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Dispersed-phase structural anisotropy in homogeneous
magnetohydrodynamic turbulence at low magnetic Reynolds number
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A new tensor statistic, the dispersed-phase structure dimensionality D”, is defined to describe the
preferred orientation of clusters of discrete bodies. The evolution of D?” is calculated via direct
numerical simulations of passive, Stokesian particles driven by initially isotropic, decaying
magnetohydrodynamic turbulence. Results are presented for five magnetic field strengths as
characterized by magnetic interaction parameters, N, in the range 0-50. Four field strengths are
studied at a grid resolution of 1283. The strongest field strength is also studied at 256° resolution. In
each case, the externally applied magnetic field was spatially uniform and followed a step function
in time. Particles with initially uniform distributions were tracked through hydrodynamic turbulence
for up to 2800 particle response times before the step change in the magnetic field. In the lower
resolution simulation, the particle response time, Tp matched the Kolmogorov time scale at the
magnetic field application time #,. The higher-resolution simulation tracked ten sets of particles with
7, spanning four decades bracketing the Kolmogorov time scale and the Joule time. The results
demonstrate that D” distinguishes between uniformly distributed particles, those organized into
randomly oriented clusters, and those organized into two-dimensional sheets everywhere tangent to
the magnetic field lines. Lumley triangles are used to demonstrate that the degree of structural
anisotropy depends on 7,, N, and the time span over which the magnetic field is applied. © 2008

American Institute of Physics. [DOI: 10.1063/1.2832776]

I. INTRODUCTION

The spatial distribution of a set of discrete bodies plays a
significant role in how they interact with each other and the
surrounding space or material medium. On length scales
ranging from the intermolecular to the intergalactic, structure
in the spatial distribution of discrete entities is one of the key
differentiators between phases of matter and even galaxy
types and galaxy clusters. Since most of the visible universe
exists as plasma, a common question concerning spatial or-
ganization relates to that of dust particles in electrically con-
ducting flows. In the rings around Saturn, for example, the
observance of radial “spoke” structures gave scientists im-
portant information about the forces acting on particles in the
rings.l Closer to home, acoustic wavelike patterns have been
observed in the dust component of laboratory plasmas.2 Such
coherent structure in dispersed phases often results from
complex interactions with coherent structures in the sur-
rounding flow. The interactions between dust particles and
turbulent “blobs” in tokamak plasmas, for example, are well
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documented (cf. Ref. 3 and Refs. 48-50 cited therein).

Less is known about the spatial distribution of solid par-
ticles in conducting liquid flows despite its relevance to in-
dustrial processes such as semiconductor crystal growth and
semisolid metal processing. In semiconductor growth, steady
magnetic fields can be used to damp turbulence.* In semi-
solid metals, magnetic stirring radically alters the micro-
structure of the resulting products by homogenizing the dis-
tribution of solid nucleation sites and influencing their
crystalline structure.”® The thixotropic behavior of semisolid
metals, for example, greatly reduces the need to machine the
final product due to the ease with which semisolids can be
manipulated.7 Since this malleability depends on the shape of
the nucleation sites, methods have been invented to encour-
age certain particle morphologies. For example, Lu et al®
patented a technique for ensuring spheroidal particles.

Both experiment and analysis confirm that the flows of
interest in the magnetic processing of semisolid metals are
turbulent (cf. Ref. 6 and Refs. 13 and 15 cited therein). The
magnetohydrodynamic (MHD) equations describe conduct-
ing liquid metal turbulence. Direct numerical simulation
(DNS) resolving all dynamically relevant scales of motion
provides the most fundamental solution of the MHD equa-
tions. DNS has illuminated important morphological features
of MHD turbulence at low magnetic Reynolds numbers.

© 2008 American Institute of Physics
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Most relevant to the current paper, Zikanov and Thess’ stud-
ied forced isotropic turbulence via DNS at the integral length
scale Reynolds numbers Re, equal to 128 and 190. They
employed the quasistatic approximation that is formally valid
in the limit of infinitesimal Re,,. They demonstrated that the
Stuart number N (a dimensionless magnetic field strength
also known as the magnetic interaction parameter) deter-
mines the ultimate turbulence state. Initially isotropic turbu-
lence remained isotropic at low N, transitioned to a two-
dimensional/three-component (2D/3C) state at high N, and
alternated between this state and occasional 3D bursts at in-
termediate N. In the high-N case, they used vorticity vector
plots and peak vorticity magnitude histories to confirm pre-
vious analytical and lower-dimensional treatments, specifi-
cally the phenomenology described by Davidson,'® wherein
eddies parallel to a constant magnetic field elongate along
the imposed field direction, while transverse eddies disinte-
grate into sheets oriented along the magnetic field lines.

More recently, Knaepen and Moin'' extended the above
picture to Re, =380, using filtered DNS results to validate
large-eddy simulations (LES). They used the dynamic Sma-
gorinsky subgrid-scale model of Germano et al."™* to account
for the influence of the unresolved eddies on the resolved
ones. Their results, along with those of Vorobev et al.,13 sug-
gest that the transition to a 2D/3C state at high N is insensi-
tive to moderate increases in Re,.

None of the above DNS and LES studies addressed par-
ticle dispersion. While numerous authors have simulated par-
ticles transported by liquid-metal MHD flows in the context
of semisolid processing, the complicated flow geometries
and high hydrodynamic Reynolds numbers necessitated
Reynolds-averaged Navier—Stokes (RANS) methodology.
Roplekar and Dantzig6 provided an extensive review of the
literature on this topic up to the turn of the century, in addi-
tion to their own results computed with a mixing-length
RANS model. An important issue that arises in industrial
simulations is microstructural inhomogeneities that result
when the semisolid dispersion is not evenly mixed. Under-
standing the role dispersed-phase inhomogeneities play in
this problem requires predicting details of the particle spatial
distribution in MHD turbulence.

It is well known that particles dispersed by turbulence
exhibit a range of spatial distributions that can be param-
etrized by their Stokes numbers St, a dimensionless measure
of their response time to Stokesian drag.14 At low St, par-
ticles act as flow tracers. Mass conservation arguments for
incompressible flow preclude tracers from clustering near a
point. If a volume marked by a collection of tracers shrinks
in one coordinate direction, it must expand in another. Tur-
bulent stretching and folding of such volumes ultimately
leads to random distributions. At high St, particle trajectories
are essentially ballistic with low-amplitude random perturba-
tions imposed by the eddies they pass through. Such particles
also exhibit random spatial distribution. At intermediate St,
where particle response times are comparable to characteris-
tic flow time scales, particles preferentially concentrate in
high-strain regions and preferentially disperse out of vortical
regions. Snapshots of such particles exhibit distinct voids
and clusters across a range of length scales.”
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To date, there appear to have been no attempts to build
structural information about dispersed phases into RANS
models even in purely hydrodynamic turbulence. While nu-
merous researchers have demonstrated correlations between
particle number density and the instantaneous enstrophy,
pressure, and various invariants of the velocity gradient
tensor,'®!” these variables play no direct role in most RANS
models. Since Lagrangian equations of motion provide the
most fundamental description of the particle dynamics, cou-
pling the solution of Lagrangian equations with DNS might
produce otherwise inaccessible details of particle-laden tur-
bulence. Furthermore, connecting dispersed-phase structural
statistics calculated by DNS with the fluid-phase statistics
employed in RANS models lays a foundation for ultimately
turning a dispersed-phase structure descriptor into a predic-
tor if it can be expressed as a tensor function of other flow
statistics and parameters. While the development of a new
RANS model is beyond the scope of the current paper, it
serves as the inspiration for our work.

