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ON THE LIMITS OF VALIDITY OF THE LOW MAGNETIC
REYNOLDS NUMBER APPROXIMATION IN MHD
NATURAL-CONVECTION HEAT TRANSFER

I. E. Sarris, G. K. Zikos, A. P. Grecos, and N. S. Vlachos
Laboratory of Fluid Mechanics & Turbomachines, Department of Mechanical &
Industrial Engineering, University of Thessaly, Volos, Greece

In the majority of magnetohydrodynamic (MHD) natural-convection simulations, the Lor-

entz force due to the magnetic field is suppressed into a damping term resisting the fluid

motion. The primary benefit of this hypothesis, commonly called the low-Rm approxi-

mation, is a considerable reduction of the number of equations required to be solved. The

limitations in predicting the flow and heat transfer characteristics and the related errors

of this approximation are the subject of the present study. Results corresponding to numeri-

cal solutions of the full MHD equations, as the magnetic Reynolds number decreases to a

value of 10�3, are compared with those of the low-Rm approximation. The influence of the

most important parameters of MHD natural-convection problems (such as the Grashof,

Hartmann, and Prandtl numbers) are discussed according to the magnetic model used.

The natural-convection heat transfer in a square enclosure heated laterally, and subject

to a transverse uniform magnetic field, is chosen as a case study. The results show clearly

an increasing difference between the solutions of the full MHD equations and low-Rm

approximation with increasing Hartmann number. This difference decreases for higher

Grashof numbers, while for Prandtl numbers reaching lower values like those of liquid

metals, the difference increases.

1. INTRODUCTION

Natural-convection heat transfer of electrically conducting fluids in enclosures
has been the subject of a great number of theoretical, experimental, and numerical
investigations, because of its importance in many technological applications such
as, for example, the liquid-metal blankets used in fusion reactors [1] (Ha >200).
Another important application is the crystal growth (Bridgman or Czochralski) in
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industrial production of semiconductors [2–4] (Ha < 200). Furthermore, numerical
studies of magnetohydrodynamics (MHD) natural convection were conducted in
order to answer a variety of fundamental questions such as, for example, the effect
of the external magnetic field direction on the flow field in cubes [5, 6] or on the heat
transfer [7]. Studies of natural-convection flow in rectangular enclosures with trans-
verse magnetic fields have been reported in, among others, [8–11] and with vertical
magnetic fields in [12], as well as in porous enclosures [13, 14]. Buoyant MHD flows
in ducts have also been studied [15, 16]. Studies of multidimensional or complex con-
figurations, stability, or turbulence have also been carried out for a variety of MHD
flows (for example, [17–19]).

The purpose of the mathematical and numerical models used in the majority of
the above studies was to determine the influence of any combination of the Grashof,
Reynolds, Prandtl, or Hartmann numbers on the flow and heat transfer. A common
technique in all these studies was the simplification of the magnetic induction equa-
tion through the low-Rm (or quasi-static) approximation [20, 21]. The dimensionless
magnetic Reynolds number Rmð¼mru0LÞ of the flow represents the ratio of advec-
tion to diffusion in the magnetic field. At the limit when Rm ! 0, magnetic diffusion
dominates over convection, and as a consequence the fluid motion has no influence
on the magnetic field distribution. Then, the latter can be calculated as if the fluid
were at rest and the Lorentz (or Laplace) force of the magnetic field can be evaluated
through a damping term, which includes only the velocity, an electric potential, and
the external magnetic field. The magnitude of Rm in laboratory-scale experiments
(e.g., molten metals) cannot exceed the value of 10�2, and in industrial applications
the value of several tenths [20].

Generally accepted in MHD natural-convection numerical studies (for
example, [5, 7–10, 12]) is that Rm << 1, which allows one to overcome the solution
of the magnetic induction equations, thus resulting in a significant reduction of
the equations to be solved and of computational cost. These studies adopted the

NOMENCLATURE

cp specific heat

g gravitational acceleration

Gr Grashof number

H enclosure height

Ha Hartmann number

j current density

J dimensionless current density

k thermal conductivity

Nu Nusselt number

p fluid pressure

P dimensionless pressure

Pr Prandtl number

Rm magnetic Reynolds number

t time

T fluid temperature

u, v velocity components in x and y

directions

U, V dimensionless velocity components

x, y spatial coordinates

X, Y dimensionless coordinates

a thermal diffusivity

b coefficient of thermal expansion

H nondimensional temperature

m magnetic permeability

n fluid kinematic viscosity

q fluid density

r electrical conductivity

/ generalized variable

W nondimensional streamfunction

Subscripts

c centerline

max maximum

x, y,

z

coordinate indices

0 reference value
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low magnetic Reynolds number approximation (low-Rm model) as a suitable model
for the simulation, without any further investigation of the validity of the model for
the specific configuration and the range of operational parameters used. Possible
differences in the results related to the use of different simulation models can be
encountered in the computations of the flow and heat transfer quantities, the most
important of which, from the technological point of view, is the Nusselt number.
Thus, the knowledge of the possible differences and the parameter space where these
are more pronounced helps to increase the confidence of the applications related
to MHD heat transfer. The present study is the only one dealing with this issue as
concerning the MHD natural convection.

