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NATURAL CONVECTION IN A 2D ENCLOSURE WITH
SINUSOIDAL UPPER WALL TEMPERATURE

I. E. Sarris, I. Lekakis, and N. S. Vlachos
Laboratory of Fluid Mechanics and Turbomachinery, Department of Mechanical

and Industrial Engineering, University of Thessaly, Volos, Greece

Natural convection in a two-dimensional, rectangular enclosure with sinusoidal tempera-
ture pro� le on the upper wall and adiabatic conditions on the bottom and sidewalls is
numerically investigated. The applied sinusoidal temperature is symmetric with respect to
the midplane of the enclosure. Numerical calculations are produced for Rayleigh numbers
in the range 102 to 108, and results are presented in the form of streamlines, isotherm
contours, and distributions of local Nusselt number. The circulation patterns are shown to
increase in intensity, and their centers to move toward the upper wall corners with in-
creasing Rayleigh number. As a result, the thermal boundary layer is con� ned near the
upper wall regions. The values of the maximum and the minimum local Nusselt number at
the upper wall are shown to increase with increasing Rayleigh number. Finally, an increase
in the enclosure aspect ratio produces an analogous increase of the � uid circulation
intensity.

INTRODUCTION

Natural convection in ¯uid-®lled rectangular enclosures has received con-
siderable attention in recent years because of its relation to the thermal performance
of many engineering installations. This work was motivated by the need to under-
stand the heat transfer characteristics in glass melting tanks, where a number of
burners placed above the glass tank create periodic temperature pro®les on the
surface of the glass melt; see Sarris et al. [1] and Jian et al. [2].

The studies of natural convection in ¯uid-®lled cavities primarily have been
concentrated on cases of heating from the bottom wall or sidewalls; see Ostrach [3].
A limited amount of work has been reported on the more complex case of cooling
from the top wall, mainly with simultaneous heating of a sidewall; see Aydin et al.
[4]. There exist several studies in the literature on the natural convection with peri-
odic temperature conditions imposed upon the bottom or sidewalls. For example,
Poulikakos [5] studied an enclosure with its left sidewall di� erentially heated, one
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half of the wall is heated and the other half is cooled, and the remaining walls are
insulated. He showed that a penetrating thermal layer is formed, the size of which is a
function of Rayleigh number and aspect ratio of the enclosure. Bilgen et al. [6] used a
system of discrete temperature sources placed periodically on the bottom wall of a
shallow cavity. Lakhal et al. [7] also studied transient natural convection heat transfer
in a square enclosure with part of the bottom wall under uniform time-varying
temperature conditions. Lage and Bejan [8] studied enclosures with one sidewall
heated using a pulsating heat ¯ux and the other sidewall cooled at constant tem-
perature. They showed that at high Rayleigh numbers, the buoyancy driven ¯ow has
the tendency to resonate to the periodic heating that has been supplied from the side.

Uniform heating on the top wall of an enclosure results in ¯ow strati®cation,
but nonuniform heating produces counter-rotating circulation patterns. Studies of
natural convection in molten glass cells with periodic heating from above and spe-
ci®ed temperature on the sidewalls for Rayleigh numbers up to 10

7
were made by

Wright and Rawson [9] and Burley et al. [10]. Periodic heating from above has strong
implications for the glass industry, where the main objective is to increase the mixing
of the glass melt.

In this study, natural convection in enclosures with periodic heating from
above over the entire top wall and adiabatic bottom and sidewall boundary condi-
tions is studied for the ®rst time as it appears in the literature. Periodic heating from
the upper wall is expected to produce a pair of well-de®ned circulation patterns,
while adiabatic conditions on the other boundaries ensure that only the upper wall
heating controls the ¯ow. The e� ect of Rayleigh number on the ¯ow patterns and the
resulting heat transfer is determined. In addition the e� ect of the enclosure aspect
ratio is studied for the value of Rayleigh numbers from 10

3
to 10

8
.