A natural path for the program proposed in the preceding
paragraph is to proceed by analogy with the one-point, fluid
turbulence structure tensors developed by Kassinos and
Reynolds.lg’19 They showed that while the Reynolds stress
tensor contains componentality information regarding the
relative strengths of the fluid velocity component fluctua-
tions, it lacks two other types of structural information nec-
essary for a complete characterization of the distribution of
turbulence kinetic energy. In nonisotropic flows, a structure
dimensionality tensor'? is necessary to provide information
about the spatial variation of the energy. In flows subjected
to mean or frame rotation, the stropholysis tensor'® com-
pletes the description by providing information about the ef-
fects of reflectional symmetry breaking.

An obvious way to make the connection between the
turbulence structure tensors and the spatial distribution of
discrete bodies is to calculate a number density scalar field.
Kassinos, Knaepen, and Carati®’ recently explored the utility
of a dimensionality tensor for scalar fields in describing pas-
sive scalar concentrations in homogeneous MHD turbulence
sheared in a rotating frame. Their data indicate that the rela-
tive size of the scalar-field dimensionality components accu-
rately captures the shape and orientation of the concentration
isosurfaces. An important question is whether an analogous
tensor has similar descriptive power for number density
fields calculated for discrete bodies.

Important differences between the physics of turbulent
scalar diffusion and that of turbulent particle dispersion make
the extension to the latter case interesting. Even simple cases
that lead to trivial results in diffusion do not do so in disper-
sion. A molecular species with a spatially uniform mean dis-
tribution and no initial fluctuations will remain so for all
time, whereas inertial particles that slip relative to the flow
will transition from a uniform distribution to a nonuniform
one. Furthermore, the resulting nonuniform distribution can
be random or possess coherent structure. Even in the zero
inertia limit, when particles become flow tracers, they do not
approach the molecular species case since such flow tracers
exhibit no cross-stream diffusion, at least in the absence of
Brownian motion.
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Homogeneous MHD turbulence at low Re,, provides a
useful starting point for examining the particle number den-
sity structure dimensionality. The evolution toward the afore-
mentioned 2D/3C state enables the development of strong
flow anisotropy without imposing walls, mean strain, or
mean rotation. These other approaches to introducing aniso-
tropy have attendant grid and boundary condition complica-
tions that are avoided in the flows described below.

The remainder of this paper explores dispersed-phase
structural anisotropy in the context of two sets of simula-
tions: one in which particles with the same response time are
exposed to a range of MHD flows with different magnetic
field strengths, and a second simulation, in which particles
with a range of response times react to a MHD flow with a
single magnetic field strength. Section II provides the gov-
erning equations and defines the relevant dimensionless pa-
rameters. Section II also presents the numerical methods em-
ployed to solve the governing equations and briefly describes
a novel software design strategy used to implement the nu-
merics. After describing the two sets of simulations, Sec. III
presents the fluid and dispersed-phase statistics along with
some flow visualizations. Finally, Sec. IV summarizes our
conclusions.

Il. METHODOLOGY
A. Governing equations

The transport of passive particles by MHD turbulence is
characterized by four dimensionless parameters. The first is
the turbulence Reynolds number,

Re= —, (1)
14
where v is the fluid kinematic viscosity and v and L are
characteristic fluid velocity and length scales that will be
specified at the end of this section. The second parameter is
the magnetic Reynolds number,

Rem =, (2)
n

where n=1/ (O',LL*)IiS the magnetic diffusivity of the fluid

and where o and u~ are its electrical conductivity and mag-

netic permeability, respectively. The third parameter is the

Stuart number, or magnetic interaction number,

oB’L BiL
=42 ()

N= ,
pv nv

where p is the fluid density, B is the magnetic field strength,
n is the magnetic diffusivity, and B,=B/\pu 1is the mag-
netic field in the so-called Alfvén units. In Alfvén units, the
magnetic field has dimensions of velocity.

Given the above parameters, the evolution of incom-
pressible MHD turbulence can be determined by solving
Maxwell’s equations for the mean and fluctuating magnetic
vector field and the Navier—Stokes equations for the mean
and fluctuating velocity vector field. When Re,, <1, the fluc-
tuating magnetic field adjusts nearly instantaneously to
changes in the fluctuating velocity. As detailed by Roberts”!
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and Knaepen and Moin,"' Maxwell’s equations then reduce
to the so-called quasistatic form in which a Poisson equation
can be written for the fluctuating magnetic field with the
forcing function calculated from the fluctuating velocity
field. The resulting Poisson equation can be solved formally
so that the term coupling the velocity and magnetic fields can
be written explicitly in terms of the velocity alone. The mag-
netic influence then takes the form of a damping term in the
Navier—Stokes equations,

1 1
du=——Vp-u-Vu+rVu- —V‘z(foXt -V)ou, (4)
P n

V-u=0, (5)

where u(x, ) and p(x,1) are the fluctuating velocity and pres-
sure fields; BS" is an externally applied magnetic field; and
V-2 represents the inverse of the Laplacian operator subject
to periodic boundary conditions. The magnetic influence rep-
resented by the third right-hand side (RHS) term is negative-
definite in the kinetic energy balance. This term dissipates
energy by selectively damping velocity gradients aligned
with B§.

The actual form of the Navier—Stokes equations solved
in the current work is the parallel velocity/vorticity compo-
nent form suggested by Kim, Moin, and Moser.” In this
form, Egs. (4) and (5) are differentiated to obtain evolution
equations for one component of velocity and a parallel com-
ponent of vorticity,

VU, ={= V[V - (u X 0)]+ V*(u X w)}, + vV*(V?u,)

1
- ;(Bff“ -V)us, (6)

1
F,0,=[V X (0 X w)], + vVw, - —V_z(Bj)" -V)2w,, (7)
n

Wy = dauy — dyus, (8)

(9111{1 + (93143 =— (721/{2. (9)

This form eliminates the need to compute the pressure and
reduces to two the number of variables that must be ad-
vanced in time. Also, Canuto et al.”® showed that writing the
nonlinear terms in the rotational form u X e discretely pre-
serves kinetic energy in Galerkin approximations to the
primitive equations (4) and (5). This property can be pre-
served in Egs. (6) and (7) if the continuous operators used to
transform from Egs. (4) and (5) can be replaced formally by
their discrete Galerkin counterparts at each step in the trans-
formation.

Given periodic initial data u(x,7=0) defined on the
semi-open, cubical domain {xj e[0,2m),j=1,2,3}, Egs.
(6)—(9) can be advanced in time. Upon advancing u, and w,,
stepping forward again requires solving Egs. (8) and (9) for
u; and uz. Averaging the latter two equations over x; and x;
shows that they provide no information about the x;—x3 av-
erage of u; and u3. Such information was lost in the differ-
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entiations performed to arrive at Egs. (6) and (7). We recover
the lost information by tracking the x;—x; average of the
original equations of motion (4) and (5),

I _
Fuy) iz =((u X w))3+ Vl9§<u1>13 - 77322(35\)3‘92)2”1,

(10)

1 X
Ius 3= {0 X @)3)13+ vr{us) ;s — ;]322(33532)2'43,

(11)

where ( )5 represents averages over x;—x; planes. If Egs.
(10) and (11) were not solved explicitly, as is done here, then
some assumption about their dependent variables would be
implied or the solution would be underconstrained.

