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LAMINAR FREE CONVECTION IN A SQUARE
ENCLOSURE DRIVEN BY THE LORENTZ FORCE

I. E. Sarris1, D. G. E. Grigoriadis2, and N. S. Vlachos1
1Department of Mechanical Engineering, University of Thessaly,
Volos, Greece
2Department of Mechanical and Manufacturing Engineering,
University of Cyprus, Nicosia, Cyprus

A numerical study is presented of laminar free convection flow driven by magnetic forces.

An external magnetic field with one spatially varying component is applied to an electrically

conducting fluid in a square enclosure. This magnetically-driven flow is controlled by the

intensity and the wave number of the applied magnetic forcing. In addition, when the enclos-

ure is heated laterally in a non-zero gravity environment, the resulting buoyant forces may

contribute or resist the magnetically-driven fluid motion. The present results show that a

strong magnetic field can even reverse the buoyant flow. The circulation intensity of the flow

and the heat transfer from the sidewalls is increased with increasing magnetic field or with

decreasing magnetic Reynolds number. The wave number of the magnetic forcing is also an

important parameter that determines the vortex patterns and, consequently, the convection

heat transfer.

1. INTRODUCTION

The usual effect of a uniform external magnetic field applied to a natural
convection flow is to decelerate the fluid motion and to reorganize the flow patterns
[1–4]. The dumping effect of the magnetic field on convection flow helps in the pro-
duction of crystals (Bridgman and Czochralski installations [5, 6]), while undesirable
turbulent phenomena in metal casting and transport could be minimized [7, 8]. On
the other hand, the reduction of the convection heat transfer of liquid metals in
the blanket of thermonuclear fusion reactors may be cited as an example of unde-
sired magnetic dumping effect. This is because it reduces the ability of the blanket
to handle the large heat quantities that must be transferred from the core reactor
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[9]. The reason for fluid deceleration in these applications by the magnetic field is the
action of the so-called Lorentz force that resists the fluid motion.

In general, the Lorentz force is proportional to the product of the parameter
Ha2

Rm
and the vector product BrB (where Ha is the Hartmann number, Rm is the

magnetic Reynolds number, and B is the magnetic field). In the case of a uniform
magnetic field, the Lorentz force is always opposite to the fluid velocity vector, thus
dumping the flow and exists only in moving fluids. On the contrary, in the case of a
suitable spatially nonuniform external magnetic field, the Lorentz force can even be
the driving force for the fluid flow. For example, the Lorentz force which is applied
through the divergence-free external magnetic field B(Bx, Bysin kpx, 0) that is pro-
duced with the suitable application of current electrodes and permanent magnets
is of the type

F ¼ BxBykp cos kpx ð1Þ

which clearly has a rotational action on the fluid even when at rest.
The present magnetohydrodynamic (MHD) spatially periodic two-dimensional

flow with magnetic forcing is used primarily in laboratory experiments. The first
successful attempt in this direction is due to Bondarenko et al. [10] and Batchaev
and Dowzhenko [11] who realized a flow with similar forcing in a layer of an electri-
cally conducting fluid driven by electromagnetic fields. A review of laboratory reali-
zations of the present flow can also be found in Obukhov [12]. These experiments
showed that the first flow instability leads to a stationary secondary flow pattern with

