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The immersed boundary method (IB hereafter) is an efficient numerical methodology for treating purely
hydrodynamic flows in geometrically complicated flow-domains. Recently Grigoriadis et als. [1] pro-
posed an extension of the IB method that accounts for electromagnetic effects near non-conducting
boundaries in magnetohydrodynamic (MHD) flows. The proposed extension (hereafter called MIB
method) integrates naturally within the original IB concept and is suitable for magnetohydrodynamic
(MHD) simulations of liquid metal flows. It is based on the proper definition of an externally applied cur-
rent density field in order to satisfy the Maxwell equations in the presence of arbitrarily-shaped, non-
conducting immersed boundaries. The efficiency of the proposed method is achieved by fast direct solu-
tions of the two poisson equations for the hydrodynamic pressure and the electrostatic potential.

The purpose of the present study is to establish the performance of the new MIB method in challenging
configurations for which sufficient details are available in the literature. For this purpose, we have con-
sidered the classical MHD problem of a conducting fluid that is exposed to an external magnetic field
while flowing across a circular cylinder with electrically insulated boundaries. Two- and three-dimen-
sional, steady and unsteady, flow regimes were examined for Reynolds numbers Red ranging up to 200
based on the cylinder’s diameter. The intensity of the external magnetic field, as characterized by the
magnetic interaction parameter N, varied from N ¼ 0 for the purely hydrodynamic cases up to N ¼ 5
for the MHD cases. For each simulation, a sufficiently fine Cartesian computational mesh was selected
to ensure adequate resolution of the thin boundary layers developing due to the magnetic field, the so
called Hartmann and sidewall layers. Results for a wide range of flow and magnetic field strength param-
eters show that the MIB method is capable of accurately reproducing integral parameters, such as the lift
and drag coefficients, as well as the geometrical details of the recirculation zones. The results of the pres-
ent study suggest that the proposed MIB methodology provides a powerful numerical tool for accurate
MHD simulations, and that it can extend the applicability of existing Cartesian flow solvers as well as
the range of computable MHD flows. Moreover, the new MIB method has been used to carrry out a series
of accurate simulations allowing the determination of asymptotic laws for the lift and drag coefficients
and the extent of the recirculation length as a function of the amplitude of the magnetic field. These
results are reported herein.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

The study of wall bounded MHD flows is a challenging research
area with a wide range of applications in engineering and indus-
trial processes. The majority of engineering problems related to li-
quid metal handling (metallurgical processes, stirring, pumping,
casting) involves the interaction of a conducting fluid and an exter-
nally applied magnetic field [2]. Other high-impact examples of
MHD flows can also be found in cooling circuits of fast fission reac-
tors, or in the self-cooled blankets of fusion reactors, where a liquid
metal is used both as coolant and as a breeder material [3]. The
ll rights reserved.

.

addition of Maxwell’s laws to ordinary hydrodynamics and the
associated action of the Lorentz forces, generate very interesting
physical phenomena. In the presence of geometrically complicated
boundaries, challenging phenomena may appear, like enhance-
ment or suppression of flow stability [4], induction of secondary
flows, modified heat transfer rates [5] etc. A typical example is
the use of cylindrical obstacles to induce vortices and enhance heat
transfer rates, a concept that has been investigated both experi-
mentally [6–8] and numerically [9–13]. Therefore, the need for
accurate and efficient simulations is a key issue in computational
magnetohydrodynamics for liquid metals.

Traditionally, the simulation of MHD flows in geometrically
complex domains has relied exclusively on unstructured meshes
or curvilinear grids [10–13]. On the other hand, for ordinary hydro-
dynamics in complex domains, an alternative, very economical
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Fig. 1. Computational domain and definition of the main geometrical and flow
parameters for the flow over a circular cylinder.

346 D.G.E. Grigoriadis et al. / Computers & Fluids 39 (2010) 345–358
method has been developed, the so called immersed boundary (IB)
method [14]. In the latter method, a Cartesian mesh solver can
be used and discrete momentum forcing is applied in the Na-
vier–Stokes equations to dynamically represent the location and
characteristics of the solid boundaries [15–17]. As a result, flows
in complicated domains, can be handled with orthogonal, Cartesian
grids that may not coincide with solid boundaries.

One of the obvious advantages of the IB method, is the easiness
of grid generation. Furthermore, memory and CPU loads are also
lower for IB methods compared to boundary fitting curvilinear or
unstructured grid methods [18,19]. In cases where the IB method
is combined with efficient direct poisson solvers, it reveals its full
potential for efficient and accurate simulations in complicated
geometries [20]. The same considerations are also very important
in MHD simulations, where certain singularities often exist and
thin boundary layers have to be resolved [5]. The most difficult
flow regions to simulate in wall-bounded MHD flows, are the Hart-
mann layers, which are formed due to the wall-normal component
of the applied magnetic field. The thickness of these Hartmann lay-
ers is usually inversely proportional to the intensity of the mag-
netic field. For this reason, special attention for the proper grid
arrangement close to the body has to be paid. The use of the IB
method has the potential to simplify the design of grids with ade-
quate resolution in high Hartmann number flows.