In applications involving the semisolid formation of
solid products, the conditions investigated in the current
study represent times near the onset of solidification. The
small diameters at these times>* imply that spheroidal par-
ticles can be expected to follow the drag law of Stokes,” at
least to first order in particle size and density relative to the
Kolmogorov length scale and the fluid density,
respectively.26 In such a case, the equations of motion for
each particle are

dr

—=v, 12

=Y (12)

dv 1

— =—[u(r,n) - v], 13

R R (13)
20>

7= (14)
9pv

where r and v are the particle position and velocity, respec-
tively; u(r,7) is the undisturbed fluid velocity in the neigh-
borhood of the particle; and Ty, @ and p, are the particle’s
hydrodynamic response time, radius, and material density,
respectively. Equation (13) balances particle inertia (as char-
acterized by m,,) against the molecular momentum exchange
integrated over the particle surface (as characterized by the
transport coefficient v). The undisturbed fluid velocity,
u(r,7), interpolated to particle location, r, estimates the ap-
propriate freestream velocity in the neighborhood of the par-
ticle. The dependence on p, indicates that denser particles
respond more slowly to changes in the neighboring fluid ve-
locity. The dependence on the dynamic viscosity, u= pv, and
particle radius, a, indicates that smaller particles in more
viscous fluids more rapidly track changes in the local fluid
velocity.

Also characteristic of solidification onset is low particle
volume fraction. At sufficiently low volume fractions, the
solid phase carries a negligible fraction of the mass and mo-
mentum. Experiments on particle-laden flow suggest that the
particles can be treated as passive in such cases (cf. Refs. 27
and 28). We make this approximation in the current study.

Equations (12)—(14) add the Stokes number as the fourth
required dimensionless parameter,
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St= 2, (15)
7f

where 7/ is a characteristic time scale of the fluid motion.
The default value of 7 is L/v.

It remains to specify the reference length and velocity
scales L and v. Our simulations include four runs in which
the evolution of the turbulence matches cases studied by
Rouson ef al.” at the 2006 Summer Program of the Center
for Turbulence Research. In that work, which we refer to as
CTR2006, the number of particles simulated was insufficient
to calculate the dispersed-phase structure statistics presented
in the current paper. The CTR2006 default normalizations
for all quantities were calculated from the initial total turbu-
lence kinetic energy, «, and the domain’s length on one edge,
t, Mled by 2. These then give L=€/(27) and v
=V2k/3. The current paper employs the CTR2006 normal-
ization when reporting statistics for the corresponding four
runs.

A fifth simulation reported herein matches in its hydro-
dynamic characteristics a decaying turbulence simulation run
by Mansour and Wray30 with no particles and no mgnetic
field. Their default velocity and length scales were y3« and
€/(27), respectively. We refer to this as the MW 1994 nor-
malization and employ it when reporting the corresponding
data.

While the above discussion of default normalizations is
essential to the goal of unambiguously communicating our
results, it is of course irrelevant to the goal of simulating a
particular flow regime. Toward the latter end, what matters is
fixing the parameters that have particular dynamical rel-
evance to our goal of investigating a rich variety of
dispersed-phase morphologies. These include uniform, ran-
dom, and preferentially concentrated spatial distributions
along with the transitional states between these. A region of
parameter space that gives this is Re,,, <1, Sty~1, and
N, >1, where Re,,, is the magnetic Reynolds number based
on the integral length scale, where Sty is the Stokes number
based on the Kolmogorov time scale, and where N, is the
interaction parameter based on the integral length scale. In
this flow regime, turbulence subjected to a spatially and tem-
porally constant magnetic field transitions to the aforemen-
tioned 2D/3C state. Also, in hydrodynamic turbulence, it is
known that St~ 1 maximizes preferential concentration."*

Since this paper concerns decaying turbulence with non-
stationary statistics, some care must be taken in choosing
how and when to match the above parameters in simulations
with distinct initial conditions and default normalizations.
The Appendix discusses our strategy.

B. Numerical method

We approximate the governing partial differential equa-
tions with a semidiscrete Fourier—Galerkin spectral method,
employing exact dealiasing via the 3/2 rule.”® We advance
the resulting semidiscrete fluid and particle equations with
the low-storage algorithm described by Spalart, Moser, and
Rogers.31 Their method advances linear terms implicitly and
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nonlinear and inhomogeneous terms explicitly. For a solution
vector U={u,, w,,{u;)3,{us)13,r,v}! and differential equa-
tion system

4U =L(U) + N(U), (16)

where L contains all linear terms and N contains all nonlin-
ear and inhomogeneous terms, the algorithm takes the form

u' =u,+At, {Llaju’ + Bu,] + ¥ N[u,]}, (17)

u’'=u; + Az, {Layn” + Bu' |+ »N[u, ] + {\N[u']},
(18)

u, =+ At {Llasu, + B3u"]+ y3N[u']+ {HN[u"}],
(19)
where primes denote substep values between the nth and

(n+1)th time steps, and At,,,=t,,;—1,. The coefficients in
Egs. (17)—(19) are

{al’a2va3}5{4/15?1/15’1/6}E{BI’BZ’B3}7 (20)
{71, 72, v3} = {8/15,5/12,3/4}, (21)
{£1,5} = {-17/60,— 5/12}. (22)

Since the viscous and magnetic terms are advanced implic-
itly, the nonlinear and inhomogeneous terms determine the
stability of this method. A straightforward modified wave-
number analysis of the type described by Moin™ yields a
one-dimensional theoretical stability limit. Extending this to
3D by analogy yields

CFL = 7(|uy | + |s] + |us) At/ Ax < 3, (23)

where Ax=27/N denotes the uniform spacing of the N nu-
merical quadrature points on the interval [0,27r). The results
presented in Sec. III were produced with the time step ad-
justed at each step to the maximum theoretical stable value
for the entire field. Tests with smaller time steps generated no
significant changes in the statistics of interest. Spalart,
Moser, and Rogers reported being able to run at CFL num-
bers above the theoretical limit due to the stabilizing effects
of viscous dissipation.

The primary value of working with the quasistatic MHD
approximation is the ability to run at the hydrodynamic sta-
bility limit. Our quasistatic DNS results closely match those
of a fully coupled MHD solver at low magnetic Reynolds
number even though the quasistatic runs used time steps that
were a factor of 20 larger.

In general, the time step also needs to be restricted ac-
cording to the stability limit of the particle equations of mo-
tion. An exact stability criterion for the particle equations
cannot be determined since u is an unknown function of
particle position and time. An approximate condition can be
derived by considering a particle in a uniform, steady flow
field, which leads to the condition

At/7, <2.51. (24)

Rouson, Abrahamson, and Eaton®® found that in a DNS of
channel flow, the fluid stability criterion (24) always proved
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more restrictive than the particle criterion (24). This is con-
sistent with the notion that the particle response time exceeds
the smallest resolved time scales in the fluid. The current
DNS was performed with the assumption that stable fluid
time advancement implies stable particle advancement.