NOMENCLATURE

B magnetic field vector

Bx, By dimensionless magnetic field

components

cP specific heat

F Lorentz force

g gravitational acceleration

Gr Grashof number

H enclosure height

Ha Hartmann number

j current density

J dimensionless current density

k wave number of the sinusoidal

magnetic forcing

Nu Nusselt number

p fluid pressure

p0 total pressure

P dimensionless pressure

Pr Prandtl number

Rm magnetic Reynolds number

T fluid temperature

t time

u, v velocity components in x and

y directions

U, V dimensionless velocity components

V velocity field vector

x, y spatial coordinates

X, Y dimensionless coordinates

a thermal diffusivity

b coefficient of thermal expansion

DT temperature difference of sidewalls

E convergence criterion

H dimensionless temperature

m magnetic permeability

n fluid kinematic viscosity

q fluid density

r fluid electrical conductivity

/ generalized variable

W nondimensional stream function

Subscripts and superscripts

c cold

h hot

n iteration number or time

max maximum

x, y, z Cartesian coordinate indices

0 reference value
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a wave number different from the basic flow. As the electric current is increased, the
flow undergoes a Hopf bifurcation resulting in an oscillatory state, with chaotic
behavior of the flow patterns. Thus, it is found that the resulting rotating flow (a
Kolmogorov flow due to magnetic forcing) can be in the laminar, transitional or
fully turbulent regime depending on the strength of the electric or magnetic field.
The stability of this flow has been studied by Thess [13] for the two-dimensional
basic flow, while fully turbulent three-dimensional simulations can be found in refer-
ences [14–16].

An alternative configuration of the same flow was presented in the magneto–
hydrodynamic experiment performed by Honji [17] where a vertical magnetic field
is locally produced in the vicinity of a long lateral wall by permanent magnets
placed below the bottom of the enclosure. An electric current is passed through
the electrolyte from one short side of the enclosure to the other. Each magnet
can produce a constant magnetic field and the magnets are put together to form
a line of alternated poles. The fluid is, thus, subjected to an electromagnetic force,
stationary in time and periodic in space, and the resulting flow is a localized linear
array of alternating vortices. The spatio-temporal dynamics of this forced periodic
flow due to electromagnetic forces in a confined domain was studied by
Nakamura [18].

In the present work, a laterally-heated square enclosure with infinite extent in
the third direction is considered. The imposed magnetic field generates the driving
force of the convective flow of the electrically conducting fluid. The important flow
parameters to be defined below are the Hartmann number, the wave number of the
Lorentz force, and the magnetic Reynolds number. In addition to the magnetic
forces, the buoyancy forces due to a temperature difference between the isothermal
sidewalls is considered. It should be noted that the hydrodynamic stability of the
stratified two-dimensional Kolmogorov flow was studied numerically by Balmforth
and Young [19, 20]. However, to the authors knowledge this is the only numerical
study of convection flow in enclosures driven both by a nonuniform Lorentz force
of Kolmogorov forcing type and by a buoyancy force. This is the reason that the
present study is restricted only to the laminar flow regime, as the primary goal is
to identify the basic kinematic and heat transfer mechanisms.

2. PROBLEM SETUP

A laterally-heated square enclosure with electrically-insulated walls, as shown
in Figure 1, is subjected to an external magnetic field B with components
(Bo, Bosin kpx, 0). A rotational Lorentz force due to the external magnetic field is
developing on the electrically-conducting fluid that fills the enclosure and a cir-
culating flow is started. The Lorentz force acting on the fluid when at rest is of

the type B2
okp cos kpx, which may be modified by possible magnetic and kinetic fluc-

tuations. Thus, the magnetic energy upon stationarity is transformed by the Lorentz
force to fluid kinetic energy. The horizontal walls of the enclosure are considered
adiabatic, while the isothermal vertical sidewalls are kept at a constant temperature
difference, DT¼Tc�Th, with Tc, Th being the temperatures of the cold and hot
sidewall, respectively.

FREE CONVECTION DRIVEN BY THE LORENTZ FORCE 925
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Using as characteristic length the height of the enclosure, H, and as character-
istic velocity the viscous scale, n

H, the nondimensional variables read as

s ¼ tn

H2
; X ¼ x

H
; Y ¼ y

H
;

U ¼ uH

n
; V ¼ vH

n
; H ¼ T � Tc

DT
;

B0 ¼ B

B0
; J ¼ B0

mH
j; P ¼ p0H2

qn2
;

ð2Þ

where q is the fluid density, p0 is the total pressure which includes also the magnetic

pressure (i.e., p0 ¼ pþ 1
2mB

2), n is the kinematic viscosity, (j) the current density, and

m is the magnetic permeability of the vacuum.
The nondimensional governing equations of momentum, magnetic induction,

and thermal energy then read as

qtVþ VrV ¼ �rPþr2VþGrHþHa2

Rm
BrB ð3Þ

qtBþ VrB ¼ 1

Rm
r2Bþ ðBrÞV ð4Þ

qtHþ VrH ¼ 1

Pr
r2H ð5Þ

where the prime has been dropped from B0.