Until recently, the IB method had been successfully used only in
purely hydrodynamic simulations [17,21,22], and was still waiting
for its chance in MHD. The only example of MHD simulations with
Cartesian solvers in complex domains, is the recently proposed
extension of the immersed boundary method (MIB) for MHD flows
[1]. When using the MIB method a properly defined, externally ap-
plied current density field is used close to the immersed bound-
aries in order to satisfy the Maxwell equations and take into
account the local electromagnetic conditions, as discussed in detail
in [1]. It is important to appreciate that this is the case even in the
limit of the quasi-static (QS) approximation that is considered
here, where the Lorentz force would normally enter simply as a
dummy resistive forcing term in the momentum equations.

Since the MIB method has just been proposed, there is a need for
studies that will establish the applicability and accuracy of the
method in a range of non-trivial MHD configurations. One such
study is the present, where the MHD flow around a circular cylinder
is studied in two and three-dimensions. The flow regime in the sim-
ulations presented here varies from the steady-state laminar to the
periodic or transitional regime. Such a flow is a well-suited test case
for validation purposes, because the unsteady nature of the flow
leads to interesting flow patterns, including time varying separa-
tion points, recirculation regions, shear and boundary layers, etc.

In the following sections, the theoretical formulation is pre-
sented first, followed by a discussion of the numerical methodol-
ogy adopted. A brief review of how the MIB method can be used
to account for the electromagnetic part of the calculations is pre-
sented next. Finally, computational results and comparisons with
previously reported data for the MHD flow around a cylinder are
presented and discussed.
2. Theoretical formulation

An incompressible, conductive fluid of density q, molecular vis-
cosity l, dynamic viscosity m ¼ l

q and electric conductivity r is con-
sidered. A uniform stream of fluid with velocity u1 flows around a
circular cylinder of diameter d as schematically shown in Fig. 1. An
external magnetic field of amplitude Bo is applied either along the
streamwise direction x, or along the transverse direction z.

In the presence of an externally applied magnetic field, we fol-
low the quasi-static (QS) approximation, which is typically applied
for laboratory scale liquid metal flows. Assuming that the hydrody-
namic Re number is significantly larger than unity and that the
magnetic Reynolds number Rem ¼ l�ru1d (where l� is the mag-
netic permeability) is very small, the magnetic diffusion time scale
becomes much smaller than the time scale of the flow. Under these
conditions, the fluctuations of the magnetic field become much
smaller than the applied magnetic field, and the induced currents
instantaneously adjust to the velocity fluctuations. Hence, only
the external magnetic field enters into the Lorentz force, and one
does not have to solve the magnetic induction equations. The flow
is completely described by the set of Navier–Stokes equations for
an isothermal and conductive incompressible fluid. The continuity
and momentum equations can be non-dimensionalized using the
cylinder’s diameter d and the free stream velocity u1 as the char-
acteristic length and velocity scales. In addition, scaling the mag-
netic field induction by Bo, and the electric field and current
density by u1Bo leads to,

r �~u ¼ 0 ð1Þ
@~u
@t
þ ~u � rð Þ~u ¼ �rpþ 1

Red
r2~uþ N ~J � ~Bo

� �
þ~Fu;IB; ð2Þ

where the last term ~Fu;IB, denotes the immersed boundary forcing
term for momentum [22], Nð~J � ~BoÞ is the Lorentz force ~FL and ~Bo

is the unit vector of the applied magnetic field. Two main dimen-
sionless groups of fundamental importance appear in the equations
above, namely the hydrodynamic Reynolds number Red and the
magnetic interaction parameter N (or Stuart number),

Red ¼
u1d
m

and N ¼ rB2
od

qu1
; ð3Þ

with the latter expressing the ratio of Lorentz forces over inertia
forces. In the case of wall-bounded MHD flows, the Reynolds and
Stuart numbers can be used to derive the Hartmann number, Ha,
which expresses the ratio of Lorentz forces over viscous forces,

Ha ¼
ffiffiffiffiffiffiffiffiffiffiffi
RedN

p
¼ dBo

ffiffiffiffiffiffi
r
qm

r
: ð4Þ

The non-dimensional electric current density field~J of Eq. (2) is
governed by Ohm’s law according to,

~J ¼~Eþ~u� ~Bo þ~Fj;IB; ð5Þ

where the last term ~Fj;IB, is the externally imposed current density
field associated with the MHD extension of the IB method, which
will be discussed in detail in Section (3). The electric field ~E is irro-
tational and can therefore be expressed in terms of an electrostatic
potential as ~E ¼ �rU. Since the current density field ~J must also
satisfy the charge conservation law, applying the solenoidal
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conditionr �~J ¼ 0 on Eq. (5), a Poisson’s equation can be derived for
the electric potential,

r2U ¼ r � ð~u� ~Bo þ~Fj;IBÞ ¼ ~Bo � ~xþr �~Fj;IB; ð6Þ

where ~Bo is the unit vector of the magnetic field direction and
~x ¼ r�~u is the fluid vorticity. Once the potential field U is ob-
tained, the electric current density field~J can be finally computed
from,