PROBLEM SPECIFICATION

A two-dimensional rectangular enclosure completely ®lled with a viscous ¯uid
is considered, as shown in Figure 1. The side and bottom walls are assumed to be

NOMENCLATURE

g gravitational acceleration

H height of the enclosure

L length of the enclosure

Nu Nusselt number

p pressure of the ¯uid

P dimensionless pressure

Pr Prandtl number

Ra Rayleigh number

T ¯uid temperature

Tw(x) upper wall temperature

distribution

u, v velocity components in x- and

y-directions

U, V dimensionless velocity components

x, y spatial coordinates

X, Y dimensionless coordinates

a thermal di� usivity
b coe� cient of thermal expansion
dt thickness of the thermal boundary layer
Y nondimensional temperature
n ¯uid kinematic viscosity
r ¯uid density
j generalized variable
c stream function
C nondimensional stream function

Subscripts

c cold

h hot

i, j coordinate indices

mp middle plane

t thermal
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adiabatic while a sinusoidal temperature distribution Tw(x) is applied on the top wall
as follows:

Tw…x† ˆ Tc ‡ DT

2
1 ¡ cos

2px

L

³ ´³ ´
…1†

where Tc is the minimum value of the imposed temperature distribution, DT is the
temperature di� erence between the maximum and the minimum temperatures of the
upper wall, and L is the length of the enclosure.

MATHEMATICAL FORMULATION

The present ¯ow is considered laminar and two dimensional, while the usual
Boussinesq approximation for treatment of the buoyant term in the momentum

Figure 1. Flow con®guration and boundary conditions.
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equation is adopted. The governing equations and the boundary conditions are cast
in dimensionless form using the following dimensionless variables:

X ˆ x

H
Y ˆ y

H
U ˆ uH

a
V ˆ vH

a
…2†

P ˆ pH2

ra2
Y ˆ T ¡ Tc

DT
…3†

where P and Y are the nondimensional pressure and temperature, respectively, and
U and V are the nondimensional velocity components in the x- and y-directions,
respectively.

With the above-de®ned variables the governing equations become

Continuity

qU

qX
‡ qV

qY
ˆ 0 …4†

X-momentum

U
qU

qX
‡ V

qU

qY
ˆ ¡ qP

qX
‡ PrH2U …5†

Figure 2. Variation of Cmax with grid size for Ra ˆ 10
5
, 10

6
, and 10

8
.
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Y-momentum

U
qV

qX
‡ V

qV

qY
ˆ ¡ qP

qY
‡ PrH2V ‡ Ra PrY …6†

Energy

U
qY

qX
‡ V

qY

qY
ˆ H2Y …7†

where Pr ˆ n=a and Ra ˆ gbDTH3=na are the Prandtl and Rayleigh numbers,
respectively.

In addition, the velocity and temperature boundary conditions, take the
following form:

U ˆ V ˆ 0

qY
qX

ˆ 0

)

for X ˆ 0; 1 and 0 µ Y µ 1 …8a†

Figure 3. E� ect of grid size on the maximum and minimum Nu at the top wall for Ra ˆ 10
5
, 10

6
, and 10

8
.
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Figure 4. Calculated streamlines and isotherms for (a) Ra ˆ 10
2

(Cmax ˆ 8:736 £ 10
¡3†, (b) Ra ˆ 10

3

(8.663610
7 2

), (c) Ra ˆ 10
4

(7.439610
7 1

), and (d ) Ra ˆ 10
5

(2.986).
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Figure 5. Calculated streamlines and isotherms for (a) Ra ˆ 10
6

(Cmax ˆ 6.997), (b) Ra ˆ 10
7

(13.160), and

(c) Ra ˆ 10
8

(22.882).
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U ˆ V ˆ 0

qY
qY

ˆ 0

)

for Y ˆ 0 and 0 µ X µ 1 …8b†

U ˆ V ˆ 0

Y ˆ 1
2
…1 ¡ cos…2pX††

)

for Y ˆ 1 and 0 µ X µ 1 …8c†

Because the computational e� ort required for this problem was not particularly
large, the solution domain covered the whole ®eld.

The values of the stream function are calculated assuming C ˆ 0 at Y ˆ 0,
X ˆ 0.

The local Nusselt number, Nu(X), for the heated upper wall is de®ned by

Nu…X† ˆ ¡ qY

qY

µ ¶

Yˆ1

…9†

The average Nusselt number, Nu, in the upper wall can be de®ned by

Nu ˆ
Z

1

0
Nu…X†dX …10†

Figure 6. Variation of local Nu on the upper wall with Rayleigh number.
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However, in the present study, the net heat input from the upper wall into the en-
closure is zero, and as a consequence the average Nusselt number is also zero.

