respectively.
In addition, the velocity and
following form:

U=V=20

20 —
ox 0

} for X=0,1land 0= Y =1

temperature boundary conditions, take the

(8a)
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Figure 4. Calculated streamlines and isotherms for (a) Ra=10" (W max = 8.736 X 1073), (b) Ra=10’
(8.663x 10 %), (c) Ra=10" (7.439 x 10 "), and (d) Ra= 10> (2.986).
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Figure 5. Calculated streamlines and isotherms for (¢) Ra= 10° (Pmax =6.997), (b) Ra= 10 (13.160), and

(¢) Ra=10° (22.882).
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Figure 6. Variation of local Nu on the upper wall with Rayleigh number.
U=V=0
o } for Y=0and 0 <X <1 (8»)
oy 0
U=V=0
s } for Y=1and0< X<1 (8¢)
0= 2(1 — cos(2nX))

Because the computational effort required for this problem was not particularly
large, the solution domain covered the whole field.

The values of the stream function are calculated assuming ¥ =0 at Y =0,
X=0.

The local Nusselt number, Nu(X), for the heated upper wall is defined by

Nu() = | -2 g o)

The average Nusselt number, ﬂ, in the upper wall can be defined by

Nu = /lNu(X)dX (10)
0
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Figure 7. Variation of Wmax with Rayleigh number.

However, in the present study, the net heat input from the upper wall into the en-
closure is zero, and as a consequence the average Nusselt number is also zero.

NUMERICAL PROCEDURE

The above governing equations together with the corresponding boundary
conditions are solved numerically, employing a finite-volume method. The
semi-implicit method for pressure-linked equations—consistent (SIMPLEC) of van
Doormal and Raithby [11] is used to couple momentum and continuity equations in
a uniform staggered grid. Uniform grids were selected mainly because they result in
smaller discretization errors. In addition there exist gradients in parts of this flow
other than only the walls. The momentum equations for U and V and the energy
equation are solved using both the power-law scheme of Patankar [12] and the
QUICK scheme of Hayase et al. [13] to minimize numerical diffusion. In all calcu-
lations presented here, under-relaxation factors with values of 0.9, 0.9, 0.5, and 0.5
were applied to U, V, ©, and P, respectively.

The iterative procedure is initiated with an arbitrary velocity field followed by
the solution of the energy equation and is continued until convergence is achieved.
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Figure 8. Variation of maximum and minimum values of Nu on the upper wall with Ra.

Convergence is established through the sum of the absolute relative errors for each
dependent variable in the entire flow field:
"t — o7 |
ij |(Pi, J |

where ¢ represents the variables U, V, or ®, the superscript n refers to the iteration
number, and the subscripts i and j refer to the space coordinates. The value of ¢ is
chosen as 10 ° for all calculations. All calculations are carried out on Intel CPU-
based personal computers.

Before the final computations, a grid independence test was performed using
successively sized grids, 41 x 41, 61 x 61, 81 x 81, 121 x 121, 161 x 161, and 241 x 241,
and three representative Rayleigh numbers 105, 106, and 10°. The variation of the
maximum value of the stream function, W, with the grid size appears to be
negligible for grid sizes larger than 121 x 121, as shown in Figure 2. The grid size also
influences the maximum and minimum values of the local Nusselt number, Nu, at
the upper heated wall, as shown in Figure 3. This influence is most significant for the
highest Rayleigh number of Ra = 10°. When the mesh is refined from 121 x 121 to
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Figure 9. Temperature distribution in the middle plane of the enclosure.

o

161 x 161 grid points the local Nusselt number decreases by less than 1%, whereas
for Ra=10° it decreases by less than 0.5% and for Ra = 10° by less than 0.4%. The
small changes in Wmax and Nu described above suggest that a grid size of 121 x 121 is
adequate for engineering calculations to resolve the corresponding velocity and
temperature fields.

The present computational fluid dynamics (CFD) source code was validated
against the numerical results of Ganzarolli and Milanez [14] for natural convection in
a cubical enclosure heated from below and cooled symmetrically from the sidewalls.
It was also validated against the benchmark numerical solution of de Vahl Davis [15]
for natural convection of air in a square cavity. In the first test case, a working fluid
of Pr equal to 7.0 was used with Rayleigh numbers ranging from 10° to 107. A
uniform grid of 61 x 61 was used. The comparison was based on the maximum value
of the stream function ¥ max and the Nu for the specified range of Rayleigh numbers.
The observed differences with respect to the average Nu are approximately 0.2%, and
with respect to the value of Wmax are about 0.05%. In the second test case of de Vahl
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Figure 10. Variation of the asymptotic temperature with Ra.