~J ¼ �rUþ~u� ~Bo þ~Fj;IB: ð7Þ
3. Numerical methodology

Within the quasi-static approach followed in the present study,
MHD effects are introduced by the inclusion of the extra Lorentz
force term Nð~J � ~BoÞ in the momentum Eq. (2). At first glance, it
might appear that the computational overhead associated with this
term would be small. However, as seen from Eq. (6), the calculation
of the current density field involves the solution of an extra Poisson
equation for the electric potential at each computational cycle,
which serves to enforce the electric charge conservation. It is well
known that these poisson solutions are computationally intensive
procedures. For example, in a typical hydrodynamic simulation,
the pressure solution consumes a major fraction of each computa-
tional cycle (usually in the range 30–80%). Thus, for a similar MHD
simulation, the inclusion of MHD effects is expected to increase the
computational cost significantly (at least by a factor of 1.3–1.8) just
due to the required extra solution of the Poisson’s equation. There-
fore, efficient numerical algorithms for the solution of the Poisson’s
equation are very important in MHD simulations.

Instead of using expensive iterative solvers, the proposed exten-
sion of the IB method uses direct poisson solvers, which are extre-
mely fast, parallel and reliable numerical tools in orthogonal or
cylindrical domains [23–25]. Their restrictions in terms of geomet-
rical conformity are completely eliminated by the dynamical rep-
resentation of solid boundaries. In doing so, MHD flows in
complicated, deforming, or even moving boundaries can be simu-
lated using simple Cartesian grids.

The Navier–Stokes equations (2) for a conductive incompress-
ible fluid are solved numerically using the fractional time-step ap-
proach [26,20,27] with pressure and electrostatic potential
correction. A second-order finite-difference scheme is used for
the spatial discretization on orthogonal grids with a staggered var-
iable arrangement. Pressure and electric potential are collocated at
the center of each computational cell, while the components of the
velocity and the electric current density fields are defined at cell
faces. This particular staggered variable arrangement proved to
be the most stable and efficient choice for the MIB method, while
a collocated variant was found to suffer from spurious oscillations
and numerical instabilities [1]. Time advancement is based on a
time-splitting, fully explicit, second-order, Adams–Bashforth
scheme. The discretised set of Navier–Stokes equations (2) in
dimensionless form then read,

~ujnþ1 �~ujn

Dt
¼ 3

2
HðuÞjn � 1

2
HðuÞjn�1 �rpjnþ1; ð8Þ

where exponents denote time level and the operator HðuÞ contains
all the convective, viscous and Lorentz force terms, as well as the
momentum IB forcing terms ~Fu;IB, i.e.,

HðuÞjn ¼ � ~u � rð Þ~ujn þr
2~u

Red
jn þ Nð~J �~BoÞjn þ~Fu;IBjn: ð9Þ

The calculation of the required current density field~J from Eq. (7),
involves the estimation of the electrostatic potential rU. The dis-
cretised form of the electric current density field in a domain X then
becomes,

~Jjn ¼ �rUjn þ ð~u�~BoÞjn þ~Fj;IBjn; ð10Þ

which is subject to the charge conservation law r �~Jjn ¼ 0.
The externally imposed immersed boundary current density

field ~Fj;IB is varying in time and space and should be defined in a
consistent way, so that it reflects the type of boundary condition
imposed along any existing immersed surfaces Cs, in the discrete
sense. Thus, the role of ~Fj;IB, is to drive the current density field
and the corresponding electric potential according to the specified
boundary conditions imposed along any existing immersed
surfaces.

Considering for example a non-conducting, immersed surface,
the forcing term ~Fj;IB of Eq. (10) should be,

~Fj;IBjn ¼
þrUjn � ð~u�~BoÞjn; alongCs

0; otherwise

(
ð11Þ

so that the proper boundary condition~JC ¼ 0 is recovered along a
stationary surface Cs. However, although the cross product
ð~u�~BoÞjn is known, computing the forcing field~Fj;IBjn of Eq. (11) still
requires the estimation of the electric potential rUjn. A possible
choice might be the use of Eq. (6) which is usually solved in bound-
ary-conforming MHD simulations without the forcing term ~Fj;IBjn.
Within the IB method though, setting the forcing term to zero does
not provide any means of properly defining the type of internal
boundary conditions along the immersed surface. Even more
importantly, the charge conservation law would be violated in the
vicinity of immersed surfaces. An alternative choice would be to de-
fine the unknown forcing term through the application of the sole-
noidal condition r �~Jjn ¼ 0 in Eq. (10). In that case however, a
complicated iterative solution would be required for the Poisson
equation of the unknown electric potential (Eq. (6)) since the gradi-
ent of the unknown forcing termr �~Fj;IBjn would appear as a source
term.