NUMERICAL PROCEDURE

The above governing equations together with the corresponding boundary
conditions are solved numerically, employing a ®nite-volume method. The
semi-implicit method for pressure-linked equationsÐconsistent (SIMPLEC) of van
Doormal and Raithby [11] is used to couple momentum and continuity equations in
a uniform staggered grid. Uniform grids were selected mainly because they result in
smaller discretization errors. In addition there exist gradients in parts of this ¯ow
other than only the walls. The momentum equations for U and V and the energy
equation are solved using both the power-law scheme of Patankar [12] and the
QUICK scheme of Hayase et al. [13] to minimize numerical di� usion. In all calcu-
lations presented here, under-relaxation factors with values of 0.9, 0.9, 0.5, and 0.5
were applied to U, V, Y, and P, respectively.

The iterative procedure is initiated with an arbitrary velocity ®eld followed by
the solution of the energy equation and is continued until convergence is achieved.

Figure 7. Variation of Cmax with Rayleigh number.
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Convergence is established through the sum of the absolute relative errors for each
dependent variable in the entire ¯ow ®eld:

X

i; j

jjn‡1
i; j

¡ jn
i; j

j
jjn‡1

i; j
j

µ e …11†

where j represents the variables U, V, or Y, the superscript n refers to the iteration
number, and the subscripts i and j refer to the space coordinates. The value of e is
chosen as 10

¡5
for all calculations. All calculations are carried out on Intel CPU-

based personal computers.
Before the ®nal computations, a grid independence test was performed using

successively sized grids, 41641, 61661, 81681, 1216121, 1616161, and 2416241,
and three representative Rayleigh numbers 10

5
, 10

6
, and 10

8
. The variation of the

maximum value of the stream function, Cmax, with the grid size appears to be
negligible for grid sizes larger than 1216121, as shown in Figure 2. The grid size also
in¯uences the maximum and minimum values of the local Nusselt number, Nu, at
the upper heated wall, as shown in Figure 3. This in¯uence is most signi®cant for the
highest Rayleigh number of Ra ˆ 10

8
. When the mesh is re®ned from 1216121 to

Figure 8. Variation of maximum and minimum values of Nu on the upper wall with Ra.
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1616161 grid points the local Nusselt number decreases by less than 1%, whereas
for Ra ˆ 10

6
it decreases by less than 0.5% and for Ra ˆ 10

5
by less than 0.4%. The

small changes in Cmax and Nu described above suggest that a grid size of 1216121 is
adequate for engineering calculations to resolve the corresponding velocity and
temperature ®elds.

The present computational ¯uid dynamics (CFD) source code was validated
against the numerical results of Ganzarolli and Milanez [14] for natural convection in
a cubical enclosure heated from below and cooled symmetrically from the sidewalls.
It was also validated against the benchmark numerical solution of de Vahl Davis [15]
for natural convection of air in a square cavity. In the ®rst test case, a working ¯uid
of Pr equal to 7.0 was used with Rayleigh numbers ranging from 10

3
to 10

7
. A

uniform grid of 61661 was used. The comparison was based on the maximum value
of the stream function Cmax and the Nu for the speci®ed range of Rayleigh numbers.
The observed di� erences with respect to the average Nu are approximately 0.2%, and
with respect to the value of Cmax are about 0.05%. In the second test case of de Vahl

Figure 9. Temperature distribution in the middle plane of the enclosure.
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Davis [15], comparisons were made for a range of Rayleigh numbers, using the same
uniform grid. These comparisons were based on the maximum value of the ®eld
velocity and its position, the maximum value of the stream function and its position,
the average, and local Nusselt number. The observed di� erences between the present
results and those of de Vahl Davis [15] for all variables and cases examined was less
than 0.05%. The values of the average and local Nusselt number were found to be
more sensitive to the grid size with increasing Rayleigh numbers.

RESULTS AND DISCUSSION

A parametric study was carried out to determine the in¯uence of Rayleigh
number on the ¯ow ®eld of a high Pr ( ˆ 100) ¯uid. Lim et al. [16] showed that there
is only a minor in¯uence of Prandtl number on the natural convection in glass-
melting furnaces for Pr ¾ 1. A range of Rayleigh numbers from 10

2
to 10

8
was

considered that covers the whole range encountered in glass tanks. The in¯uence of
the enclosure aspect ratio was also examined for the values of 0.5, 1.0, and 2.0.