The purpose of the present study, therefore, is to determine the influence of the
magnetic Reynolds number, Rm, on the MHD natural-convection flow and heat
transfer and to assess possible errors related to the use of the low-Rm approximation.
The results of the full magnetic induction equations with the lowest Rm value of 10�3

used here are compared throughout this article with those of the low-Rm model. As a
case study, the natural-convection heat transfer on a laterally heated square enclos-
ure subjected to a uniform transverse magnetic field was used. In modeling such a
system, several factors should be taken into account, in particular, possible inhomo-
geneities of the (strong) external magnetic field and the three-dimensionality of the
enclosure. Numerical simulations of buoyancy-driven flows in cubic enclosures
subject to a static homogeneous magnetic field [5–7] have led to some interesting
results. However, and despite their limited physical significance, investigations of
two-dimensional flows, because of their simplicity, permit one to analyze in more
detail the dependence of the flow on parameters of the problem which are varied
in a relatively broad range. The limits of the validity of the low-Rm approximation
results are studied for a representative range of the important parameters (Gr, Ha,
and Pr), and useful conclusions are drawn.

2. MATHEMATICAL ANALYSIS

2.1. Full MHD Equations

The governing equations (mass, momentum, and energy conservation) of
natural-convection heat transfer of an incompressible, electrically conducting fluid
subjected to an external magnetic field read as follows:

r � v ¼ 0 ð1Þ

q
qv

qt
þ qðv � rÞv ¼ �rpþ mr2v� qgb DT þ j� B ð2Þ

qT

qt
þ ðv � rÞT ¼ k

qcp
r2T ð3Þ

where v is the fluid velocity vector, t the time, p the fluid pressure, q the density, m
the molecular viscosity, g the gravitional acceleration, b the volumetric thermal
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expansion coefficient, cp the fluid specific heat under constant pressure, k its thermal
conductivity, and DT the difference between the fluid temperature and a character-
istic temperature. The term qgbDT corresponds to the gravitational force due to the
existence of temperature gradients according to the Boussinesq approximation, while
the cross product j� B between the electric current density j and the magnetic induc-
tion B denotes the Lorentz (or Laplace) force.

For the present natural-convection flow case, volumetric heat sources such as
viscous and ohmic dissipation or nuclear irradiation are assumed to be negligible. As
usual in MHD studies, the fluid is assumed to be quasi-neutral and the displacement
current is neglected. Thus, Ampére’s law, mj ¼ r� B, implies that

j� B ¼ 1

m
ðr � BÞ � B ¼ � 1

2m
rjBj2 þ 1

m
ðB � rÞB ð4Þ

where �mm is the magnetic permeability of the medium. Taking into account Faraday’s
and Ohm’s laws, the transport equation for the magnetic induction becomes

qB

qt
þ ðv � rÞB� ðB � rÞv ¼ 1

mr
r2B ð5Þ

2.2. The Low-Rm Approximation

The electric current density, j, can be determined from Ohm’s law as

j ¼ rðEþ v� BÞ ð6Þ

where the electric field E and the magnetic field B satisfy the Maxwell equations, and
r is the electrical conductivity of the fluid.

Assuming negligible perturbations for the electric and magnetic fields, Eq. (6)
can be written as

j ¼ rðE0 þ v� B0Þ ð7Þ

where E0 and B0 stand for the respective fields when the fluid is at rest.
Furthermore, because the displacement current is neglected, the electric charge

conservation ðr � j ¼ 0Þ implies that E0 is irrotational and may be replaced by the
electric field ð�rVÞ, where V is an electrostatic potential.

For a general two-dimensional enclosure without externally supplied electric
fields, the divergence of Ohm’s law gives

r2V ¼ r � ðv� B0Þ ¼ B0
qvx

qy
� qvy

qx

� �
¼ 0 ð8Þ

where vx and vy are the x- and y-direction fluid velocity components, respectively.
As pointed out by Garandet et al. [11], the harmonic equation for the electric

potential (D2V ¼ 0) in the case of enclosures with electrically insulating boundaries,
on which qnV ¼ 0 (n is the normal direction to the boundary) has a unique constant
solution D(V) ¼ 0 and thus the electric field vanishes everywhere. The associated
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Lorentz force then can be reduced to the damping factor �jB0j2v?; where v? is the
velocity component perpendicular to the direction of B0.

Considering the above conditions, the Navier-Stokes equation is reduced to

q
qv

qt
þ qðv � rÞv ¼ �rpþ mr2v� qgbDT � rjB0j2v? ð9Þ

This approximation, called the low-Rm approximation, is commonly used in MHD
natural-convection problems. The advantage of using this reduced model instead of
the full MHD equations is mainly the reduced number of equations required to be
solved (two equations fewer), resulting in lesser computational cost. The errors in
the predictions based on this model are discussed below.