Figure 1. Flow configuration and boundary conditions.
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The above set of equations is solved together with the equation of mass
continuity r�V¼ 0, while an additional equation, r�B¼ 0, is used to verify that
the magnetic field B is divergence-free. For the present laminar simulations, the use
of divergence-free initial and boundary conditions for the magnetic induction was
adequate to keep the residuals of this divergence in the order of the truncation error.

The nondimensional parameters of the flow are the Hartmann number

Ha ¼ B0H
ffiffiffiffi
r
qn

q
, the magnetic Reynolds number Rm¼rmn, the Grashof number

Gr ¼ gbDTH3

n2 , and the Prandtl number Pr ¼ n
a, where g is the gravity acceleration, b

is the volumetric thermal expansion coefficient, a is the thermal diffusivity, and r
is the electric conductivity of the liquid metal.

The initial and boundary conditions for the velocity, temperature, and
magnetic induction are

s ¼ 0

U ¼ V ¼ H ¼ Bx ¼ By ¼ 0

s > 0

U ¼ V ¼ 0;
qH
qY

¼ 0 for Y ¼ 0; 1

U ¼ V ¼ 0; H ¼ 0 or 1 for X ¼ 0

U ¼ V ¼ 0; H ¼ 1 or 0 for X ¼ 1

Bx ¼ 1 for X ¼ 0; 1 Y ¼ 0; 1

By ¼ sin kpX for X ¼ 0; 1 Y ¼ 0; 1

ð6Þ

The intensity of flow rotation inside the enclosure may be measured by the

streamfunction W: U ¼ qW
qY or V ¼ � qW

qX. A reference value W¼ 0 for the integration

of the streamfunction corresponds to the origin of axes. The nondimensional current
density is calculated by the relationship, J¼r�B, i.e., by Ampere’s law, and the
given two-dimensional flow only has the Jz component non-zero. The local Nusselt
number at the isothermal sidewalls is calculated from the temperature field as

NuðYÞ ¼ �
���� qHqX

����
X¼0 or 1

ð7Þ

The average Nusselt number at the sidewall is given by the relation

Nu ¼
Z 1

Y¼0

NuðY ÞdY ð8Þ

2.1. Numerical Solution

The governing equations together with the corresponding initial and boundary
conditions are solved numerically, employing a finite-volume method. The coupling
between momentum and continuity equations is achieved using the SIMPLE method
[21] via the so-called pressure-correction equation. A non-uniform staggered grid in
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both horizontal and vertical directions is employed to account for steep gradients
near the walls. The nonlinear terms of all equations are discretized using the QUICK
scheme of Leonard [22] in the stable form proposed by Hayase et al. [23] in order to
minimize numerical diffusion. Central differences are used for the diffusion terms
and a second-order scheme for the transient terms. The linearized system of equa-
tions is solved by the TDMA method. In all calculations presented here,
under-relaxation factors with values of 0.5, 0.5, 0.6, 0.6, 0.6, and 0.3 are applied
to the U, V, Bx, By, H, and the pressure correction equations, respectively. The iter-
ative procedure at each time step is initiated by solving the Navier-Stokes equations
to obtain the velocity and pressure fields, followed by the solution of the energy and
magnetic induction equations, and is continued until convergence is achieved. Then
the solution is repeated for the next time step, which is obtained for a CFL condition
equal to 0.5, until the establishment of a steady-state solution. The numerical scheme
permits the identification of transition-to-unsteadiness, and when this happens the
calculation is stopped. Convergence is established through the sum of the absolute
relative errors for each dependent variable in the entire flow field.