In order to overcome these difficulties and avoid the use of iter-
ative procedures, a projection scheme for the current density was
presented in [1]. In analogy with the immersed boundary method-
ology for the momentum field, the proposed projection scheme
uses a reformulation of Eq. (10) to first define a provisional current
density field~Jj� according to,

~Jjn ¼ �rUjn�1 þ ð~u�~BoÞjn þ~Fj;IBjn
zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{~Jj�

�rd/; ð12Þ

where Ujn ¼ Ujn�1 þ d/. The provisional field~Jj� does not satisfy the
charge conservation law. Imposing the solenoidal condition on the
above equation, to satisfy charge conservation at time level n, leads
to a Poisson’s equation for the electric potential difference d/,

r2d/ ¼ r �~Jj�: ð13Þ

Therefore, in this study instead of solving the usual Poisson equa-
tion r2U ¼ r � ð~u� ~BoÞ, a Poisson equation for the electric potential
difference d/ is solved (Eq. (13)) using the residuals of the provi-
sional current density field ~Jj� as a source term. Once Eq. (13) is
solved, any spurious sources or sinks of electric charge are elimi-
nated and the projections of the electric current density and poten-
tial are completed by the following corrections,

~Jjn ¼~Jj� � rd/ ð14Þ
Ujn ¼ Ujn�1 þ d/: ð15Þ

The Poisson’s Eq. (13) for the electric potential differences is solved
directly, using exactly the same direct poisson solver that is used
for the pressure correction. The electric potential U is collocated
with pressure, while two different variable arrangement schemes



Table 1
Numerical resolution used for the simulation of the two-dimensional flow, for
Red 6 150 (first three from the top), and the three-dimensional flow, for Red ¼ 200
(last two). The last column refers to the number of nodes used in the area of the
cylinder (shown by a dotted line in Fig. 2).

Grid nx � nz ny Dx;z;min–Dx;z;max Dy Resolution in the
cylinder area d� d

G1 131� 108 – 0.050–0.50 – 20� 20
G2 262� 216 - 0.025–0.25 – 40� 40
G3 450� 360 - 0.010–0.10 – 100� 100
G1-3 113� 96 32 0.050–0.50 0.3125 20� 20
G2-3 262� 192 64 0.025–0.25 0.1562 40� 40
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have been tested for the Lorentz forces and current densities. One
of the tested schemes is using collocating of variables and the
other ordinary staggering. Extensive grid convergence tests on
Hartmann flows in ducts have proved that the cell-centered for-
mulation suffers from severe numerical instabilities, while ordin-
ary staggering reached an exceptional agreement with analytical
solutions, even with relatively coarse numerical resolutions [1].
Therefore, ordinary staggering is used for all MHD-related vari-
ables, and in cases where properties are needed at the cell centers,
the consistent interpolation scheme proposed by Ni et al. [28] is
used.

The actual calculation of the forcing term ~Fj;IBjn of Eq. (11) is
based on interpolation schemes using the current density field
of the surrounding fluid nodes, since in the most general case,
the immersed boundary interface Cs does not always coincide
with grid-lines. In the present study, a linear interpolation was
used for the forcing nodes, which considers the electric current
at the closest boundary point and four of the closest fluid nodes
[1]. In this way, the presence of the immersed surface is mim-
icked dynamically and as it will be shown later, such a current
density forcing method can accurately and dynamically mimic
the electrostatic definition of any non-conducting immersed
surface.
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Fig. 2. Computational grid G1 for the simulation of the flow over a circular cylinder and
to the locations of the forcing nodes [1,21] where direct forcing is imposed (see Section 3
Table 1 for each grid.
4. Results

The flow over a circular cylinder has been considered in order to
demonstrate the capability of the IB method to accurately repre-
sent MHD flows in the presence of solid boundaries. The computa-
tional domain for the flow considered is shown in Fig. 1.

In the absence of a magnetic field, the flow regime simply de-
pends on the value of the Reynolds number Red. It is known that
for Reynolds numbers in the range 5 < Red < 46, the flow is in a
steady-state and a well-defined, permanent, recirculation pattern
of length Xr is formed behind the body. For higher Red numbers,
the flow starts to develop instabilities at the shear layers forming
along the cylinder surface and vortex shedding develops. Under
these conditions, the extend of the recirculation region, as well
as the drag and lift coefficients, fluctuate periodically in time, with
a well-defined frequency. The vortex shedding phenomenon be-
hind the cylinder is characterized by the frequency of vortex gen-
eration f, which defines the characteristic Strouhal number for each
case,

St ¼ fd
u1

: ð16Þ

Up to Red � 188 the flow is purely 2-D and remains three-
dimensionally stable [29]. At higher Red values though, 3-D effects
appear and the flow develops mode-A and mode-B instabilities at
Red � 200 and Red � 250, respectively [29]. Since a 2-D analysis
is questionable for Red > 188, we have performed 2-D computa-
tions for Reynolds numbers up to Red ¼ 150, and 3-D computations
for the case of Red ¼ 200.

The major comparison parameters are the lift and drag coeffi-
cients Cl and Cd, as computed from the time evolution of the lift
and drag forces Fl and Fd acting on the immersed body, i.e.

Cl ¼
Fl

qu2
1An

and Cd ¼
Fd

qu2
1An

; ð17Þ

where, An is the area normal to the flow direction. These forces have
been computed using the reconstruction scheme proposed by Yang
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detailed grid distribution in the vicinity of the cylinder. The full symbols correspond
). The numerical resolution used in the area of the cylinder (dotted line) is given in
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and Balaras [21], which is suitable for IB methods. The time varia-
tion of the lift coefficient Cl has been used to estimate the frequency
of the vortex generation and the corresponding Strouhal number, as
well as the flow regime (steady or unsteady).