The main characteristics of natural convection in the present enclosure with the
upper wall subjected to a sinusoidal temperature distribution are shown in Figures 4
to 7. The ¯ow and temperature ®elds are presented in terms of streamlines and

Figure 10. Variation of the asymptotic temperature with Ra.
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isotherms, with 15 equally spaced contour levels drawn in all cases. These ®gures
show that, due to the symmetric boundary condition at the upper wall together with
the adiabatic conditions on the side and bottom walls, both the ¯ow and temperature
®elds are symmetric about the midplane of the enclosure. A pair of identical counter-
rotating cells is formed in the left and right halves of the enclosure. The ¯uid moves
horizontally from the hotter middle of the upper wall toward its colder edge; then it
descends along the adiabatic cooler sidewall; and ®nally it ascends near the sym-
metry plane.

Figure 4 shows the streamlines and the isotherm contours obtained for
Ra ˆ 10

2
, 10

3
, 10

4
, and 10

5
, and Figure 5 for the higher Rayleigh numbers of 10

6
, 10

7
,

and 10
8
. In the range of Rayleigh numbers 10

2
to 10

4
, the circulation patterns in the

enclosure are very weak because the viscous forces are dominating over the buoyant
forces. The temperature fronts penetrate from the upper wall deep inside the ¯uid
body, as conduction is the main heat transfer mechanism in this case. With in-
creasing Rayleigh number, the intensity of the recirculation patterns increases and
the centers of the cells move upward. At approximately Ra ˆ 10

5
, the isotherms start

to concentrate near the upper wall, indicating that the advection mode of the heat
transfer begins to dominate over conduction. Beginning with Ra ˆ 10

6
, we see that

Figure 11. Variation of thermal boundary layer thickness in the middle plane with Ra.
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the temperature gradients are con®ned to the upper wall in the form of a thermal
boundary layer. This zone becomes thinner with increasing Rayleigh number. The
centers of the recirculation zones move toward the corners of the upper wall of the
enclosure, and at the higher Rayleigh numbers of 10

7
and 10

8
, they are con®ned in

the corners. In these last two cases, it appears that there is no signi®cant heat transfer
to the main ¯uid body. The con®nement of the ¯ow in the upper wall corners of the
enclosure causes an increased heat transfer there.

Owing to the symmetry in the temperature ®eld, the heat transfer is also
symmetrical with respect to the midplane (X ˆ 0.5). Figure 6 shows the variation of
local Nusselt number along the upper wall for the Rayleigh numbers studied. The
higher the Ra number, the larger the amount of heat added to the ¯uid in the central
region of the enclosure, which in turn intensi®es ¯uid convection. In the middle
region of the top wall the cold ¯uid that is brought there by the recirculation patterns

Figure 12. Streamlines and isotherms for Ra ˆ 10
8

and aspect ratios of 0.5, 1.0, and 2.0.
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from the lower part of the enclosure is heated up and as a result the local Nusselt
number becomes positive there. The heated ¯uid from the middle of the upper wall
reaches the enclosure corners, losing heat to the upper wall, and thus the local
Nusselt number becomes negative there. For the higher Rayleigh numbers, the re-
circulation centers become very close to the upper wall while the recirculation in-
tensity increases, producing two symmetric peaks in the Nusselt number near the top
corners of the enclosure.

The e� ect of Rayleigh number on the intensi®cation of the ¯uid circulation is
evident in Figure 7, where an increase of Rayleigh number causes an analogous
increase of the Cmax value.

The variation of the maximum and minimum values of the local Nusselt
number as a function of Ra is shown in Figure 8. The heat transfer rates show a large
increase for Rayleigh number values higher than 10

6
. In contrast, for Ra less than

10
5

the heat transfer rates remain practically the same.
The temperature distribution in the middle plane of the enclosure, shown in

Figure 9, is quite helpful in assessing the penetration depth of the temperature
boundary layer formed on the top wall of the enclosure. In particular, for every
Rayleigh number studied, the dimensionless temperature takes the value of 1 at the
top of the middle plane of the enclosure and then decreases with increasing distances
from the upper wall. Conduction and convection are the two antagonistic mech-

Figure 13. Variation of Cmax with aspect ratio for Ra ˆ 10
3
, 10

6
, and 10

8
.
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anisms depending on the speci®c value of Rayleigh number. In the case of the lower
Rayleigh number of 10

2
, the middle-plane temperature Ymp reaches an asymptotic

value in the core region of the enclosure that corresponds to the heat transfer by pure
conduction. The increase in the Ra number causes a decrease in the asymptotic value
of the middle-plane temperature in the core region, as a consequence of the dom-
inance of convective heat transfer. In this last case, the thermal boundary layer
becomes thinner, indicating that the heat transfer takes place in the region near the
upper wall without much penetration into the main ¯uid body.