X
i;j

junþ1
i;j � un

i;jj
jun

i;jj
� E ð9Þ

where u represents the variables U, V, Bx, By, or H. The superscript n refers to the
iteration number or time step, and the subscripts i and j refer to the space coordi-
nates. The value of the convergence criterion E is chosen as small as 10�6 for all cal-
culations which are carried out on Intel CPU based computers. More details about
the numerical procedure and code validation may be found in Sarris et al. [24].

The external magnetic field B in the presence of the solid boundaries results in
the formation of magnetic boundary layers (so called Hartmann and sidewall dif-
fusion layers, see Alboussière and Lingwood [25]). The Hartmann layers develop
on walls normal to the magnetic field with thickness proportional to Ha�1, and
the sidewall diffusion layers on the parallel walls with thickness proportional to
Ha�1=2 [26]. When the Hartmann number is high enough, the magnetic boundary
layer may be thinner than the corresponding momentum and thermal boundary
layers. For this reason, a cosine distribution for the grid nodes is used in both direc-
tions in order to better resolve the boundary layers and to accurately predict the heat
transfer at the isothermal walls.

Before the final calculations, a grid independence test was conducted in order
to determine the optimum grid. The most convective flow case (i.e., that with the
higher Hartmann and Grashof numbers) was selected for this test because of the
increasing sensitivity of the nonlinear terms to grid refinement. The calculated field
values for a grid size of 128� 128 showed that the maximum streamfunction and the
average Nusselt number differ only by less than 0.01% from a double size grid and
thus, this grid was considered adequate for the present calculations.

3. RESULTS AND DISCUSSION

In the present numerical study, the applied (or resulting as a combination of
suitable placed electrodes and permanent magnets) magnetic field produces one of
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the driving forces on the electrically-conducting fluid. As a result of this forcing, an
MHD flow analogous to the Kolmogorov flow is established in the enclosure [10, 11,
17, 18, 27]. The magnetic force is combined with the buoyant force due to the lateral
heated sidewalls of the enclosure. The ranges of values of the flow parameters studied
are: Hartmann number Ha¼ 0 to 100, magnetic force wave number k¼ 0 to 2, and
magnetic Reynolds number Rm¼ 0.003 to 0.05, generally corresponding to laminar
liquid metal flows in industrial or laboratory scale.

The Grashof number is fixed to the relatively high, but still in the laminar flow
regime, value of �106 and the Prandtl number to the value 0.0321 which is common
for liquid metals. The sign � in the Grashof number is used to signify the contri-
bution (þ) or resistance (�) of the buoyancy force to the flow driven by the magnetic
force. The practical meaning of this assumption is connected to the imposed tem-
perature difference of the sidewalls. When the left wall is kept at a higher tempera-
ture causing the flow to ascend, the buoyancy force contributes to the rotation due to
the magnetic force. In contrast, when the left wall is kept at a lower temperature, the
buoyant force resists the magnetic force. A schema of the combined action of the
Lorentz and buoyancy forces is presented in Figure 2. For the cases of pure magnetic
driving, the Grashof number is considered zero. This corresponds to a zero gravity
environment or negligible temperature gradients.

3.1. Effect of Hartmann and Grashof Numbers

The increase of the Hartmann number is compatible to the increase of the elec-
tric potential in the experiments of Bondarenko et al. [10], Batchaev and Dowzhenko
[11], and Honji [17]. Figures 3 and 4 show the distribution of the streamfunction and
the isotherms for Rm¼ 0.003 in the cases of Gr¼ 0, 106, �106 for three Hartmann
numbers of 10, 30, and 100. The wave number k of the imposed magnetic field for
all these cases is 1, while in the experiment of Honji [17] a value of k¼ 13 was con-
sidered. Thus, the present cases correspond to one primary circulation while in the
experiments of reference [17] up to 13 circulations may be found. Figure 3a shows
the streamfunction distribution for the pure magnetoconvection case, i.e., when
Gr¼ 0 and only the Lorentz force is driving the flow.