In the following paragraphs, the purely hydrodynamic cases are
presented first, followed by the MHD cases for streamwise and
transverse magnetic fields.

4.1. Computational parameters

A circular cylinder of diameter d is located at a distance of
Li ¼ 12d from the inlet of the domain, while the outlet is located
at Lo ¼ 17d behind the body. Along the transverse, z-direction,
the cylinder is symmetrically placed along the centerline with
the domain extending to Lz ¼ 21d. In doing so, a blockage ratio of
d=Lz < 5% is established so that possible end-effects on the vortex
shedding mechanism are minimized [30].

Along the surface of the immersed cylinder, a non-slip wall
boundary condition is used. At the inlet of the domain, a constant
velocity profile is imposed, while convective outflow conditions
[31] are specified for the outlet. Along the z-direction, Neumann
and Dirichlet boundary conditions have been applied for the stream-
wise and transverse velocity components u and w, respectively, i.e.,

@u
@z

����
z¼0;Lz

¼ 0 and wjz¼0;Lz
¼ 0: ð18Þ
0 50
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0 50
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X r
/d

Fig. 3. Normalized length of recirculation region after the cylinder, Xr=d (upper) and
previous experimental [34,39] and numerical [35–37] studies.
For the 3-D calculations, a slightly smaller computational domain is
used, with the cylinder located at a distance of Li ¼ 7d from the do-
main’s inlet, and the outlet located at Lo ¼ 13d behind the body. In
the transverse direction, the cylinder was symmetrically located
along the centerline with the domain extending to Lz ¼ 16d. Along
the axis of cylinder in the spanwise direction, the total size of the
domain extended to Ly ¼ 12d. The boundary conditions used were
identical with those of the 2-D cases described above and symmetry
boundary conditions have been applied along the lateral direction,
y. Table 1 summarizes the grid configurations used for the 2-D
and the 3-D simulations of the present study. Grid stretching has
been applied in the x and z-directions, and close to the cylinder sur-
face a uniform grid has been used of equal spacing in the x and z-
directions as shown in Fig. 2.

Within the quasi-static approach adopted here, a variable time
step is used for the calculations, which is dynamically adjusted
according to the convective (CFL) and viscous time scale (VSL) cri-
teria: CFL < 0:2 and VSL < 0:05. The total computational overhead
associated with the MHD solution (solving the Poisson’s equation,
computing currents with MIB method, including forces etc.) was
thus of the order of 80%. From this computational overhead, less
than 5% is devoted to the MIB method. For more details on the
MIB method and its implementation, the reader can consult Ref.
[1]. Due to the efficiency of the direct poisson solver used, the
resulting computer code has excellent parallel efficiency and re-
100 150

Park et al. [35]
Fornberg [36]
Silva et al. [37]
Zhang et al. [39]
Present 131x108 cells
Present 262x216 cells
Present 450x360 cells

ed

ed
100 150

Nishioka & Sato [34]
Park et al. [35]
Fornberg [36]
Silva et al. [37]
Present 131x108 cells
Present 262x216 cells
Present 450x360 cells

drag coefficient Cd (bottom) for the purely hydrodynamic case as compared with
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Table 2
Predicted values of the mean lift and drag coefficients and Strouhal number for
Red ¼ 200.

Case, (grid) Cd C0l St

Present (G1-3) 1.29 0.53 0.205
Present (G2-3) 1.30 0.60 0.204
Zhang et al. [39] 1.29 0.53 0.201
Mutschke et al. [29] 1.30 0.60 0.197
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quires a limited amount of physical memory (135 Mb per million
nodes). For a fully 3-D calculation, performances of 0.28 ls/node/
timestep and 0.52 ls/node/timestep were reached for a hydrody-
namic and a full MHD problem respectively (on Dual
AMD@2.6 GHz processors).

A similar, purely hydrodynamic flow configuration was tested
with an in-house developed flow-solver based on a the methodol-
ogy described in [32]. Using a body-fitted approach, this solver re-
quired more than five times the amount of physical memory and
was 10–40 times slower to execute in terms of ls/node/timestep
on the same computational resources. Similar numbers were ob-
tained for the serial speedup and the memory efficiency when
the present implementation was compared to other body-fitted
flow solvers as those reported in [33] for the benchmark case of
the 3-D flow around a circular cylinder.
4.2. 2-D and 3-D purely hydrodynamic cases for 10 6 Red 6 200

Fig. 3 shows the variation of the computed mean recirculation
length, Xr , and drag coefficient, Cd, as a function of the Reynolds
number in the range 20 6 Red 6 150. A very good agreement with
previous numerical and experimental studies [34,35] is achieved,
even for the lower numerical resolutions used. Furthermore, pres-
ent results agree very well with the numerical results reported in
[36] for the hydrodynamic case. The same applies for the compar-
ison against the numerical study of Lima-E-Silva et al. [37], who
had also used the IB method and found good agreement with the
statistics reported in older numerical or experimental studies.