2.3. Magnetic Field Perturbation in Natural-Convection Motion

In the low-Rm approximation, all the magnetic perturbations are neglected.
The importance of the magnetic Reynolds number (even in laboratory experiments
with liquid metals, where it is of order 10�3) was noted by Allen [22]. He proved
that a small value of the magnetic Reynolds number does not necessarily mean that
diffusion dominates over convection of the magnetic field, and that electromag-
netic forces can still play an important role even for small Rm. If b is the pertur-
bation of the field B caused by the fluid motion and B0 is the permanent
magnetic field when the fluid is at rest, the total magnetic field is B ¼ B0þ b. Allen
[22] showed that the ratio of the magnetic convection over diffusion in the modified
current equation [r� B ¼ �mmrðEþ v� BÞ, which is the combination of Ampere’s
and Ohm’s laws] is

Convection

Diffusion
¼ j�mmrðv� BÞj
jr � Bj � Rm

B0

b

� �
lB
lv

� �
ð10Þ

where lB and lv are the length scales for B and v, respectively. In general, these two
length scales may differ, and this is a reason why the convective term of Eq. (5) may
be important even at low Rm values.

To estimate the errors due to the low-Rm approximation, the following order-
of-magnitude analysis is used. When Rm << 1, the terms ðv � rÞB and ðB � rÞv [or the
equivalent term, r� ðv� BÞ] of the induction equation is negligible compared to
the diffusion term, indicating that the influence of v on the field B is very small.
The induction equation then becomes

qb

qt
¼ r � ðv� B0Þ þ r � ðv� bÞ þ ð�mmrÞ�1r2b ð11Þ

For steady-state flows and assuming that jbj << jB0j, the most important terms of
this equation are

r2bþ mrr � ðv� B0Þ ¼ 0 ð12Þ
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It follows that the order of magnitude of the perturbation jbj is RmB0. Thus, the
contribution of the magnetic perturbations increases with increasing magnetic
field. This means that the increase of the Hartmann number is expected to influ-
ence the agreement of the results between the full MHD equations and the
low-Rm approximation.

3. THE TEST CASE

In order to study the influence of the full or low-Rm MHD model on the
calculated fields and heat transfer, the common case of the steady-state natural
convection in a square enclosure, Figure 1, has been chosen. A temperature differ-
ence, DT, is imposed at the side walls of the enclosure, while the top and bottom
walls are considered adiabatic. Nondimensional quantities are introduced, taking
the enclosure’s height, H, as the reference length and the quantity n=H as the
reference velocity:

X ¼ x

H
Y ¼ y

H
U ¼ u

n=H
V ¼ v

n=H

H ¼ T � T0

DT
P ¼ p0H2

qn
B ¼ B

B0
J ¼ B0

�mmH
j

ð13Þ

where p0 is the total pressure, which includes the so-called magnetic pressure
½ð1=2�mmÞB2�.

Figure 1. Geometry and boundary conditions of the tests.
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Then, the governing equations read as follows:

DðVÞ ¼ 0 ð14Þ

ðV � rÞV ¼ �rPþr2VþGr HþHa2

Rm
ðB � rÞB ð15Þ

ðV � rÞH ¼ 1

Pr
r2H ð16Þ

ðV � rÞB ¼ 1

Rm
r2Bþ ðB � rÞV ð17Þ

J ¼ RmðV� BÞ ¼ r � B ð18Þ

r � B ¼ 0 ð19Þ

The dimensionless parameters are the Grashof number, Gr ¼ gbDT H3=n2,
the Prandtl number, Pr ¼ n=a, the magnetic Reynolds number, Rm ¼ r�mmn, and the
Hartmann number, Ha2 ¼ B2

0H2r=qn.
In the case of the low-Rm model, the magnetic induction equation is dropped

and, using Eq. (9), the momentum equation may be written as

ðV � rÞV ¼ �rPþr2VþGr H�Ha2 jBj2V? ð20Þ

with V?, the velocity component perpendicular to the direction of the external field
(the V velocity component in the present case).

The boundary conditions are as follows:

U ¼ V ¼ 0 and
qH
qY
¼ 0 for Y ¼ 0; 1 0 � X � 1

U ¼ V ¼ 0 and H ¼ 0 for X ¼ 0 0 � Y � 1

U ¼ V ¼ 0 and H ¼ 1 for X ¼ 1 0 � Y � 1

Bx ¼ 1 for X ¼ 0; 1 and Y ¼ 0; 1 0 � Y � 1

By ¼ 0 for X ¼ 0; 1 and Y ¼ 0; 1 0 � Y � 1

ð21Þ

The direction of the magnetic vector, B(B0, 0,0), is normal to the gravitational
acceleration. The walls are assumed to be electrically insulated, and thus no special
wall model is needed (such as, for example, the thin-wall model of [21]). Moreover,
the fluid considered is not ferromagnetic and, for simplicity, its relative permeability
mr ð�1Þ is taken equal to unity. The Hartmann number is varied in the range
0 � Ha � 100, and the magnetic Reynolds number may take the values 0.001,
0.01, 0.1, and 1.0. The Grashof number is varied in the range from 102 to 106, while
fluids with Prandtl numbers from 0.01 to 7 are considered.
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The intensity of the flow circulation inside the enclosure may be measured by
the streamfunction value WðU ¼ qW=qY ; V ¼ �qW=qXÞ. The reference value
W ¼ 0 of the stream function corresponds to the position X ¼ 0 and Y ¼ 0. The
local Nusselt number Nuy at the heated or cooled wall is calculated from the
temperature field:

Nuy ¼ �
qH
qX

����
����
X¼0 or 1

ð22Þ

and the average Nusselt number at each side wall is given by

Nu ¼
Z 1

Y¼0

Nuy dY ð23Þ

For the present two-dimensional case, the electric current field is calculated
from the relationship

Jz ¼
qBy

qx
� qBx

qy
ð24Þ

The differences between the results of the full magnetic induction equation
model and the low-Rm model are calculated in terms of the relative error between
the values of the two models:

EðRmÞ ¼
j/ðRmÞ � /ðlow-RmÞj

/ðRmÞ
� 100% ð25Þ

where / represents the calculated value of maximum streamfunction, Nusselt
number, etc.

Thus, the quantity E(0.001) is used throughout this work to give the relative
error of a variable, calculated for the same group of nondimensional parameters,
between the solution of Rm ¼ 0.001 and the low-Rm model.

3.1. Numerical Procedure

The above governing equations together with the corresponding boundary
conditions are solved numerically, employing a finite-volume method. The coupling
between momentum and continuity equations is achieved using the SIMPLE
algorithm [23], with a nonuniform staggered grid in both the horizontal and vertical
directions. A finer distribution for the grid nodes close to the walls is used in both
directions in order to resolve better the flow and Hartmann boundary layers and
to predict efficiently the heat transfer at the conductive walls. The equations for U
and V, energy, and magnetic induction are solved using the QUICK scheme of Leo-
nard [24] in the stable form proposed by Hayase et al. [25] in order to minimize
numerical diffusion. In all calculations presented here, underrelaxation factors with
values of 0.5, 0.5, 0.6, 0.6, 0.6, and 0.3 were applied to U, V, H, Bx, By, and P,
respectively. The iterative procedure is initiated with an arbitrary velocity field
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followed by the solution of the energy and magnetic induction equations and is
continued until convergence is achieved. Convergence is established when the sum
of the absolute relative errors for each solved quantity in the entire flow field is less
than a small value E equal to 10�5. All calculations are carried out on Intel CPU-
based personal computers.

The present models, in the form of an in-house computational fluid dynamics
(CFD) code, have been validated successfully against the works of de Vahl Davis [26]
and Janssen and Henkes [27] for steady-state natural-convection heat transfer in
enclosures. Extensive description of the performance of the numerical algorithms
used here may be found in [28, 29]. The performance of the MHD part of the model
was tested against the results of Al-Najem et al. [10], for their low-Rm approximation
model of natural convection in a square enclosure, for Grashof numbers 104 and 106

and for Hartmann numbers in the range 0 to 100.
The comparison between the results of the present models (full and low-Rm)

and those in [10] are shown in Table 1 using the nondimensional quantities and grid
arrangement of [10]. The maximum horizontal velocity in the midsection and the
average Nu are practically the same for every value of Ha for the case of
Gr ¼ 104. However, the values of Nu in the case of Gr ¼ 106 show a small diver-
gence, probably due to differences related to the solution procedures. The present
model predicts higher maximum values of the velocities at the enclosure midsection
and lower values of Nu in comparison with the results of [10].

In order to show the effect of the choice of magnetic induction model for the
present calculations, the results of the full magnetic equations with Rm ¼ 10�3 were
added in Table 1. The general remark is that the predicted values of velocity and
Nusselt number with Rm ¼ 10�3 are higher than those using the low-Rm model. As
the Hartmann number increases, the relative errors also increase. For the case of
Gr ¼ 106 and Ha ¼ 100, the maximum relative errors the velocity and Nusselt num-
ber between the results of [10] and the present model with Rm ¼ 10�3 were 50% and
21%, respectively. In Table 1 of [10] there is a summary of parameters used in several
MHD natural-convection cases, where it appears that studies with Ha values of even
1,000 have been conducted using the low-Rm model. An additional proof of the

Table 1. Comparison of present calculations (low-Rm and full magnetic induction model for Rm ¼ 10�3)

with those of Al-Najem et al. [10]

Uc;max Nu

Present Present

Gr Ha Ref. [10] low-Rm Rm ¼ 10�3 Ref. [10] low-Rm Rm ¼ 10�3

104 0 0.19 0.194 2.02 2.06

10 0.135 0.138 0.153 1.75 1.738 1.833

50 0.026 0.025 0.041 1.05 1.022 1.055

106 0 0.087 0.084 8.8 9.012

10 0.082 0.081 0.083 8.7 8.86 8.915

25 0.078 0.074 0.082 8.0 7.95 8.404

100 0.044 0.04 0.064 3.9 3.38 4.732
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different results calculated from each magnetic induction model is given in Figure 2
for two of the cases studied by Al-Najem et al. [10]. For the moderate values of
Gr ¼ 104 and Ha ¼ 10 shown in Figure 2a, in which the present results of the
low-Rm model are in good agreement with [10], the full magnetic induction model
with Rm ¼ 10�3 predicts approximately 18% higher midsection maximum velocity.
The difference is higher for the stronger convection case of Gr ¼ 106 with Ha ¼ 100
shown in Figure 2b.