C. Software

In addition to investigating new turbulence physics, the
simulations reported in the CTR2006 report, and in the
present paper, provide the first published validation of a
novel set of software modules developed by Rouson ef al**
The novelty lies in separating the expression of the con-
tinuum physics from the discrete numerics and the data, a
concept inspired by Lefantzi er al.*® One module represents
the physics by expressing the continuous Navier—Stokes
equations. Thus, the differential forms written in Egs. (6),
(7), (10), and (11) appear in very nearly the same syntax in
the code as they are written in this paper. These continuous
forms are approximated discretely by separate mathematical
modules that do not share data with the physics module.
Similarly, a separate time integration module accomplishes
advancement without access to the actual data it is advanc-
ing. This time integration strategy was described by Rouson,
Morris, and Xu.¢

The above problem decomposition starkly contrasts with
traditional scientific programming in which data are passed
to and returned from libraries. Our decoupling of the data
dependencies between modules facilitates flexibly changing
the numerics without necessitating any changes to the code
that represents the physics and vice versa. Work is underway,
for example, to replace the 3D Fourier representation used in
this paper with one suitable for wall-bounded flow. Since the
Navier—Stokes equations do not change in the flows under
consideration, the underlying discrete numerical modules are
evolving without alteration to the physics module.

lll. RESULTS
A. Description of the cases

We simulated initially isotropic MHD turbulence under
the influence of a spatially constant external magnetic field
with step-function behavior in time. The time period before
the step change in the magnetic field ensures the turbulence
has the chance to evolve naturally via the Navier—Stokes
equations. This allows the higher-order statistics to develop
and the velocity derivative skewness to reach its peak value
before the magnetic field is applied. The length of the devel-
opment period in the current study is chosen to facilitate
code validation by comparison to two previous studies
(Kassinos, Knaepen, and Carati®’ and Mansour and Wray30).
All boundary conditions were periodic. For the dispersed
phases, periodic boundary conditions imply that particles ex-
iting a flow boundary were reintroduced to the flow with
their coordinate orthogonal to the exit plane modulo the do-
main edge length and with their velocity unchanged. The
fluid velocities at particle positions are calculated by 3D lin-
ear interpolation, which Rouson, Abrahamson, and Eaton™
found to compare favorably to full spectral summation for
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TABLE I. Simulation parameters for quasistatic DNS.

Phys. Fluids 20, 025101 (2008)

Parameter Case 0 Case 1 Case 6 Case 11 Case A
Viscosity (v) 0.003 0.003 0.003 0.003 0.0007
Interaction parameter (N,) 0 1 10 50 50
Magnetic field step time (z,) N.A. 0.5 0.5 0.5 2.8
Eddy turnover time [«(z,)/ €(t,)] 7.7 7.7 7.7 7.7 1.3
Joule time [7(t,)/ B(,)*] o 0.80 0.080 0.016 6.5%1073
Microscale Reynolds number [Re, (¢,)] 130 130 130 130 71.6
Initial energy peak (k,) 3.0 3.0 3.0 3.0 3.0
Particle response time (7,,) 0.3 0.3 0.3 0.3 0.001-10
Resolution (M?) 1283 1283 1283 1283 2563
Number of particles (M;) 64° 64° 64° 64° 1283

statistics up to second order in the fluid velocity. Taylor dem-
onstrated that the second-order velocity statistics determine
particle dispersion.38

To preclude extrapolating any fluid velocities, the above
wrapping of exiting particles occurs at the end of each of the
three substeps in the time advancement algorithm specified
in the preceding section. When tracking such large numbers
of particles (over 21 million total in this study) for long
periods of time, care must be taken to deal with rare, end
conditions. Bec er al.*® demonstrated that inertial particles
exhibit chaotic behavior as characterized by a positive maxi-
mal Lyapunov exponent in the six-dimensional position-
velocity phase space. Since this likely justifies an ergodic
hypothesis, the particles can be expected to eventually visit
every point in their phase space, and as a corollary, to visit
every point in the position subspace, i.e., the physical space.
Given finite machine precision, the number of such positions
to visit is finite, implying a small but finite probability that a
particle will land precisely on a flow boundary to within
machine precision. When we indexed particles by dividing
their coordinates by the grid spacing to locate the corre-
sponding fluid interpolation cell, we observed rare anoma-
lous behavior for particles landing precisely at those domain
boundaries that do not contain the origin, i.e., surfaces of
constant xj:277, where j=1,2,3. To avoid such behavior,
these particles were considered to have exited the flow do-
main and were therefore wrapped around to the opposite do-
main boundary before performing the corresponding fluid
velocity interpolations.

Table I provides our simulation parameter values, in-
cluding, from top to bottom, the kinematic viscosity v, inter-
action parameter N, based on the integral length scale, the
magnetic field application time #,, the eddy turnover time
k/ €, Joule time 7/ BZ, the microscale Reynolds number Rey
at 1, the wavenumber of the energy spectrum peak in the
initial condition k,, the particle hydrodynamic response time
Tps the number of Galerkin quadrature points M3, and the
number of Lagrangian particles Mf,. The first eight rows are
normalized using the default scalings discussed in the pre-
ceding section. Within these rows, the first four columns use
the CTR2006 scaling. The final column uses the MW 1994
scaling.

The initial fluid velocity for the quasistatic DNS is a
solenoidal vector field with random phases and the dimen-
sional energy spectrum

32\2/7

E(k) = KT(k/kp)4 exp[— 2(k/k,)*V/k,, (25)

where k is the wavenumber, kp is the wavenumber corre-
sponding to the maximum of E, and x= [jE(k)dk. The mag-
netic field vector, B5", has Cartesian components (0,0, B%3),
where the superscript indicates that the field is generated by
an external source. The subscripts indicate that the field is in
Alfvén units and is aligned with the x5 axis. In Alfvén units,
the field has dimensions of velocity due to an implicit nor-
malization by Vou.

In Cases 011, 64° particles were initially distributed
uniformly in space with velocities matching the local fluid
velocity. They were then allowed to mix by natural action of
the turbulence until the time 7,=0.5 in the CTR2006 scaling,
corresponding to 1.67 particle response times, at which time
the external magnetic field is applied. This value of f,
matches that used by Kassinos, Knaepen, and Carati.”” As
discussed in the Appendix, the particle response times in
Cases 0—11 were chosen to match the Kolmogorov time scale
at t. It is well known that this choice maximizes the prefer-
ential concentration of particles in hydrodynamic turbulence.

In Case A, ten sets with 1283 particles per set were ini-
tially distributed uniformly. The particle response times span
four decades bracketing the Kolmogorov and Joule time
scales at f,. That Kolmogorov time scale was 0.049 in the
MW 1994 normalization. In the same normalization, the par-
ticle response times equal 0.001, 0.005, 0.01, 0.03, 0.05,
0.08, 0.1, 0.5, 1, and 10. The fluid and particles were tracked
from an initial Taylor microscale Reynolds number Rey
=952 down to Re, =71.6, at which point the magnetic field is
turned on at 7,=2.8. This simulated time is sufficiently long
for all but the two highest-7, particle sets to reach a dynami-
cal equilibrium with the driving turbulence. Finally, note that
the fifth response time (0.05) listed earlier in this paragraph
yields a Stg very near unity.
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FIG. 1. On the left is a schematic diagram showing idealized 2D structures (eddies) in homogeneous turbulence and the associated componentality,
dimensionality, and circularity for (a) a vortical eddy, (b) a jetal eddy, and (c) a helical eddy. On the right is a schematic diagram showing the flattening of
turbulent eddies that are assumed to be elongated in the x; direction: (a) An axisymmetric eddy, (b) a horizontally flattened eddy, and (c) a vertically flattened

eddy.