Figs. 4a and b show the 3-D mode-A instability [38] for the
higher Reynolds number case (Red ¼ 200), as computed using the
finer grid G2-3. Starting from an arbitrary initial field, a periodic
three-dimensional flow develops. This is indicated by the deforma-
tion of the primary vortex in the cylinder’s wake and by the forma-
tion of vortex pairs as shown in Fig. 4b. The wavelength of these
structures along the axis of the cylinder was found to be
ky � 4:0d, in agreement with the value of ky � 4d reported in [39]
for a similar configuration. Table 2 shows the mean lift and drag
coefficients as well as the Strouhal number for the Red ¼ 200 case
and for the grids used in the 3-D simulations. The comparison
against the results of Refs. [29,39] shows an excellent agreement.



Table 3
Subset of the examined cases for the magnetohydrodynamic flow over a circular
cylinder at Red ¼ 100. Predicted force statistics and time averaged recirculation length
compared with reference values, using different numerical resolutions.

Case, grid Nx Nz Cd Xr

G1 0.5 – 1.12 2.50
G2 0.5 – 1.19 2.50
G3 0.5 – 1.21 2.52
Mutschke et al. [12] 0.5 – – 2.4

G1 1.0 – 1.26 1.85
G2 1.0 – 1.33 1.84
G3 1.0 – 1.40 1.85
Mutschke et al. [12] 1.0 – – 1.8

G1 5.0 – 1.95 1.59
G2 5.0 – 2.06 1.56
G3 5.0 – 2.06 1.56
Mutschke et al. [12] 5.0 – – 1.49

G1 – 0.08 1.41 1.72
G2 – 0.08 1.48 1.77
G3 – 0.08 1.53 1.77
Mutschke et al. [12] – 0.08 – 1.78

G1 – 0.5 2.72 0.26
G2 – 0.5 2.78 0.29
G3 – 0.5 2.82 0.29
Mutschke et al. [12] – 0.5 – 0.30

G1 – 1.0 4.03 0.00
G2 – 1.0 4.09 0.00
G3 – 1.0 4.12 0.01
Mutschke et al. [12] – 1.0 – 0.00
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4.3. 2-D magnetohydrodynamic cases for 10 6 Red 6 150

Once the numerical methodology was verified for the hydrody-
namic calculations, as described in the previous section, a series
of 2-D MHD cases were computed. In these simulations, the
hydrodynamic field was used as an initial condition and the mag-
netic field was switched on after several characteristic time units.

Two different directions of the magnetic field have been consid-
ered, with the interaction parameter denoted as Nx or Nz for a
streamwise or a transverse magnetic field, respectively. For a 2-D
flow along the x–z plane, following Eqs. (2) and (5) one can easily
show that,

streamwise field Bx – 0;~J ¼ ð0;wBx;0Þ; ~FL ¼ ð0;0;�NxwB2
x Þ

transverse field Bz – 0~J ¼ ð0;�uBz;0Þ; ~FL ¼ ð�NzuB2
z ;0; 0Þ

ð19Þ

As a consequence of Eq. (6), the electrostatic potential U and the
electric field ~E become zero for both of these cases. The produced
current density ~J ¼~u�~B was taken into account although it lied
along the cylinder axis. As it can also be seen from Eq. (19), the Lor-
entz forces modify the vorticity field by acting on the transverse and
streamwise components of the velocity field with intensity �NxwB2

x

and �NzuB2
z for a streamwise or a transverse magnetic field,

respectively.
Simulations were performed for different values of the interac-

tion parameter in order to investigate the effect of the magnetic
field on the flow patterns, the flow regime and the lift and drag
coefficients Cl and Cd.

Table 3 presents a subset of the computed cases and the pre-
dicted parameter values for the MHD cases at Red ¼ 100. A satisfac-
tory agreement is evident between different numerical resolutions,
even for the higher values of the interaction parameter N, where the
resolution of the Hartmann layers becomes marginal. Using lower
numerical resolutions led to a slight underestimation of drag coef-
ficient values, while the extend of the recirculation zone and the
time evolution of the force coefficients remained identical for all
practical purposes. Therefore, most of the 2-D results presented be-
low are based on the lower numerical resolution of 131� 108 cells.

4.3.1. Effect on lift coefficient Cl and flow steadiness
The degree of modification of the flow field by the action of the

Lorentz forces becomes stronger as the amplitude of the magnetic
field is increased, independently of its direction. The Lorentz forces
oppose the vortical motion and eventually suppress the vortex shed-
ding mechanism. Therefore, for both magnetic field directions, the
amplitude of the lift coefficient Cl is reduced monotonically until
the flow becomes completely steady. This is clearly demonstrated
in Fig. 5, where the time variation of the lift coefficient for
Red ¼ 100 is shown for the cases of a streamwise and a transverse
magnetic field. Depending on the magnetic field amplitude, the flow
either remains unsteady (for weak magnetic fields) or becomes com-
pletely steady above a critical value of the interaction parameter.