The single primary flow circulation, even in the statistical sense as in the turbu-
lent simulations of reference [16], is a major characteristic of the Kolmogorov flow

Figure 2. Fluid rotation in the enclosure as a result of the applied magnetic or buoyant forcing.

FREE CONVECTION DRIVEN BY THE LORENTZ FORCE 929

D
ow

nl
oa

de
d 

by
 [

T
E

I 
of

 A
th

en
s]

 a
t 1

2:
03

 0
7 

M
ay

 2
01

5 



that exhibits the property of inverse cascade [19, 20] although instabilities can be
seeded to longer length scales, i.e., in the shear layers formed by the small vortices
near the corners of the enclosure. It is apparent that the flow pattern with the
imposed spatially sinusoidal magnetic field is similar to the patterns formed by natu-
ral convection (Figures 3b and 3c). The increase of the Hartmann number above a
certain value has a direct influence on the flow pattern resulting in an elongated

Figure 3. Streamfunction distribution for the cases Rm¼ 0.003, Ha¼ 10, 30, and 100: (a) Gr¼ 0 (�90; �5;

�5, �200; �20; �20, �260; �20;0), (b) Gr¼ 106 (�210; �10, �10, �240; �20; �20, �260; �20; �20), and

(c) Gr¼ �106 (10; 10; 140, �40; �2; 6, �240; �20; 0). Numbers correspond to minimum, range, and

maximum contour level value.

930 I. E. SARRIS ET AL.

D
ow

nl
oa

de
d 

by
 [

T
E

I 
of

 A
th

en
s]

 a
t 1

2:
03

 0
7 

M
ay

 2
01

5 



vortex. It is also observed from the curvature of the isotherms close to the walls in
Figure 4a that the convection heat transfer is significantly enhanced with increasing
Hartmann number. This is due to the increase of the magnitude of the driving mag-
netic force. Thus, the increased magnetic field enhances the heat transfer which is a
non-trivial consequence in MHD. In fact, heat transfer enhancement with increasing
Hartmann number has only been observed in the case of the formation of turbulent
sidewall jets in duct flow [28].

Figure 4. Isotherms for the cases Rm¼ 0.003, Ha¼ 10, 30, and 100: (a) Gr¼ 0, (b) Gr¼ 106, and (c)

Gr ¼�106. The increment of the isotherms is 0.05.
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Interesting results are presented in the streamfunction distribution plots of
Figures 3b and 3c, showing the combined flow due to both magnetoconvection
and buoyant forces. Thermal convection is the dominant mechanism of fluid flow
and heat transfer at small Hartmann numbers, and the direction of flow rotation fol-
lows the corresponding temperature difference of the sidewalls (or the sign of the
Grashof number as explained above). In general, it is known that the inverse cascade
of the Kolmogorov flow is arrested by the relatively weak stratification [19]. How-
ever, a primary vortex is always established in laterally-heated enclosures favoring
a possible inverse cascade. Thus, both types of flow that coexist here as a result of
the magnetoconvection and the thermoconvection forcing can be characterized as
(quasi-) two-dimensional even in the transitional or turbulent regimes.

The thermal convective flow for Gr¼ 106 that results in the same clockwise
rotation as in the case of only the magnetically-driven flow, is progressively getting
stronger with the increase of the Hartmann number. On the other hand, the antic-
lockwise rotating buoyant flow for Gr¼ �106 is completely reversed for Ha¼ 30
and acquires the same clockwise rotation as in the case of the pure magnetic forcing.
For Ha¼ 100, the magnetic force has completely dominated the flow for both cases
(Gr¼ �106) of buoyant flow studied here. In the analysis of the laminar Kolmo-
gorov flow, the basic circulation pattern is usually a circle [13] even for high wave
numbers, while here the vortices are elongated as in the stability analysis of the
electromagnetically-driven Kolmogorov flow of Chen and Price [29]. The elongated
flow pattern at high Hartmann numbers is characteristic for all MHD flows and are
connected to the tendency of the vortices to align with the direction of the external
magnetic field. In the present MHD flow, the magnetic field vector is somehow
inclined with respect to the Cartesian axes and, thus, the vortex is elongated in the
diagonal of the enclosure. The effect of flow reversal and the domination of magne-
toconvection heat transfer as the Hartmann number increases is also well illustrated
by the isotherms of Figures 4b and 4c.