B. Turbulence statistics: Cases 0-11

Our interest lies in characterizing the dispersed-phase
structural anisotropy resulting from anisotropy in the sur-
rounding turbulence. Since we seek to lay a foundation for
enhancing RANS models, our starting point is the fact that
closure of any RANS model requires estimating the Rey-
nolds stress tensor R,40 the Cartesian components of which
are

Ry = (uuy), (26)

where u; and u; are the ith and jth components of the fluc-
tuating fluid velocity and where, in the context of homoge-
neous turbulence, the angular brackets denote averaging over
all of space.

The one-point turbulence structure tensors were intro-
duced by Kassinos and Reynoldslg’19 as a convenient method
to describe the structural morphology of turbulent fields. One
important notion laid out in Refs. 18 and 19 is the need to
distinguish between the componentality of the turbulence
(described by the Reynolds stress tensor) and its dimension-
ality, which has to do with the morphology of the turbulence
eddies, and is described by the structure dimensionality ten-
SOr.

For homogeneous turbulence, the structure dimensional-
ity tensor reduces to the form

Kk,
Dy= f S, ik, 27)

where K is the wavenumber vector, #; are the velocity Fou-
. A Ak . .

rier components, and E;;(k)~ ;i is the velocity spectrum
tensor. Similarly, in homogeneous turbulence the circularity
tensor is given by

A A
o 00
Fij= f FyR)dk,  Fijlk) ~ kW = [ 28)

where }'ij(k)~k2\f’,-\ff; is the circularity spectrum tensor,
and V¥, and @, are the stream function and vorticity Fourier

components. From Egs. (27) and (28), it can be shown that
for homogeneous turbulence,

Rkk=Dkk=Fkk=2K’ (29)

where in Eq. (29), and hereafter, repeated indices imply sum-
mation over all components. Finally, in homogeneous turbu-

lence, D;j, Fyj, and R;; are related through the fundamental
constitutive equation
Rij+Dij+Fij=2K5ij’ (30)

which when expressed in terms of the normalized tensors,
dij=Dij/Dkk’ ‘fij=Fij/Fkk’ rij=Rij/Rkk7 (31)
takes the equivalent form

i

Because in the isotropic case, r;j=d;;=f;;= &;/3, one can de-
fine the anisotropy tensors,

Fy=rij= 63 dy=dy— 83 [fy=f;-8/3  (33)
satisfying
In anisotropic turbulence, when considered together, dij and
fij give a fairly detailed description of the turbulence struc-
ture. For example, d;;=0 and f;;=1 means that the domi-
nant large-scale structures are very nearly 2D eddies aligned
with the x; axis, with motion confined in the plane normal to
the eddy axis and organized in a large-scale circulation. We
call structures of this type vorfical eddies (see Fig. 1). On the
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FIG. 2. Energy decay: (—) Case 0 (quasistatic); (O) Case 0 (fully coupled);
(@) Case 1 (quasistatic); (X) Case 1 (fully coupled); (- — —) Case 6 (qua-
sistatic); (+) Case 6 (fully coupled); (——) Case 11 (quasistatic); (<) Case
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other hand, d;;=0 and f;=0 corresponds to 2D structures
aligned with the x; axis; motion is confined along the eddy
axis in the form of jets and wakes as opposed to circulation
around the axis. We call turbulence structures of this second
type jetal eddies (see Fig. 1). In general, a turbulence field
includes both vortical and jetal eddies, which can be corre-
lated or uncorrelated. We refer to structures having correlated
jetal and vortical motion as helical eddies (see Fig. 1). Tur-
bulence eddies can also become flattened, that is, their cross
section can become nonaxisymmetric. The flattening of the
eddies is detected by the structure dimensionality tensor, as
depicted in idealized form in the diagram of Fig. 1, where the
eddies are assumed long in the x5 direction. In Kassinos et
al.,” these properties of d;; and f;; are demonstrated using
DNS data from a wide range of homogeneous and inhomo-
geneous flows. Below we present time histories for R;;, «,
and D;; for the flows described in the preceding subsection.

Figure 2 shows the time history of x for Cases 0-11.
Unless otherwise stated, all dependent variables for Cases
0-11 are plotted in the CTR2006 normalization; whereas
time is normalized by the particle response time 7,. Time
histories for Cases 0—11 are plotted over approximately 10
particle response time units in order to discern long-term
trends in dispersed-phase behavior. For validation purposes,
each quasistatic DNS datum in Fig. 2 is plotted with the
corresponding results from a fully coupled MHD code by
Knaepen, Kassinos, and Carati.*' Since the quasistatic ap-
proximation is valid for magnetic Reynolds numbers Re,,
<1, each fully coupled DNS was run with Re,,=0.1. The
initial Taylor microscale Reynolds number was 181 at the
start of the simulation for both codes. By the time the mag-
netic field was turned on, the Taylor microscale Reynolds
number was reduced to the value of 130 shown in Table I. In
addition to showing the dissipative influence of the external
magnetic field, Fig. 2 demonstrates that the code described in
Sec. I C accurately predicts the evolution of the turbulence
in the low-Re,, regime. For each case plotted, the two codes
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produce essentially identical results during the purely hydro-
dynamic decay [B35(r<1,)=0]. As expected, when the mag-
netic field is activated, the quasistatic simulations initially
adjust slightly more rapidly, after which results of the two
sets of simulations approach each other asymptotically.

Figure 3 shows the time history of the diagonal elements
of the normalized Reynolds stress tensor r;; after £,. The
off-diagonal components vanish in isotropic turbulence,
where r;=6;/3. Figure 3(a) demonstrates that small
anisotropies, due to the approximation of isotropy in the ini-
tial conditions, diminish with time in the absence of the mag-
netic field; Figs. 3(b)-3(d), on the other hand, indicate that
ry3 increases relative to the other two nonzero Reynolds
stress components. Kassinos and Reynolds42 discussed the
subtle reasons behind this relative increase in the fluctuating
velocity component aligned with the magnetic field as a re-
sult of the dampening of the similarly aligned gradients of
all velocity components.

Figure 4 presents the time history of the diagonal ele-
ments of the normalized dimensionality tensor d;;=D;;/ D
after #,. In Case 0, the three elements maintain similar mag-
nitudes in the absence of a magnetic field. With increasing
magnetic field strength in the x5 direction, the d5; element is
increasingly suppressed, while d;; and d,, approach each
other as time increases. Thus, the magnetic field reorganizes
the turbulence into an array of eddies with axes of indepen-
dence along x;. These nearly axisymmetric structures (d,
~d,,) are clearly helical (not purely vortical), since they
involve a strong jetal component (r33>>r;,r).

C. Dispersed-phase statistics: Cases 0-11

In Fig. 5, all particle positions are projected onto a x;
—x, plane at the end of each simulation. Since all 643 par-
ticles are included in each case, the apparent voids represent
approximately cylindrical evacuated regions extending the
entire length of the problem domain. Likewise, the thin clus-
ters surrounding these voids represent wavy sheetlike struc-
tures oriented everywhere orthogonal to x;—x, planes.