The highest values of interaction parameters for which the
unsteady periodic regime was preserved were found to be
Nx = 0.14 and Nz = 0.07. On the other hand, a steady flow was
obtained for Nx = 0.16 and Nz = 0.09. Therefore, the critical values
for the transition from the periodic unsteady regime to the steady
flow regime for the present study were Nx;CR ¼ 0:15 and Nz;CR ¼
0:08, i.e. in good agreement with the values of Nx;CR ¼ 0:14 and
Nz;CR ¼ 0:10 reported in [12].

Upon the activation of the magnetic field, the amplitude of the
sinusoidal lift coefficient variation undergoes an exponential
reduction with time. The time-response of the flow to the activa-
tion of the Lorentz forces was found to depend both on the flow re-
gime and the magnetic field strength. For weak magnetic fields and
unsteady cases (Nx < Nx;CR, or Nz < Nz;CR), the time needed for the
transition to the new state of the flow was found to increase with
the interaction parameter. For instance the flow responds in a cou-
ple of shedding cycles for the case of Nx ¼ 0:025 (Fig. 5a), while
more than 10 shedding cycles were required before the lift coeffi-
cient reached the new equilibrium value for the case of Nx ¼ 0:1
(Fig. 5b). Once periodic vortex shedding is eliminated in the steady
flow regime, the flow responds faster to the Lorentz forces as the
magnetic field intensity is increased.

For all cases examined, it is found that, at a constant value of the
interaction parameter, a transverse magnetic field is much more
effective in damping the flow unsteadiness than a magnetic field
along the steamwise direction. As mentioned in Section 4.3, this
can be explained by the fact that for the 2-D cases considered, a
transverse magnetic field generates streamwise Lorentz forces pro-
portional to the local streamwise velocity component u. In the case
of a streamwise magnetic field, the Lorentz forces act on the trans-
verse component of momentum, being proportional to the local
transverse velocity component w.

The evolution of the lift coefficients seemed overall to be rela-
tively insensitive to the orientation of the magnetic field, with sim-
ilar trends being observed for both the streamwise and transverse
magnetic fields. For both cases, the amplitude of the lift coefficient
was reduced monotonically with the interaction parameter, while
the Strouhal number was found to decrease with the magnetic field
intensity for a streamwise field and increase slightly for a trans-
verse magnetic field.

4.3.2. Effect on drag coefficient Cd and recirculation
In contrast with the lift coefficient, the evolution of the drag

coefficient Cd, is more sensitive to the orientation of the magnetic
field as shown in Fig. 6. It is interesting to note that for a stream-
wise magnetic field, and for values of the interaction parameter
in the range Nx;CR < Nx < 0:9, the values of the drag coefficient
remain below the hydrodynamic value at the same Re number.
Within that range, Cd shows a non-monotonic behavior with re-
spect to the magnetic field strength.
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Fig. 5. 2-D magnetohydrodynamic flow at Red ¼ 100. Effect of the magnetic field strength on the time evolution of the lift coefficient Cl for a streamwise (left) and a
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352 D.G.E. Grigoriadis et al. / Computers & Fluids 39 (2010) 345–358
For weak streamwise magnetic fields, (i.e. Nx < Nx;CR ¼ 0:15),
drag reduces linearly with Nx down to 22% of its hydrodynamic
value. Within this range, the shear stress forces were found to
decrease monotonically with Nx (even for higher values of Nx up
to Nx < 5). Therefore, the observed drag reduction for weak mag-
netic fields, was due to the distribution of the pressure forces
around the cylinder. Although both upstream and downstream
base pressure levels were higher than the hydrodynamic values,
the downstream base pressure recovered faster in the range
Nx < 0:15, leading to reduced drag coefficients.
In this unsteady flow regime region, the inertia forces dominate
and the action of the Lorentz force �NxwB2

x weakly opposes the
transverse velocity component w. This leads to a narrower vortex
street behind the body, and therefore to longer mean recirculation
regions with respect to the hydrodynamic case. It is interesting to
note that at the threshold of the unsteady flow regime, the mean
recirculation length Xr is increased by a factor of 2:6 with respect
to the hydrodynamic case (Fig. 7).

For stronger streamwise magnetic fields N > Nx;CR, the damping
action of the Lorentz forces dominates and eventually eliminates
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vortex shedding. In this regime, the downstream pressure drops
significantly, while the upstream one keeps increasing, leading to
ever increasing values of the drag coefficients in the form
Cd /

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Nx þ c
p

. The recirculation length follows an exponential de-
cay in the form Xr / ðe�NxþcÞ þ CXr , reaching asymptotically the va-
lue of CXr ’ 1:53d for Nx ¼ 2:0. For stronger streamwise magnetic
fields, the recirculation is not reduced further due to the existence
of a very slow-moving region formed before the body (Fig. 8)
known as ”upstream wake” [12].
Such a non-monotonic behavior for the drag coefficient is only
experienced in the case of a streamwise magnetic field. For the case
of a transverse magnetic field, the Lorentz forces are acting directly
to dump the mainstream velocity component. Therefore, an in-
crease in the magnetic field strength was always associated with
an increased difference between upstream and downstream pres-
sures and led to increased drag coefficients (Fig. 7) in the form
Cd / ðNz þ cÞk þ CCd