The effect of the magnetoconvection on the fluid circulation intensity is shown
in Figure 5a, where the maximum value of the streamfunction is plotted for various
Hartmann numbers. It may easily be concluded that for Gr� 0, the increase of the
Hartmann number causes the increase of the flow circulation intensity. In contrast,
when the buoyant force is in competition with the magnetoconvection (Gr<0), the
increase of Hartmann number makes a progressive domination of the Lorentz force.
Initially, the circulation intensity decreases as the two driving forces counteract and
the fluid is slowed down, thus favoring conduction heat transfer. For this case, at
approximately Ha¼ 30 a stratification is observed in the flow as a result of the equi-
librium between the buoyant and magnetoconvection forces for the particular values
of the Grashof and Hartmann numbers. When the flow is reversed, the magnitude of
the maximum streamfunction increases again (the negative sign of W in Figure 5a
corresponds to clockwise rotation) and magnetoconvection heat transfer starts to
dominate. For high enough Hartmann numbers the magnitude of the maximum
stream function values are comparable for Gr¼ 0 and 106.

It should also be noted that in all combinations of forcing which is tested here
the increase of the Hartmann number to a value above 50 has no direct effect on the
circulation intensity maximum value, Wmax, which remains almost constant. In fact,
the flow field for the value of Wmax for Ha> 50 does not remain constant, and the
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Figure 5. Variation of (a) the maximum streamfunction, and (b) the average Nu with Ha for Gr¼ 0, 106,

and �106. Lines are spline fitting of the point results.
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additional kinetic energy due to the increase of the Lorentz force is cascading to sec-
ondary vortices. This is connected to the nonlinear nature of the governing equations
which have the tendency to favor bifurcations. In particular, the kinetic energy is
transferred to the secondary patterns which are formed at the corners of the enclos-
ure. For Ha> 100, these bifurcations may become unstable and turbulent convection
may be established. This flow regime is not studied here because turbulent models or
direct numerical simulations would be needed. Experimental results showing flow
patterns arising after the primary shear flow loses its stability can be found in Dolz-
hanskii et al. [27]. The latter is a similar unstable Kolmogorov shear flow in thin
layers where the applicability of the quasi-two-dimensional approximation (similar
to Somméria and Moreau [30] for high magnetic fields) is directly verified.

The magnetic driving also affects the convective heat transfer from the side-
walls, as shown in Figure 5b, where the variation of the Nusselt number with Hart-
mann number is presented. It is important to note that the relative increase of the
Nusselt number for Ha¼ 100 for the case where both the magnetic and buoyant
forces produce the same rotation (Gr¼ 106) is of the order of 40% compared to
the corresponding natural convection case. This increase of the Nusselt number is
essential in the present MHD flow of liquid metals because of the possible techno-
logical aspects, especially in fusion blankets where very high magnetic fields exist.
In connection to the flow circulation intensities of Figure 5a, when the two driving
mechanisms are competitive, Figure 5b shows that the heat transfer is reduced
initially due to the decrease of convection heat transfer and then increases with
the Hartmann number.

The asymptotic behavior of the flow circulation intensity for Ha> 50 which is
discussed above affects the heat transfer less, which is increased with the Hartmann
number due to the fact that the heat is mainly transferred through the boundary
layers that are formed near the walls. This is confirmed by the present results which
show that the increase of the Hartmann number, above a characteristic value, influ-
ences mainly the boundary layers and not the core flow. This is also illustrated by the
distribution of the electric current and Lorentz force (magnitude of BrB) in the
enclosure for the case of Ha¼ 100 and Gr¼ 0 shown in Figure 6. In particular, this
figure shows that stronger electric currents are gathering inside the Hartmann and
sidewall diffusion layers, while the magnitude of the Lorentz force in the core flow
is almost zero. Only for the higher Hartmann numbers studied here, does the Nusselt
number reach a plateau which is probably the limiting value of the Lorentz force for
the laminar heat transfer regime before flow transition occurs. The distributions of
the magnetic field components Bx and By are presented in Figure 6 for this particular
case of high Hartmann number.