Figure 6 shows all particle positions projected onto a
Xx;—x3 plane at the same time as Fig. 5. The only discernible
structures are striations oriented along the x5 direction. Plots
of x,—x; projections (not shown) look similar to the x;—x;
projection shown.

The color of each particle in Figs. 5 and 6 indicates its
velocity at the instant shown. The close proximity of like
colors suggests that particles that are close in physical space
tend to be close in velocity space as well. Such behavior is
not guaranteed for inertial particles that slip relative to the
flow. In flows with mean velocity gradients, for example,
slipping particles that cross through a cell, within which Eu-
lerian statistics are calculated, can exhibit bimodal velocity
distributions.”® One mode corresponds to particles traveling
down gradient, the other to those traveling up gradient. Since
the flows studied in the current paper exhibit no mean gra-
dients, no such behavior can exist in the mean, but instanta-
neous snapshots could still contain adjacent particles with
significantly different instantaneous velocities. The lack of
this behavior suggests the possibility of two-fluid models,
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wherein Eulerian statistics are calculated for a dispersed
phase with uncomplicated probability distributions.

Within the two-fluid paradigm, the particle clustering in
Fig. 5 necessitates considering the dispersed-phase com-
pressible. An obvious choice for characterizing structural an-
isotropy is then the particle number density field. For this
purpose, we define the dispersed-phase structure dimension-
ality tensor D”. By analogy with the passive scalar structure
dimensionality tensor defined by Kassinos ef al.,” this tensor
has Cartesian components

kik;
D= f J f FZEP(k)CPk,

where E? is the particle number density cospectrum

(35)
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EP(k) ~A(k)i (k). (36)

Here, 7 is the discrete Fourier transform of the fluctuation of
the particle number density field, defined by

n=N,—(N,), (37)

where N, is the particle number density field and the angular
brackets denote the mean value.

Figure 7 shows the time history of the diagonal elements
of D? for Cases O-11. In all cases, each component of D”
starts at zero, corresponding to uniformly distributed par-
ticles (N,=(N,) everywhere). As the particles disperse by
action of the turbulence, number density fluctuations ensue
and D? rises. In the N=0 case in Fig. 7(a), each component
reaches a statistically equivalent plateau at which it remains
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FIG. 4. Normalized dimensionality time history after 7,: (a) Case 0, (b) Case 1, (c) Case 6, and (d) Case 11. All cases: (---) d};; (— —

throughout the simulation, a behavior that is characteristic of
randomly oriented dispersed-phase structures. In the N=1
case in Fig. 7(b), D55 plateaus at the same level as at N=0,
while Dy; and D,, rise continuously, showing some indica-
tion of leveling off near the end of the simulation. This in-
dicates a preferential elongation of particle clusters in the x3
direction. The N=1 case is close to the N=0.4 case in which
Zikanov and Thess’ found that MHD turbulence under the
influence of a constant magnetic field alternates between a
tendency toward two-dimensionality and periodic 3D bursts.
The N=10 and 50 cases in Figs. 7(c) and 7(d) exhibit in-
creasing suppression of Ds3, corresponding to the suppres-
sion of number density variations in the x; direction.

The statistical nonstationarity of decaying turbulence of-
ten frustrates attempts to determine the robustness of trends
observed against a transient background. One factor mitigat-
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t/ Tp

(d)
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ing this difficulty is that eddies across a broad range of
length and time scales cause preferential concentration. Bec
et al.® recently demonstrated nonuniform particle clustering
at both dissipative and inertial-range length scales, for ex-
ample, in forced isotropic turbulence. In the decaying, iso-
tropic turbulence simulations, the smaller, dissipative eddies
die fastest, while the larger, more energetic eddies persist.
Number density variations generated by the more persistent
eddies continue to maintain the nonzero structure dimension-
ality throughout the current simulations.

In order to minimize any impact of the energy decay and
the initial transient in the particle distribution, it helps to
normalize D? by its trace. This step is inspired by the fact
that the trace of the structure dimensionality tensor for the
carrier-phase fluid velocity is identically equal to twice the
turbulence kinetic energy in homogeneous turbulence. Figure
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FIG. 5. (Color) x;—x, projection of particle positions: (a) Case 0, (b) Case 1, (c) Case 6, and (d) Case 11. Axes: (X,Y,Z)=(x;,x,,x3). Colors: Red

=fastest, blue=slowest (enhanced online).

8 depicts the evolution of diagonal elements of d” for Cases
0-11. In each plot, the initial transient stems from the fact
that the normalization employed in defining d” renders it
undefined for uniformly distributed particles. Figure 8(a)
demonstrates that normalization renders the dispersed-phase
structure dimensionality statistically stationary in the ab-
sence of anisotropy. Figures 8(b)-8(d) show that the aniso-
tropy increases with increasing interaction parameter, reflect-
ing the behavior of D” that we have seen in Fig. 7. Thus, the
evolution of D? and d” is consistent with the planar projec-
tions of particle positions shown in Figs. 5 and 6.

D. Turbulence statistics: Case A

The particle response time in Cases 0-11 was set to
match the Kolmogorov time scale at #,. While this criterion

produced strong preferential concentration in the dispersed
phase, it was inspired by hydrodynamic concerns without
consideration of the influence of the magnetic field. The ad-
dition of the magnetic damping term on the RHS of Eq. (4)
introduces a new characteristic time: The Joule time 7,
E(Bfﬁ/ 7)~!. When rendered dimensionless via normaliza-
tion by A and @, 7; becomes the interaction parameter;
however in what follows, we refer to its value normalized by
the characteristic scales used throughout the rest of the paper.

Since Joule damping reorganizes the flow structure, one
might expect the Joule time to be the relevant time scale on
which the dispersed-phase structural anisotropy appears. In
order to determine the relevant time scale for preferential
concentration, it helps to run sets of particles with a range of
hydrodynamic response times through a turbulent flow with



http://dx.doi.org/10.1063/1.2832776.1

025101-12  Rouson et al.

Phys. Fluids 20, 025101 (2008)

(c)

(d)

FIG. 6. (Color) x,—x; projection of particle positions: (a) Case 0, (b) Case 1, (c) Case 6, and (d) Case 11. Axes: (X,Y,Z)=(x,,x,,x3). Colors: Red

=fastest, blue=slowest (enhanced online).

a broader range of scales. For this purpose, Case A employed
higher resolution than Cases 0-11: 256° vs 1283, Case A was
chosen because Mansour and Wray30 demonstrated that this
modest resolution reproduces reasonably well the experi-
mentally measured energy spectra of Comte-Bellot and
Corrsin.*” Additionally, this case provides a sufficiently long
development time so that the majority of the particle sets can
be expected to reach a dynamical equilibrium with the sur-
rounding turbulence by the time the magnetic field is turned
on.