The distribution of the asymptotic value of the middle-plane temperature in the
core region of the enclosure for all Rayleigh numbers studied is shown in Figure 10.
This value corresponds to the maximum possible temperature at the bottom wall and
varies between a lower-limit value of approximately 0.22 and a higher-limit value of
approximately 0.50. The temperatures at the bottom wall corners have signi®cantly
lower values and may cause solidi®cation of the glass melt, a fact that should be
considered in the design of glass furnaces.

The thickness of the thermal boundary layer based on the temperature dis-
tribution in the middle plane of the enclosure is shown in Figure 11 for all Rayleigh
numbers studied. This thickness reaches an approximate upper limit of dt ˆ 0:68 for
the lower Rayleigh number value and an approximate lower limit of dt ˆ 0:12 for the
higher Rayleigh number value.

Figure 14. Variation of thermal boundary layer thickness in the middle plane with aspect ratio for

Ra ˆ 10
3
, 10

6
, and 10

8
.
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The in¯uence of the aspect ratio on the established ¯ow and temperature ®elds
in the enclosure is shown in Figure 12 where the streamlines (left side) and the
isotherms (right side) are presented for values of aspect ratio L=H ˆ 0.5, 1.0, and 2.0
and for Ra value of 10

8
. The increase of the aspect ratio results in a circulation

pattern covering a larger area of the enclosure. It appears that the centers of the
circulating ¯uid move closer and the ¯ow is con®ned to the upper top wall for the
lower aspect ratio value of 0.5. Figure 13 shows the variation of Cmax with aspect
ratio for Ra values of 10

3
, 10

6
, and 10

8
, which represents a combined measure of

intensity and extent of the recirculation region. It is shown that the value of Cmax

increases with increasing aspect ratio and Rayleigh number. Thus, a larger mass of
glass melt is circulated and homogenized, which implies improvement in glass pro-
duction. Figure 14 presents the corresponding variation of the thermal boundary
layer thickness dt at the enclosure middle plane. The thermal penetration into the
¯uid body becomes larger with increasing aspect ratio. The in¯uence of the aspect
ratio on the thermal penetration depth is quite large mainly for the lower Rayleigh
number of Ra ˆ 10

3
, whereas for Ra ˆ 10

8
, it becomes almost insigni®cant. The

optimum conditions for glass production are intense recirculation patterns combined
with large thermal penetration depths. This can be achieved employing large
Rayleigh numbers combined with large tank aspect ratios.

CONCLUSIONS

In this investigation, numerical results of natural convection heat transfer in a
two-dimensional enclosure subjected to steady sinusoidal temperature boundary
condition on the upper wall with adiabatic bottom and sidewalls are presented. The
in¯uence of Rayleigh number on the ¯ow patterns and heat transfer characteristics in
the enclosure is examined in detail for a large range of Rayleigh numbers. The ¯ow
and temperature ®elds are symmetric about the middle plane of the enclosure due to
the imposed symmetry condition on the upper wall boundary. From the results
presented above, the following main conclusions may be drawn.

1. For small Ra, the heat transfer is dominated by conduction across the ¯uid
layers.

2. The process begins to be dominated by convection with increasing Ra, and
at very high Rayleigh numbers the e� ect of conduction diminishes.

3. The recirculation patterns move apart and toward the corresponding upper
wall corners with increasing Rayleigh number.

4. A thermal boundary layer is formed on the upper wall with its thickness
decreasing as the Rayleigh increases. This results in a lower temperature
penetration depth and may have important implications in the design of
glass melting tanks.

5. Finally, increasing the tank aspect ratio increases the ¯uid circulation in-
tensity and the thermal penetration depth, which are important parameters
for improving glass melt homogenization. Optimum conditions for glass
production can be achieved employing large Rayleigh numbers combined
with large tank aspect ratios.
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