3.2. Effect of Wave and Magnetic Reynolds Number

This part of the study mainly concerns the resulting flow at Gr¼ 0 as the wave
number k of the sinusoidal magnetic forcing is increased from 0 to 2 in increments of
0.25. In the experiments of the same flow [10, 11, 17], only an integer increase of the k
number was permitted, corresponding to the placing of additional magnetic poles or
electrodes. From the present simulations it was found that the flow phenomena
observed for k numbers greater than 2 are probably not steady state but rather
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transitional or even turbulent because of the dynamic nature of the shear flow and
the vortex breaking (at least for some values of the parameters space studied here).
These secondary instabilities are related to an instability of Kolmogorov type [31] in
which large-scale disturbances that are transverse to the plane of the periodic flow
become unstable. In this secondary instability regime, the system of the governing
equations bifurcates to time-dependent solutions with no spatial symmetry.

Figure 7 shows the effect of the k number on the flow for the case Ha¼ 20,
Gr¼ 0 and Rm¼ 0.003. For k¼ 0 (not shown in Figure 7) no Lorentz force is acting
on the flow, while no significant variation of the circulation pattern is observed for
values of k up to 1.5. For k¼ 1.75, secondary circulations located at the right corners
of the enclosure are growing and the beginning of the formation of a vortex pair is
observed due to the action of the Lorentz force. The increase of convection due to
the increase of the k number is more obvious in the curvature of the isotherms
and their distribution close to the vertical walls. The isotherms for the
case k¼ 0.25 are nearly parallel to the isothermal walls due to the domination of con-
duction heat transfer. Strong curvature of the isotherms and consequently domi-
nation of convection is observed for 0.75< k< 1.75, while for the case k¼ 2 the
vortex breaking and the symmetric vortex pair that is formed is found to be less
convective than for the latter cases.

Figure 6. Distribution of (a) the electric current Jz (�4.5;0.5;4.5), (b) the Lorentz force (magnitude of

BrB, 0.2;0.2;5.6), (c) Bx (0.925;0.01;1.065), and (d) By (�0.05;0.05;0.95) for the case of Ha¼ 100 and

Gr¼ 0. Numbers correspond to minimum, step, and maximum contour level value.
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Figure 7. Distribution of streamfunction and isotherms for Ha¼ 20, Gr¼ 0, and (a) k¼ 0.25 (�5.4; �0.2;

�0.2), (b) k¼ 0.5 (�36; �2; �2), (c) k¼ 0.75 (�90;�5; �5), (d) k¼ 1 (�160; �10; �10), (e) k¼ 1.25 (�210;

�10;�10), (f) k¼ 1.5 (�200;�10; 0), (g) k¼ 1.75 (�130;�10; 0), and (h) k¼ 2 (�50;�5; 50). The increment

of the isotherms is 0.05. Numbers correspond to minimum, step, and maximum contour level value.
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Figure 7. Continued.
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The streamlines of the flow at Gr¼ 0 for wave numbers k¼ 1 and 2 are pre-
sented in Figure 8. As it is expected, the primary flow pattern for k¼ 1 is divided into
a pair of circulations when k¼ 2, and this increase of vortices is proportional to the
increase of k. The structure of the symmetric vortex pair pattern for k¼ 2 has a simi-
lar egg-like shape as the one found by Nakamura [18] before transition occurred. In
the present case, the entire height of the enclosure is covered by the vortex pair while
the vortices of Nakamura [18] were localized at the bottom. This is because the pen-
etration of the magnetic field in the enclosure and the strength of the Lorentz force
have a direct influence on the extension of these vortices. This penetration can be
seen in the distribution of the Lorentz force in Figure 9 for the cases of k¼ 1 and
2. As k increases the influence of the Lorentz force it is localized closer to the bound-
ary layers. The localized action of the magnetic field (specially of the By component)
is also presented in Figure 9.