Figure 9 compares our simulated energy spectra with the
Comte-Bellot and Corrsin laboratory measurements at Rey
=71.6. The agreement is qualitatively similar to that obtained
in the Mansour—Wray simulation. The agreement is best at
high wavenumbers, where the statistics of the dissipative ed-

dies collapses universally across many turbulent flows. The
discrepancies are largest at low wavenumbers, where the tur-
bulence is most sensitive to the way in which it is induced.
Comte-Bellot and Corrsin induced turbulence by inserting a
grid into an air stream, while the DNS induces it by initial-
izing the Fourier velocity coefficients oriented with random
phases and moduli satisfying an energy spectrum with the
low- and high-wavenumber variation characteristic of labo-
ratory turbulence. In addition to the unavoidable differences
in the way the turbulence is induced, the sample size for the
largest eddies proves insufficient for the current resolution at
Re, =71.6. This is not expected to influence strongly the sta-
tistics of current interest. While inertial particle distributions
exhibit structures with a range of length scales, preferential
concentration is known to be strongest for particles with re-
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FIG. 7. Dispersed-phase structure dimensionality tensor time history: (a) Case 0, (b) Case 1, (c) Case 6, and (d) Case 11. All cases: (——) Df,; (---) D5,;

(———) D

sponse times near the Kolmogorov time scale."® This sug-
gests that the most important part of the spectrum to capture
is the high-wavenumber portion associated with the
Kolmogorov-scale eddies.

Figures 10-12 show the evolution of the turbulence ki-
netic energy and the diagonal elements of the Reynolds
stress anisotropy and structure dimensionality anisotropy
tensors. As described in the Appendix, the interaction param-
eter for Case A matches that of Case 11 based on the integral
length and time scales in the initial condition. Thus, the two
cases exhibit similar trends; however, since Case A employs
a longer kinetic energy decay time before turning on the
magnetic field, the field has a stronger impact on the flow.
Since Case A simulates particles with many different re-
sponse times, the time values in Figs. 10-12 are normalized
at the eddy turnover time «(z,)/€(ty). The final simulation
time corresponds to 28007, for the particles with the smallest

7, and 0.457, for the particles with the highest 7,. Experi-
ence suggests there are no coherent fluid motions with life-
times long enough to generate structure in the latter particles.
Thus, these represent a limiting case.

E. Dispersed-phase statistics: Case A

Since our primary interest lies in characterizing aniso-
tropy, it makes sense to define the number density anisotropy
tensor,

dl;= DDl - 8,13, (38)

the definition of which suppresses information about the de-
gree of preferential concentration but describes the preferred
orientation of any preferential concentration. Specifically,

each of the three diagonal elements of d” vanishes when the
orientation of the particle clusters is statistically isotropic.
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Figure 13 shows the diagonal elements of d” for four of
the ten sets of particles from Case A. These include (a) the
particles with the shortest response time, (b) those with a
response time matching the Kolmogorov time scale at £, (c)
those exhibiting the greatest structural anisotropy, and (d)
those with the longest response time.

Figure 13(a) demonstrates that the particles with the
shortest response time exhibit negligible structural aniso-

tropy. For these particles, the magnitudes of each of the dr
elements fluctuate around zero with very small peak values
relative to the other particle sets. These particles evolve from
a precisely uniform spatial distribution on a 3D grid (as is the
case for all sets of particles) to one that is statistically iso-
tropic with no preferential alignment of any resulting particle
clusters. Figure 13(b) shows that the particles with response
times matching the Kolmogorov time scale at 7, exhibit

1-10

100 [~

0.1 =3
1-10 0.01 0.1 1

FIG. 9. Energy spectra: Current simulation (symbols) and experimental data
(solid line).
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monotonically increasing anisotropy over time, resembling
Cases 0-11. Figure 13(c), however, shows that the set of
particles with response times an order of magnitude longer
exhibits even higher structural anisotropy at the end of the
simulation. Finally, Fig. 13(d) suggests that the particles with
the longest response time exhibit anisotropy tensor elements
with magnitudes roughly equal to those in Fig. 13(c) but with
stochastic variation over time. The spatial distribution of
these particles could very likely be judged statistically sta-
tionary and isotropic if averaged over sufficiently long peri-
ods. While it is impractical to simulate these particles over a
number of response times comparable to that of the particles
with the shortest 7, the trends reported below in the discus-
sion of Fig. 14 suggest that the lack of statistically stationary
structural anisotropy in these particles is genuine.

The Joule time in Case A is approximately 0.0065 in the
MW 1994 normalization, which is nearly an order of magni-
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FIG. 11. Time history of the Reynolds stress anisotropy tensor for Case A,
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FIG. 12. Time history of the structure dimensionality anisotropy tensor for
Case A, 1>1y. (-X-) dy;, (-O-) dy, (-@-) dy.

tude smaller than the Kolmogorov time of 0.049 at ¢, but
only slightly larger than the response time of the particles
with the second-smallest 7, of 0.005. Although those par-
ticles’ structure dimensionality anisotropy elements are not
plotted in Fig. 13, the trends are similar to those in Fig. 13(b)
but with smaller magnitudes. It therefore appears that neither
the Kolmogorov time scale nor the Joule time play signifi-
cant roles in determining the structural anisotropy of a dis-
persed phase in this flow.

Figure 14 summarizes the above trends by plotting the
final state of each particle set on the anisotropy invariant
map introduced by Lumley and Newman.** Since d” is trace-
free, the two nonzero invariants take the form

-~
n=-1aa, (39)
= 5ddhdy,, (40)

where Jf’j=d§}— 6;j/3 is the particle dimensionality anisotropy
tensor. In constructing Fig. 14, it was assumed that the cho-
sen coordinate system aligns closely with the principal axes
so that off-diagonal elements are negligible. This assumption
is justified in part by the fact that the imposed magnetic field
aligns with one coordinate axis, while each velocity compo-
nent of the resulting flow has gradients only in the plane
orthogonal to this direction, so that the axes of dynamical
significance correspond to the chosen coordinate axes.

The point in Fig. 14 corresponding to the particles with
the lowest 7, lies at the origin, which is the isotropic state.
With increasing 7, the corresponding point on the anisotropy
map first moves away from the origin along the line

I1=-3(-1112)*3 (41)

until the point corresponding to 7,=0.5, after which the point
moves back along the same line and returns to the origin for
7,=10. When one draws an anisotropy invariant map for the
Reynolds stress tensor, the line described by Eq. (41) corre-

sponds to axisymmetric contraction. When drawn for the
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FIG. 13. Time history of dispersed-phase structure dimensionality anisotropy for Case A: (a) 7,=0.001, (b) 7,=0.05, (c) 7,=0.5, and (d) 7,=10. All cases:

(—) iy (=) by (— — —) dbs.

dispersed-phase structure dimensionality tensor, the line like-
wise corresponds to a state that is symmetric about one axis
(x5 in the current study) and statistically invariant under
translation of that axis to any point in the orthogonal plane
(x;—x,). The initial motion along the curve described by Eq.
(41) is toward a limit state in which two of the tensor’s
eigenvalues remain finite while a third vanishes. In the cur-
rent study, the two large eigenvalues correspond to the two
directions in which the number density varies strongly, while
the small one corresponds to the one direction in which the
number density fluctuations are minimal.

The trends in Fig. 14 suggest that the degree of
dispersed-phase structural anisotropy depends on 7, and the
time interval over which the magnetic field is applied. Par-
ticles with sufficiently small 7, exhibit only very small in-
stantaneous deviations from structural isotropy. Particles
with sufficiently large 7, display large deviations from isot-
ropy, but these excursions appear to be transient and stochas-
tic. Between these two extremes, the structural anisotropy
increases, reaching a maximum for the set of particles with a
response time equal to about one-sixth of the time interval
over which the magnetic field is applied. These particles
have response times long enough to circumvent the con-
straints imposed on flow tracers, but short enough to respond

strongly and coherently to the changing flow structure within
the time frame over which that change occurs.