Before the final calculations, a grid independence test was conducted in order
to determine the optimum grid size. The most convective case was selected for this
test because of the increasing sensitivity of the nonlinear convective terms to grid
refinement. The calculated field values for a grid size of 121� 121 for the highly
convective case showed that the maximum streamfunction and the average Nusselt
number differ by less than 0.01% from the next finer grid (161� 161) used, and
so this grid was considered adequate for the purposes of the present study. Finally,
in all computations presented here, it has been checked that the divergence of the
magnetic induction calculated from Eq. (17) vanishes [i.e., Eq. (19) is satisfied within
the computer accuracy].

4. RESULTS AND DISCUSSION

4.1. MHD Model Effect on the Flow and Temperature Fields

The results presented below concern cases in which the fluid Prandtl number is
0.7. The influence of Prandtl number on the magnetic induction model used is stud-
ied separately in Section 4.3. Streamlines, isotherms, and all other contour plots pre-
sented are divided into 15 equally spaced intervals between the lower and the higher
values. The range of the values of each plot is given separately in the caption of each

Figure 2. Comparison of the midsection velocity between the present low-Rm and full MHD models for

Rm ¼ 10�3 and the results of [10]: (a) Gr ¼ 104, Ha ¼ 10; (b) Gr ¼ 106, Ha ¼ 100.
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figure. The relative error associated with the calculated quantities is mainly between
the full magnetic induction case of Rm ¼ 0.001 and the low-Rm model, which corre-
spond to laboratory-scale configurations. This error is generally higher as the Rm

increases (i.e., in industrial-scale flows).
The effect of the magnetic Reynolds number on the natural-convection heat

transfer inside the square enclosure may be demonstrated by considering the rep-
resentative flow patterns and the distribution of isotherms in Figures 3 and 4 for

Figure 3. Streamlines (left) and isotherms (right) for Gr ¼ 104, Ha ¼ 25: (a) Rm ¼ 1:0 (0 (0.21) 3.168,

0 (0.065) 1); (b) Rm ¼ 0:001 (0 (0.149) 2.246, 0 (0.065) 1); (c) low-Rm model (0 (0.11) 1.664, 0 (0.065) 1).
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two different Grashof and Hartmann numbers. Figure 3 corresponds to the case of
Gr ¼ 104, Ha ¼ 25 and Figure 4 to that of Gr ¼ 106, Ha ¼ 100. Figures 3a and 4a
correspond to Rm ¼ 1.0, Figures 3b and 4b to 0.001, and Figures 3c and 4c to the

Figure 4. Streamlines (left) and isotherms (right) for Gr ¼ 106, Ha ¼ 100: (a) Rm ¼ 1:0 (�0.018 (1.2)

18.033, 0 (0.065) 1); (b) Rm ¼ 0:001 (�0.003 (0.61) 9.177, 0 (0.065) 1); (c) low-Rm model (0 (0.482) 7.23,

0 (0.065) 1).
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low-Rm model. For the lower-Gr case of Figure 3, the temperature distribution is
almost the same for all three cases, and the thick boundary layers are not affected
significantly by the Rm value of the full induction model or the low-Rm model used.
The small curvature of the isotherms indicates that the conduction is the dominant
heat transfer mechanism. The streamline patterns for Rm ¼ 1.0, in the core region,
differ slightly from the other two cases (Figures 3b and 3c). In spite of the illustrated
similarity of the last two streamline patterns, the flow circulation intensity, which is
characterized by the maximum value of the streamfunction, Wmax, is totally different.
The decrease of Rm causes a simultaneous decrease of the calculated flow circulation
intensity due to the fact that the Lorentz force is inversely proportional [Eq. (15)] to
the Rm value. Moreover, the Lorentz force in the low-Rm model has a stronger
damping effect on the fluid motion and further underpredicts the velocity field.

The flow patterns and temperature distribution for the case of Gr ¼ 106 and
Ha ¼ 100 are shown in Figure 4. The combination of these relatively high values
of Gr and Ha numbers has a complex effect on the heat transfer mechanism. On
one hand, the higher Grashof number enforces the domination of convection
over conduction in the fluid flow, and on the other hand, the higher value of the
Hartmann number (i.e., increase of the external magnetic field B0) intensifies the
resistance to the fluid motion, resulting in an enhancement of conduction heat trans-
fer. The higher value of Ha selected corresponds to a lower accuracy of the low-Rm

model because the error between the full magnetic induction model and the low-Rm

model is proportional to Ha2. This is because for higher values of Ha, the stronger
convection flow currents induce higher values of magnetic field and, consequently,
the low-Rm approximation produces worse results.