The effect of the wave number k on the flow circulation intensity and the heat
transfer at Gr¼ 0 is presented in Figure 10. The value of the maximum streamfunc-
tion W starts from zero at k¼ 0, increases monotonically up to k¼ 1.25, and then
decreases. A similar behavior is exhibited by the convective heat transfer from the
isothermal walls (indicated by the Nusselt numbers). For values of k greater than 2
and for the parameters considered in the present simulations, the flow is expected
to form a more complicated pattern of vortices where the kinetic energy is being
distributed further and the heat transfer is reduced for the entire laminar flow
regime.

In general for Rm51, advection is relatively unimportant and so the magnetic
field will tend to relax towards a purely diffusive state, determined mainly by the
boundary conditions. However, it is found sometimes that a small value of the mag-
netic Reynolds number does not necessarily mean that magnetic diffusion dominates
over convection, and the nonlinear magnetic transport may play an important role
even when Rm is small [32]. In order to investigate possible deviations from the usual

Figure 8. Streamlines for Ha¼ 20 and Gr¼ 0; (a) k¼ 1 and (b) k¼ 2.
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effect of the magnetic Reynolds number on the liquid metal flow (especially as here
under the effect of spatially-varied boundary conditions and possible transition to
turbulence), we studied the range of Rm< 1 which covers liquid metal flows in indus-
trial or laboratory scale [24], as described below.

Figure 11 shows the distribution of the maximum streamfunction and Nusselt
number at various magnetic Reynolds numbers and Gr¼ 0 as a function of the Hart-
mann number. The decrease of Rm results to an increase of the circulation intensity
and consequently to an increase of heat transfer from the isothermal walls. As it may
be observed, for high enough Hartmann numbers both the circulation intensity and
the heat transfer remain almost constant. The values of the above quantities depend
only on the value of the magnetic Reynolds number because of its connection to the
magnitude of the Lorentz force.

Figure 9. Distribution of the Lorentz force (upper), Bx (middle), and By (bottom) for the case of Gr¼ 0,

Ha¼ 20; (a) k¼ 1 (0.2; 0.2; 3.8,0.95; 0.005; 1.055,0.05; 0.05; 0.95), and (b) k¼ 2 (0.5; 0.5; 6.5,0.965; 0.005;

1.035, �0.9; 0.1; 0.9). Numbers correspond to minimum, step, and maximum contour level value.
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4. CONCLUSIONS

The laminar regime of free convection flow due to spatially varying magne-
toconvection and to thermoconvection in a square enclosure has been numerically
studied. It is found that a suitable combination of the magnetic and gravitational
forces may enhance heat transfer up to 40% over the usual natural convection heat
transfer rates. A stratification of the flow may happen when the two forces have
an opposing action on the fluid. For the range of flow parameters considered here,
the intensity of the flow circulation and the heat transfer reach asymptotically a

Figure 10. Variation of (a) the maximum streamfunction for Gr¼ 0, and (b) the average Nu with k wave

number. Lines are spline fitting of the calculated points.

Figure 11. Variation of (a) the maximum streamfunction (multiplied by Rm), and (b) the average Nu with

Ha number for Rm¼ 0.003, 0.01, and 0.05. Lines are spline fitting of the calculated points.
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plateau because the limit of transition-to-unsteadiness is reached for large enough
Hartmann numbers.

An important parameter of the current sinusoidal forced flow is the wave num-
ber that determines the number of periods of the external Lorentz force along the
enclosure walls. The increase of the wave number k increases the circulation intensity
and enhances heat transfer, for k> 1.25, both the circulation intensity and the heat
transfer decrease due to the breaking of the main flow pattern. This study was
restricted to values of k� 2 before flow transition was reached (k> 2). The magnetic
Reynolds number was found to be a significant flow parameter since it controls the
portion of the magnetic energy that will be transformed into fluid kinetic energy.
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