Davis [15], comparisons were made for a range of Rayleigh numbers, using the same
uniform grid. These comparisons were based on the maximum value of the field
velocity and its position, the maximum value of the stream function and its position,
the average, and local Nusselt number. The observed differences between the present
results and those of de Vahl Davis [15] for all variables and cases examined was less
than 0.05%. The values of the average and local Nusselt number were found to be
more sensitive to the grid size with increasing Rayleigh numbers.

RESULTS AND DISCUSSION

A parametric study was carried out to determine the influence of Rayleigh
number on the flow field of a high Pr (= 100) fluid. Lim et al. [16] showed that there
is only a minor influence of Prandtl number on the natural convection in glass-
melting furnaces for Pr=> 1. A range of Rayleigh numbers from 10° to 10° was
considered that covers the whole range encountered in glass tanks. The influence of
the enclosure aspect ratio was also examined for the values of 0.5, 1.0, and 2.0.

The main characteristics of natural convection in the present enclosure with the
upper wall subjected to a sinusoidal temperature distribution are shown in Figures 4
to 7. The flow and temperature fields are presented in terms of streamlines and
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Figure 11. Variation of thermal boundary layer thickness in the middle plane with Ra.

isotherms, with 15 equally spaced contour levels drawn in all cases. These figures
show that, due to the symmetric boundary condition at the upper wall together with
the adiabatic conditions on the side and bottom walls, both the flow and temperature
fields are symmetric about the midplane of the enclosure. A pair of identical counter-
rotating cells is formed in the left and right halves of the enclosure. The fluid moves
horizontally from the hotter middle of the upper wall toward its colder edge; then it
descends along the adiabatic cooler sidewall; and finally it ascends near the sym-
metry plane.

Figure 4 shows the streamlines and the isotherm contours obtained for
Ra= 102, 103, 104, and 105, and Figure 5 for the higher Rayleigh numbers of 106, 107,
and 10°. In the range of Rayleigh numbers 107 to 10*, the circulation patterns in the
enclosure are very weak because the viscous forces are dominating over the buoyant
forces. The temperature fronts penetrate from the upper wall deep inside the fluid
body, as conduction is the main heat transfer mechanism in this case. With in-
creasing Rayleigh number, the intensity of the recirculation patterns increases and
the centers of the cells move upward. At approximately Ra = 10°, the isotherms start
to concentrate near the upper wall, indicating that the advection mode of the heat
transfer begins to dominate over conduction. Beginning with Ra = 106, we see that
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Figure 12. Streamlines and isotherms for Ra = 10* and aspect ratios of 0.5, 1.0, and 2.0.

the temperature gradients are confined to the upper wall in the form of a thermal
boundary layer. This zone becomes thinner with increasing Rayleigh number. The
centers of the recirculation zones move toward the corners of the upper wall of the
enclosure, and at the higher Rayleigh numbers of 107 and 10°, they are confined in
the corners. In these last two cases, it appears that there is no significant heat transfer
to the main fluid body. The confinement of the flow in the upper wall corners of the
enclosure causes an increased heat transfer there.

Owing to the symmetry in the temperature field, the heat transfer is also
symmetrical with respect to the midplane (X =0.5). Figure 6 shows the variation of
local Nusselt number along the upper wall for the Rayleigh numbers studied. The
higher the Ra number, the larger the amount of heat added to the fluid in the central
region of the enclosure, which in turn intensifies fluid convection. In the middle
region of the top wall the cold fluid that is brought there by the recirculation patterns
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Figure 13. Variation of Wmax with aspect ratio for Ra = 10°, 10°, and 10,

from the lower part of the enclosure is heated up and as a result the local Nusselt
number becomes positive there. The heated fluid from the middle of the upper wall
reaches the enclosure corners, losing heat to the upper wall, and thus the local
Nusselt number becomes negative there. For the higher Rayleigh numbers, the re-
circulation centers become very close to the upper wall while the recirculation in-
tensity increases, producing two symmetric peaks in the Nusselt number near the top
corners of the enclosure.

The effect of Rayleigh number on the intensification of the fluid circulation is
evident in Figure 7, where an increase of Rayleigh number causes an analogous
increase of the W nax value.

The variation of the maximum and minimum values of the local Nusselt
number as a function of Ra is shown in Figure 8. The heat transfer rates show a large
increase for Rayleigh number values higher than 10°. In contrast, for Ra less than
10° the heat transfer rates remain practically the same.