IV. SUMMARY AND CONCLUSIONS

We have followed 11 sets of inertial particles through
two direct numerical simulations of statistically homoge-
neous turbulence evolving under the influence of externally
applied magnetic fields. Each simulation employed the qua-
sistatic MHD approximation that is valid at low magnetic
Reynolds numbers. The initial conditions for each simulation
were uniformly distributed particles moving at the local ve-
locity of a statistically isotropic velocity field possessing a
specified energy spectrum and random phase. After an initial
period of hydrodynamic decay, a spatially and temporally
constant magnetic field was applied along the x5 coordinate
direction.

The energy decay of the current quasistatic MHD simu-
lation for Cases O—11 was essentially identical to that of a
simulation that solved the full magnetic induction equation
and Navier-Stokes equations in a coupled fashion at Re,,
=0.1. At a resolution of 1283 and initial Re, of 181, the Case
0-11 flows employed interaction parameters N of 0, 1, 10,
and 50 based on the integral length scale. The structural an-
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FIG. 14. (Color online) Lumley triangle: (—) Realizability boundary, (O) 7,=0.001, (&) 7,=0.005, (square symbol near the isotropy point) 7,=0.01, (+)
7,=0.03, (W) 7,=0.05, (#) 7,=0.08, (®) 7,=0.1, (A) 7,=0.5, (square symbol corresponding to the second most anisotropic point) 7,=1, (X) 7,=10. Inset

image: Expanded left edge.

isotropy resulting from magnetic fields aligned with the x5
direction is characterized by an increase in the Reynolds
stress tensor element Rs; relative to the other diagonal ele-
ments and a significant decrease in the corresponding ele-
ment of the structure dimensionality tensor, Ds;. These
trends strengthen with increasing interaction parameter.

A set of particles with hydrodynamic response times
equal to the Kolmogorov time scale at 7, in Cases 0—11 clus-
tered into sheets oriented everywhere to contain the magnetic
field vector. A structure dimensionality tensor D” defined in
terms of the particle number density field has an initial value
of zero for particles distributed uniformly in space. At N=0,
each of the diagonal elements of D” rises to essentially the
same value and remains statistically stationary thereafter.
Calculating an anisotropy tensor associated with D” elimi-
nates the transient effects associated with the initial condi-
tions and subsequent turbulence decay. With increasing N,
the trends in the dispersed-phase anisotropy mirror those in
the carrier phase.

In order to determine the relevant time scale for the de-
velopment of dispersed-phase structural anisotropy, a simu-
lation was performed with a broader range of flow length and

time scales and particle response times. This simulation em-
ployed a resolution of 256* and a hydrodynamic decay pe-
riod from an initial Re, of 952 down to Re,=71.6 at which
point the DNS energy spectra compare favorably with ex-
perimental data. At this time, the external magnetic field was
imposed.

The results suggest that the degree of dispersed-phase
structural anisotropy depends on the particles’ response times
and the time interval over which the magnetic field is ap-
plied. Particles with short response times exhibit no signifi-
cant structural anisotropy. Particles with very long response
times exhibit large but transient and statistically stationary
deviations from isotropy. In between these extremes, aniso-
tropy invariant maps suggest that the trend toward parallel
sheetlike structures is maximum when the magnetic field is
applied for approximately six particle response times.
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APPENDIX: NONDIMENSIONAL SCALES

A common difficulty when multiple dimensionless pa-
rameters must be matched between two simulations or ex-
periments is the determination of the relevant scales on
which to base those parameters. In multiscale problems for
which the relationships between various scales is a nonlinear
function of the relevant parameters, matching the dimension-
less parameters based on one choice of scales does not imply
a match for all scales. Furthermore, when the variables of
interest are statistically nonstationary, an additional question
arises regarding at what point in time to enforce the match.
Finally, a separate but related issue is the choice of default
scales in which to perform the actual calculations prior to
rescaling any results for plotting purposes. The choice of
default scales for performing the calculation does not influ-
ence the result but does add a minor conceptual complica-
tion. This appendix attempts to clarify these issues and dis-
cuss our choice of scales for Cases 0-11 and A.

The current paper builds upon two studies: (i) The DNS
of turbulent dispersion in MHD turbulence performed by
Rouson e al.” and (ii) a single-phase, decaying hydrody-
namic turbulence simulation by Mansour and me.30 In the
body of the paper, the default length and velocity scales em-
ployed by Rouson ef al. are referred to as the “CTR2006”
scales. Those used by Mansour and Wray are termed the
“MW1994” scales.

The CTR2006 scales were the initial turbulence kinetic
energy, k, and €/2r, where € is the length of one edge of the
domain. In this normalization, k=1 by definition so that

IR
Uetr2006 = V2KeTR2006/3 = \2/3. (A1)

The MW 1994 default scales are ¢ and L/2, where ¢>=3
=2k, so that

Knwi994 = 3/2,
(A2)
Umwigos = 1.

Cases 0-11 in the body of the current paper employed the
CTR2006 default normalizations. Case A employed the
MW1994 normalization.

The key question to address is as follows: Given the
differing velocity scales (A1) and (A2), how must the Joule
time (BS")?/ 5 be rescaled in order to have the same influ-
ence on the flow? While the default value input to the code is
(B Laeg/ (10 4e) Where Lyog and vgep are the default scales
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for a given case, the dynamic similarity of the two flows is
known to depend on matching the interaction parameter
based on the integral length scale (cf. Ref. 9),

((Bzxt)zA) ((Bele )
7 U/ Mwi1994 n v CTR2006,

where A is the integral length scale. Rearranging Eq. (A3)
yields

(A3)

((Bm 2) _ (A/ U)CTR2006< (B/eam)z)
7 Jvwioos  (AMV)vwigos N 7/ mwiges

_ [ ACTRZOOé( (By" (A4
2 Apwioos n
where Egs. (A1) and (A2) have been used for the velocity
scales.
Pope’s Turbulent Flows (p. 238) provides the following
expression for the integral scale:

E()
2(u%> f T

The MW1994 and CTR2006 initial energy spectra at wave-
number k are

324> 2 k* k\?
Entwigoa(k) = Tq{ \/;E exp[— 2(](_) }}, (A6)
14

P

2k k\?
Ectrao0s(k) = 16V¢1R0006 \/j_s eXP[— 2<_> ] ,
mk k

p
(A7)

>MWI 994

(A5)

where k, is the wavenumber associated with the initial en-
ergy peak. In both MW1994 and CTR2006, k,=3, so the
terms in square brackets in Egs. (A6) and (A7) are identical,
which means any difference in A stems from the factor out-
side the square brackets. Expressing g and v crgogoe 10 terms
of « yields

exty2 exty2
((BA ) ) \/‘ 32(2K/3)<(BA ) ) (A8)
7/ Mwi994 2162«/3)\ 7/ ctro006
exty2
A
Y CTR2006

which suggests that matching the interaction parameter based
on the integral length scale between the two flows requires
increasing the actual value of (B§™)?/ 7 input to the code.

The discussion above assumes the rescaling is done
based on the initial condition defined at the beginning of the
hydrodynamic decay period. A rescaling based on the turbu-
lence state at the beginning of the magnetohydrodynamic
damping period might be more relevant. However, we found
that the chosen rescaling produced sufficiently similar behav-
ior for the current purposes.
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