The flow structure of the full induction model, for all the cases of Rm values
studied, is completely different from the low-Rm approximation. The resulting
streamfunction distribution with decreasing Rm (Figures 4a and 4b) appear to be
totally different. The circulation cell formed for Rm ¼ 1.0 is centrally placed and
its extent reaches the side walls, forming thinner boundary layers than those for
Rm ¼ 0.001. Comparing the streamfunction distribution of the full magnetic induc-
tion case of Rm ¼ 0.001 and the low-Rm model, it appears that they are in better
agreement (with some differences only in the core region), forming thick boundary
layers. As in the case of lower Gr in Figure 3, the value of Wmax depends on the
Rm value when the full magnetic induction model is used and is lower for the case
of the low-Rm model. The temperature distribution is not affected significantly by
Rm (except that the thermal boundary layer becomes thicker with decreasing Rm)
or by the low-Rm model. This proves the initial hypothesis that the increase of the
Lorentz force (due to decreasing Rm) enhances conduction and reduces the heat
transfer through the boundaries.

As a measure of the effect of the Rm on the fluid circulation intensity, the dis-
tribution of the maximum value of the streamfunction, Wmax, is plotted versus Gr
and Ha in Figures 5a and 5b, respectively. The dependence of Wmax on Grashof num-
ber is demonstrated in Figure 5a for the moderate value of Ha ¼ 25 and for
Rm ¼ 1.0, Rm ¼ 0.001, and the low-Rm model. The dependence of Wmax on
Hartmann number for Gr ¼ 106 is shown in Figure 5b for the same three cases of
Rm. The associated relative error distribution, E(0.001), between the results of the
Wmax calculated from the full magnetic induction model for Rm ¼ 0.001 and those
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Figure 5. Variation of the maximum value of the streamfunction for Rm ¼ 1:0 and 0.001 and the low-Rm

model with: (a) Grashof number for Ha ¼ 25; (b) Hartmann number for Gr ¼ 106.
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of the low-Rm model are plotted in the inner plots for each case. Connected with the
above results, the Wmax value is high for the case of Rm ¼ 1.0, becoming lower as Rm

decreases. The calculated values of Wmax for the low-Rm model are lower than those
of the full magnetic induction model for all the Gr values studied. For the case of
Rm ¼ 0.001, the calculated distribution is somewhere between the previous two
(Rm ¼ 1.0 and low-Rm). For low Gr(¼102), the flow circulation intensity for the
above case is closer to that of Rm ¼ 1.0. This is in agreement with the fact that
the weak conductive flow (small fluid velocities for low Gr) induces negligible
amount of magnetic field due to magnetic diffusion only. The semiconvective term
of Eq. (12) ½r � ðv� B0Þ� is almost negligible, and the magnetic fluctuations follow
only the diffusion law. Thus, the resulting Lorentz force for these cases is inde-
pendent of the value of Rm. Furthermore, the equivalent Lorentz force of the low-
Rm model, which takes into account all the terms of Eq. (12), results in stronger
damping than it should.

Alternatively, as Gr increases and the flow is fully convective (Gr ¼ 106), the
values of Wmax from the full magnetic induction model with Rm ¼ 0.001 approach
those of the low-Rm model. In the convective regime, the intense circulation currents
induce a larger amount of magnetic perturbations, b, in the case of Rm ¼ 1.0 and
significantly less in the case of Rm ¼ 0.001, thus matching the requirements of the
low-Rm model. The tendency for uniformity of the magnetic field and the formation
of thin layers (where the current is concentrated) as the Rm increases is the reason the
flow circulation intensity is higher for Rm ¼ 1.0 than for Rm ¼ 0.001 or for the low-
Rm model (proof of this behavior is given in the comments on Figure 6, below). A
careful inspection of the relative error between the values of the Wmax of the full
magnetic induction cases for Rm ¼ 0.001 and those of the low-Rm model reveal their
reciprocal dependence on Gr. For cases of small Gr, the relative error between the
two cases is about 30%, while the increase of Gr reduces this error to less than
5% (for Gr ¼ 106).

This latter case of Gr ¼ 106, which corresponds to the lowest relative error
level, is selected to demonstrate the dependence of Wmax on Ha due to the magnetic
model used. The distribution of Wmax values for the cases of the full magnetic induc-
tion model with Rm ¼ 1.0 and Rm ¼ 0.001 and those of the low-Rm model are shown
in Figure 5b. As Ha increases, the stronger Lorentz force on the fluid causes its decel-
eration. The decrease of the circulation intensity depends on both increasing Ha and
decreasing Rm. The differences between the results of the full magnetic induction
model for Rm ¼ 0.001 and the low-Rm model increase monotonically as Ha
increases. The relative error curve shows that, for the case of Ha ¼ 100, the associa-
ted error exceeds 22%. Considering that in many technological applications (includ-
ing fusion reactor blankets) the value of the Hartmann number can rise to several
thousands, the need to verify the numerical results is more intense.