The temperature distribution in the middle plane of the enclosure, shown in
Figure 9, is quite helpful in assessing the penetration depth of the temperature
boundary layer formed on the top wall of the enclosure. In particular, for every
Rayleigh number studied, the dimensionless temperature takes the value of 1 at the
top of the middle plane of the enclosure and then decreases with increasing distances
from the upper wall. Conduction and convection are the two antagonistic mech-
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Figure 14. Variation of thermal boundary layer thickness in the middle plane with aspect ratio for
Ra=10", 10°, and 10°.

anisms depending on the specific value of Rayleigh number. In the case of the lower
Rayleigh number of 10°, the middle-plane temperature ®,,, reaches an asymptotic
value in the core region of the enclosure that corresponds to the heat transfer by pure
conduction. The increase in the Ra number causes a decrease in the asymptotic value
of the middle-plane temperature in the core region, as a consequence of the dom-
inance of convective heat transfer. In this last case, the thermal boundary layer
becomes thinner, indicating that the heat transfer takes place in the region near the
upper wall without much penetration into the main fluid body.

The distribution of the asymptotic value of the middle-plane temperature in the
core region of the enclosure for all Rayleigh numbers studied is shown in Figure 10.
This value corresponds to the maximum possible temperature at the bottom wall and
varies between a lower-limit value of approximately 0.22 and a higher-limit value of
approximately 0.50. The temperatures at the bottom wall corners have significantly
lower values and may cause solidification of the glass melt, a fact that should be
considered in the design of glass furnaces.

The thickness of the thermal boundary layer based on the temperature dis-
tribution in the middle plane of the enclosure is shown in Figure 11 for all Rayleigh
numbers studied. This thickness reaches an approximate upper limit of §; = 0.68 for
the lower Rayleigh number value and an approximate lower limit of §; = 0.12 for the
higher Rayleigh number value.
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The influence of the aspect ratio on the established flow and temperature fields
in the enclosure is shown in Figure 12 where the streamlines (left side) and the
isotherms (right side) are presented for values of aspect ratio L/H = 0.5, 1.0, and 2.0
and for Ra value of 10°. The increase of the aspect ratio results in a circulation
pattern covering a larger area of the enclosure. It appears that the centers of the
circulating fluid move closer and the flow is confined to the upper top wall for the
lower aspect ratio value of 0.5. Figure 13 shows the variation of Wmax with aspect
ratio for Ra values of 103, 106, and 108, which represents a combined measure of
intensity and extent of the recirculation region. It is shown that the value of W max
increases with increasing aspect ratio and Rayleigh number. Thus, a larger mass of
glass melt is circulated and homogenized, which implies improvement in glass pro-
duction. Figure 14 presents the corresponding variation of the thermal boundary
layer thickness &, at the enclosure middle plane. The thermal penetration into the
fluid body becomes larger with increasing aspect ratio. The influence of the aspect
ratio on the thermal penetration depth is quite large mainly for the lower Rayleigh
number of Ra= 103, whereas for Ra= 108, it becomes almost insignificant. The
optimum conditions for glass production are intense recirculation patterns combined
with large thermal penetration depths. This can be achieved employing large
Rayleigh numbers combined with large tank aspect ratios.

CONCLUSIONS

In this investigation, numerical results of natural convection heat transfer in a
two-dimensional enclosure subjected to steady sinusoidal temperature boundary
condition on the upper wall with adiabatic bottom and sidewalls are presented. The
influence of Rayleigh number on the flow patterns and heat transfer characteristics in
the enclosure is examined in detail for a large range of Rayleigh numbers. The flow
and temperature fields are symmetric about the middle plane of the enclosure due to
the imposed symmetry condition on the upper wall boundary. From the results
presented above, the following main conclusions may be drawn.

1. For small Ra, the heat transfer is dominated by conduction across the fluid
layers.

2. The process begins to be dominated by convection with increasing Ra, and
at very high Rayleigh numbers the effect of conduction diminishes.

3. The recirculation patterns move apart and toward the corresponding upper
wall corners with increasing Rayleigh number.

4. A thermal boundary layer is formed on the upper wall with its thickness
decreasing as the Rayleigh increases. This results in a lower temperature
penetration depth and may have important implications in the design of
glass melting tanks.

5. Finally, increasing the tank aspect ratio increases the fluid circulation in-
tensity and the thermal penetration depth, which are important parameters
for improving glass melt homogenization. Optimum conditions for glass
production can be achieved employing large Rayleigh numbers combined
with large tank aspect ratios.
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