. Non-monotonic behavior at small interaction
parameters is observed only in the extent of the recirculation zone
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Xr , and only for Nz < 0:08, due to the transition to the steady flow
regime. In contrast to the streamwise magnetic field case, for a
transverse magnetic field, recirculation is clearly diminished for
the higher values of the interaction parameter examined. For
Nz > 0:08, Xr drops exponentially to zero with increasing Nz in
the form Xr / ðe�NzþcÞ. The mean location of flow separation is also
severely affected by the magnetic field. As shown in Fig. 8, separa-
tion occurs earlier and separation points move upstream as the
intensity of the magnetic field is increased [12,8]. For higher values
of the magnetic field, though, the separation points recover
slightly, in line with previous studies [29].

4.4. 3-D magnetohydrodynamic case for Red ¼ 200

For the purely 2-D flow cases with electrically insulating
boundaries presented in Section 4.3, the electrostatic potential U
and the electric field ~E do not contribute to the computed current
density~J. Therefore, in order to fully validate the MIB methodology
for the estimation of the electric field~E, but also to demonstrate its
potential, a fully 3-D case at Red ¼ 200 was also considered with a
streamwise magnetic field. Such a case was selected because of the
presence of instabilities and the existence of the spanwise velocity
v, which generates streamwise vorticity xx (see Fig. 4). Under these
conditions, the electric field is activated because the electric poten-
tial, U, is driven by the source term xx (Eq. 6). The results of these
3-D simulations are presented next.

Fig. 10a shows a snapshot of the electric field potential U and
the current density vector field ~J for the 3-D MHD simulation
computed with the MIB method. These snapshots were taken at
the midplane along the spanwise direction y. The potential field
lines close to the cylinder surface clearly show the ability of the
MIB method to properly resolve the electric field. The actual
Lorentz force exerted on the fluid is shown in Fig. 10b and d, where
the damping effect of the magnetic field on the transverse velocity
component w and the spanwise vorticity xy are clearly demon-
strated. The transverse velocity leads to opposing Lorentz forces
suppressing the vortex-shedding mechanism and narrowing the
wake [9]. Additionally, the streamwise vorticity, xx, which contrib-
utes to three-dimensionality and mode-A instability, is suppressed
by the action of opposing vorticity as shown in Fig. 11.

The dependence of the computed lift and drag coefficients, and
of the recirculation zone length, on the magnetic field intensity is
shown in Fig. 9. A good agreement is noted with the reference data
of Mutschke et al. [29] using different numerical resolutions. The
difference for the recirculation length and the drag coefficient were
found on the average to be less than 1% and 3% for both grids, while
the largest discrepancies (�11%) were noticed for the rms value C0l
when using the coarser grid resolution at the unsteady flow
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regime. In line with the 2-D case presented earlier, as the magnetic
field strength is increased, the amplitude of the lift force decays,
and the drag coefficient drops until the three dimensionality of
the flow is fully suppressed. Transition to a purely 2-D flow was
found to take place for interaction parameter values in the range
0:3 < Nx < 0:4 as in the study of Mutschke et al. [29]. As in the
2-D cases, a further increase of the magnetic field strength leads
to a monotonic increase of the drag coefficient.
5. Conclusions

The recently proposed MIB method is a natural extension of the
immersed boundary method for MHD simulations in complicated
geometries, using direct solution for both the pressure and the
electrostatic potential on cartesian grids. The objective of this
study was to investigate the performance of the MIB method and
to demonstrate its potential for the computation of MHD flows in
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complex geometries. For this purpose, the flow of a conducting
fluid past a circular cylinder under a streamwise or a transverse
magnetic field was computed. Two-dimensional and three-dimen-
sional simulations for the steady and unsteady flow regimes
around a circular cylinder were conducted.

For the case of a streamwise magnetic field, a non-monotonic
variation of the drag coefficient and recirculation length was found
in both the 2-D and 3-D cases. As a result, for a wide range of inter-
action parameters, the drag coefficient was found smaller than the
corresponding hydrodynamic value. Comparison of the present re-
sults for the critical interaction parameters, the drag and lift coef-
ficients, the recirculation length and the Strouhal number showed
very good agreement with published results. Thus, we can con-
clude that the MIB method is very efficient, even in the presence
of flow instabilities. The application to turbulent flows and more
complex geometries is under development.

Since our results are consistent with the theory of the fluid
flow past the circular cylinder, we use them to produce asymp-
totic relations for variation of the studied quantities as a function
of the magnetic field amplitude. In the steady flow regime, the
value of the drag coefficient was found to vary according toffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Nx þ c
p

, and of the recirculation region length according to
e�cNx , reaching a plateau value for the higher magnetic field
amplitudes. The reversal of stability order has also been verified
from the 3-D cases in accordance with previously reported data
[29]. In cases with a transverse magnetic field, the damping ef-
fect on the vortex street was found to be stronger, and a non-
monotonic behavior was noticed only for the recirculation length.
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The values of drag coefficient vary almost linearly according to
ðNx þ cÞ1:1.
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