The effect of Rm on the induced magnetic perturbations and consequently on
the electric current patterns and the resulting Lorentz force is shown in Figure 6.
The cases considered here correspond to Rm ¼ 1.0 in Figure 6a and Rm ¼ 0.001 in
Figure 6b, for Gr ¼ 106 and Ha ¼ 25. For the higher-Rm case, the induced magnetic
perturbations are more than two orders of magnitude higher than for Rm ¼ 0.001.
For Rm ¼ 1.0, regions with high magnetic perturbations are concentrated mainly
in the upper-right and bottom-left corners of the enclosure, forming thin boundary
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Figure 6. Distribution of magnitude of the magnetic perturbations (upper), electric current (middle), and

Lorentz force (lower) for Gr ¼ 106 and Ha ¼ 25: (a) Rm ¼ 1:0 (0 (0.148) 2.375,�140.26 (17.53) 140.26,

0 (9.87) 148.07); (b) Rm ¼ 0:001 (0 (0.0008) 0.0128,�0.l76 (0.023) 0.176, 0 (11.76) 176.441).
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layers. In contrast, for the lower-Rm case, the induced magnetic perturbations are
distributed in the vicinity of the side walls. The value of Rm is thus responsible for
the displacement of the magnetic perturbations from the side walls to the corners
and the horizontal boundaries. The electrical current patterns follow closely the
magnetic perturbations and, for the case of Rm ¼ 0.001, these patterns cover the
entire height of the side walls, forming relatively thick layers, while for the case of
Rm ¼ 1.0, the higher amount of current passes through thin side wall layers and
the upper-right and bottom-left corners.

The resulting Lorentz force distribution also follows the magnetic perturbation
and the current patterns. This means that, for the lower-Rm case, the resistance to
fluid motion is stronger, concentrated at the side walls, and results in lower circu-
lation intensity and heat transfer than for the case of Rm ¼ 1.0. For the present
study, in which the horizontal boundaries are both adiabatic, the existence of stron-
ger Lorentz forces in the corners and the horizontal boundaries (for Rm ¼ 1.0) does
not affect the heat transfer significantly.

4.2. Effect of MHD Model on the Heat Transfer

The magnetic induction model used (full or low-Rm) and the value of Rm also
have a significant effect on the heat transfer rates at the side walls, as shown in
Figure 7, where the variation of average Nusselt number with Gr and Ha is pre-
sented. The average Nusselt number is not affected significantly by the magnetic
induction model at low Gr values (Figure 7a). For the conduction-dominated flow
of Gr ¼ 102–103, the value of the Nusselt number (equal to 1 for pure conduction)
is identical for all the cases of Rm (10 and 0.001) and the low-Rm model. Further
increase of Gr increases the values of Nu and, consequently, the associated errors.
Upon increasing the value of Gr to 5� 104, the relative error increases to almost
12%. For the case of Rm ¼ 1.0, the values of average Nu are higher than for
Rm ¼ 0.001 because of the stronger flow currents, while for Rm ¼ 0.001 they are
closer to those of the low-Rm model. For higher Gr, the relative error decreases
and the results of the full magnetic induction model with Rm ¼ 0.001 approach those
of the low-Rm model.

A stronger effect of the magnetic induction model on Nu values can be
observed with increasing Ha, shown in Figure 7b, for the higher-convective case
of Gr ¼ 106 studied. As already discussed, the case of Gr ¼ 106 produces smaller
relative errors between the results of the full magnetic induction model with
Rm ¼ 0.001 and the low-Rm model. The distribution of Nu values depends strongly
on Rm. The increase of Ha decreases the values of Nu, as expected, through the
increase of the magnetic damping action. The relative error between the results of
the full magnetic induction model with Rm ¼ 0.001 and the low-Rm model increases
monotonically as Ha increases (for Ha ¼ 100, the error exceeds 18%). Considering
the much higher values of Ha corresponding to the fusion blankets, the error in the
estimation of Nu through the choice of magnetic induction model could increase
dramatically.

Interesting conclusions on the effect of Rm on the heat transfer and on the val-
idity of the low-Rm approximation may be drawn also from the distribution of the
local Nusselt number on the side walls. Figure 8a shows the distribution of Nuy
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Figure 7. Variation of the average Nusselt number at the hot wall for Rm ¼ 1:0 and 0.001 and the low-Rm

model with: (a) Grashof number for Ha ¼ 25; (b) Hartmann number for Gr ¼ 106.
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Figure 8. Variation of the local Nusselt number along the cold wall for Rm ¼ 1:0 and 0.001 and the

low-Rm model for: (a) Gr ¼ 104 and Ha ¼ 50; (b) Gr ¼ 106 and Ha ¼ 100.
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for the moderate value of Gr ¼ 104 and for the relatively high value of Ha ¼ 50,
while Figure 8b shows the same distribution for the higher-convective case of
Gr ¼ 106 and the highest value of Ha ¼ 100 studied. In the first case, the distribu-
tions of the local Nusselt number for Rm ¼ 1.0 and Rm ¼ 0.001 are very close, and
far from the values of the low-Rm model. The stronger flow predicted by the full
magnetic induction model corresponds to a higher heat transfer rate than that of
the low-Rm model. In the corners of the enclosure, the maximum relative error
between the magnetic induction models is approximately 10%. The heat transfer rate
distributions for the two different Rm numbers are almost identical because of the
slow motion, which cannot give rise to significant perturbations of the magnetic
field.

The distributions of the local Nusselt number for the second stronger convec-
tive case (Figure 8b) follows better the general trend in which the values of
Rm ¼ 0.001 are closer to those of the low-Rm approximation. In the bottom corner
of the hot wall the heat transfer rate is very high, while in the region of the upper
corner the heat transfer rate becomes almost zero. The maximum relative error
between the results of the full magnetic induction calculation with Rm ¼ 0.001 and
those of the low-Rm model exceeds locally the value of 30%.

4.3. Prandtl Number Dependence

Electrically conducting fluids with Prandtl numbers in the range between 10�2

and 7 were studied next. These values are representative of liquid metals (�0.0321),
molten mixed-oxide nuclear fuels ½�0:7 for ðU0:8Pu0:2ÞO2�, and water–salt solutions
(�7). The influence of Pr on the fluid circulation intensity and heat transfer are dis-
cussed for the full magnetic induction model and the low-Rm model. The case of
Ha ¼ 25 and Gr ¼ 106 was selected because it is fairly convective and incorporates
low relative errors for Pr ¼ 0.7. Figure 9a shows the variation of the maximum
streamfunction value versus Pr for the cases of Rm ¼ 1.0, Rm ¼ 0.001, and the
low-Rm model. A relative error diagram between the calculated values for
Rm ¼ 0.001 and the low-Rm model is also included. When Pr is decreased, the rela-
tive error increases up to 22% for Pr ¼ 0.01. For Pr values higher than 2, the relative
error is fixed at a value lower than 2%. These results satisfy the order-of-magnitude
analysis, which shows a Pr�1 dependence on the associated error through the low-Rm

model. The same effect is observed for the variation of Nu versus Pr for the case of
Ha ¼ 25 and Gr ¼ 106 shown in Figure 9b. The relative error reaches almost 10%
for the lower Pr of 0.01 studied, then decreases as Pr increases, and remains practi-
cally unchanged (lower than 1%) for Pr values higher than 2.

From the above results it appears that the higher differences for the circulation
intensity and the heat transfer between the two magnetic induction models (full or
low-Rm) correspond to the lower values of Pr. This means that liquid metal calcula-
tions (such as those for liquid metals in many MHD natural-convection applica-
tions) with the low-Rm model result in higher relative errors than using the full
magnetic induction equations. On the other hand, calculations with working fluids
of higher Pr are less sensitive to the magnetic model used. A useful correlation of
the Nusselt number as function of Ha, Gr, and Pr can be found in the experimental
work of Papailiou and Lykoudis [30].
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Figure 9. Variation with the Prandtl number of (a) the maximum value of the streamfunction and (b) the

Nusselt number for Rm ¼ 1:0 and 0.001 and the low-Rm model for Ha ¼ 25 and Gr ¼ 106.
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5. CONCLUSIONS

The limits of validity of the low-Rm (or quasi-static) approximation for the case
of MHD natural-convection heat transfer were investigated and the dependence of
the flow parameters with the associated errors was determined. The case study of
a laterally heated square enclosure placed on a uniform magnetic field was used to
assess the reliability of the scale analysis and of the magnetic induction model used.

A general observation for the magnetic Reynolds number is that the decrease
of its value, for any Grashof and Hartmann numbers, causes a decrease in the flow
intensity and heat transfer from the vertical solid boundaries, due to the narrow
Hartmann layers which are formed. Moreover, the shapes of the streamlines and iso-
therms were found to be different between solutions of the low-Rm model and those
of the full MHD equations, especially at higher Grashof and Hartmann numbers.

The errors associated with the magnetic induction model used (full equations
or low-Rm approximation) in natural-convection heat transfer simulations were cal-
culated. Results show that as the Gr number increases, the differences between the
two models become smaller (<5% of Wmax for Gr ¼ 106), while as the Ha number
increases, the differences become larger (>20% of Wmax and >18% of Nu for
Ha ¼ 100). A mixed behavior of the Nusselt number was observed as Gr is increased
(the larger difference was found for Gr ¼ 5� 104).

A careful comparison of the results of the full magnetic induction model at low
Rm values (¼0.001) with those of the low-Rm approximation shows that, for rela-
tively large Hartmann numbers, the differences in the estimated flow intensity and
heat transfer are very large and should be taken into consideration in practical pro-
blems. Considering that in many technological applications (including fusion reactor
blankets), the value of Ha reaches some thousands, careful choice of the magnetic
induction model is essential for the reliability of the results.

The latter conclusion is also true for the effect of Prandtl number on the asso-
ciated differences between the two magnetic induction models. Results show that
when Pr is increased, the difference remains practically small and constant, while
for very low values of Pr (such as those of liquid metals), the difference increases sig-
nificantly. Thus, knowledge of the differences and the parameter space in which they
are more pronounced (especially for the case of liquid metals and the presence of
strong magnetic fields—a typical situation for crystal growth procedures and fusion
blankets) is essential to increase the confidence of applications related to MHD heat
transfer. Finally, the present results can help in the correct determination of impor-
tant heat transfer parameters such as the Nusselt number.
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