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MHD free convection of a liquid metal is studied in a closed vertical annulus in which the upper and bot-
tom walls are adiabatic while the cylindrical walls are kept at different temperatures. The flow is driven
by two mechanisms; the temperature difference between the two cylindrical walls and the volumetric
heating. A constant horizontal magnetic field is also imposed resisting the fluid motion. The laminar
and turbulent regimes of the flow are assessed by performing three-dimensional direct numerical simu-
lations. The results show that in the absence of the magnetic field, turbulent flow is developed in most of
the cases, while as the magnetic field increases the flow becomes laminar. The highest temperature is
found in the upper-central part of the annular cavity when the fluid is heated volumetrically, resulting
in the creation of two convection currents as the hot fluid ascends in the central part and descends close
to both colder walls. The Hartmann and Roberts layers developing near the walls normal and parallel to
the magnetic field, respectively, are found to be responsible for the loss of axisymmetry of the present
flow.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Fusion reactors are most promising devices for the production
of non-fossil fuel energy in very large quantities. In the last dec-
ades, numerous studies have dealt with the transfer of heat from
the fusion reactor core which will be assisted by a liquid metal
blanket. In such configurations, the increase of heat transfer and
the decrease of the pressure drop along the flow channels is of
great importance [1]. This is because very high pressure drops oc-
cur in duct and pipe flows under strong magnetic fields. As a con-
sequence, the use of forced convection and more specifically liquid
pumping for heat removal may become very expensive. In such sit-
uations, heat removal by efficient natural convection may be an
economic alternative [2,3].

Various natural convection configurations have been proposed
as more appropriate for enhancing heat transfer rates. More specif-
ically, Li et al. [4] and Seriwaza et al. [5] suggested a geometry
consisting of two coaxial cylinders where liquid metal is placed
ll rights reserved.

: +30 24210 74085.
.
itute of Athens, Energy Tech-
thens, Greece.
in the annular gap and a non-conductive gas (e.g. Helium) is flow-
ing inside the inner cylinder. With this configuration the MHD
effects are reduced significantly as the non-conductive gas can re-
move the heat without any additional pressure drop due to the
magnetic field. Uda et al. [6] presented both experimental and
numerical results of natural convection of a liquid metal, in a
geometry consisting of a tube and a heater pin placed on the axis
of the tube. A transverse magnetic field was applied and the mech-
anism of heat transfer was studied. The k–e model was used for the
numerical calculations, adapted for MHD natural convection flows.
Moreover, Serizawa et al. [5] performed an experiment in a vertical
tube using NaK/nitrogen flow and, applying an external transverse
magnetic field, they demonstrated that heat transfer was non-
axisymmetric. Similar results were found in the numerical study
of Li et al. [4] for a liquid metal/gas flow in a vertical annulus under
the effect of a transverse magnetic field.

In the present work a similar configuration to that used by
Kakarantzas et al. [2,3] was considered where a liquid metal with
Prandtl number of 0.0321 was placed between two coaxial vertical
cylinders. The outer wall temperature was constant and greater
than that of the inner. Internal volumetric heating and an external
horizontal magnetic field were applied. The combined natural con-
vection flow due to wall temperature difference and the internal
heating is the additional feature studied here in relation to the pre-
vious work of Kakarantzas et al. [2].
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Nomenclature

B0 magnitude of the external magnetic field (kg/(s2A))
g gravity acceleration (m/s2)
Ha ¼ RB0

ffiffiffiffiffiffiffiffiffiffiffiffi
r=qm

p
Hartmann number

J electric current density (A/m2)
k fluid thermal conductivity (W/m.K)
L height of the cylinders (m)
Nui local Nusselt number at the inner cylinder
Nui azimuthally averaged Nusselt number along the inner

cylinder
Nui;tot averaged Nusselt number on the inner cylinder
Nuo local Nusselt number at the outer cylinder
Nuo azimuthally averaged Nusselt number along the outer

cylinder
Nuo;tot averaged Nusselt number on the outer cylinder
p fluid pressure (Pa)
Pr = m/a Prandtl number
Q volumetric heating rate (W/m3)
R = Ro � Ri annular gap (m)
Rae = gbDT R3/ma external Rayleigh number
Rai = gbQ R5/mja internal Rayleigh number
Ri radius of the inner cylinder (m)

Ro radius of the outer cylinder (m)
r, z radial and axial spatial coordinates
S = Rai/Rae ratio of internal-to-external Rayleigh numbers
t time (s)
T⁄ temperature of the fluid
Ti temperature of the inner cylinder (K)
To temperature of the outer cylinder (K)
DT = To � Ti temperature difference between the cylinders (K)
T = (T⁄ � Ti)/DT non-dimensional temperature
ur, uh, uz radial, tangential, and axial velocity components
v velocity vector

Greek letters
a fluid thermal diffusivity (m2/s)
b fluid coefficient of thermal expansion (1/K)
h azimuthal angle
m fluid kinematic viscosity (m2/s)
q fluid density (kg/m3)
r fluid electrical conductivity (s3A2/m2kg)
U electrical potential (m2kg/s3A)

Table 1
Grid independence test (Rae = 105, Rai = 0, Ha = 100).

Grid 32 � 32 � 64 64 � 64 � 128 97 � 97 � 176

Nu 1.843 2.126 2.159
Error 14.6 % 1.5 % –

3348 S.C. Kakarantzas et al. / International Journal of Heat and Mass Transfer 54 (2011) 3347–3356
2. Flow configuration and model description

A vertical annular container, as shown schematically in Fig. 1,
was considered with an aspect ratio L/R = 3, where L is the height
of the cylinders, R = Ro � Ri is the annular gap, and Ro, Ri are the ra-
dii of the outer and inner cylinders, respectively, with Ri = 0.2R. The
top and bottom walls were assumed adiabatic while the outer and
inner walls were kept isothermal with the outer wall temperature
Fig. 1. Flow configuration and boundary conditions.
To greater than that of the inner Ti. The annular container was filled
with a low Prandtl number (Pr = 0.0321) electrical conducting
fluid. Internal volumetric heating and an external horizontal mag-
netic field were applied. It must be noted that in Fig. 1, Q repre-
sents the volumetric heat generation, g is the gravity
acceleration, and Bo the constant external magnetic field. All walls
were assumed electrically insulated. The aspect ratio of L/R = 3 was
selected since it corresponds to a fair balance between the actual
design needs of the future fusion blanket and the efficiency of
the direct numerical simulation method used in the present
study.

The governing magnetohydrodynamic equations were non-
dimensionlized using as characteristic quantities the annular gap
R, the free fall velocity, uref ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gbRDT

p
, the pressure, pref ¼ qu2

ref ,
the time, tref = R/uref, and the electric potential, Uref = B0Ruref, where,
q is the density of the fluid and b its volumetric thermal expansion
coefficient. The non-dimensional temperature T was calculated
from the fluid temperature T⁄ using the relation T = (T⁄ � Ti)/DT,
where DT = To � Ti was the temperature difference between the
outer and the inner cylindrical walls. Thus, the dimensionless
equations become:

r � v ¼ 0; ð1Þ

@v
@t
þ ðv � rÞv ¼ �rpþ Tkþ Pr

Rae

� �1
2

r2v þ Ha2 Pr
Rae

� �1
2

ðJ� B0Þ; ð2Þ

@T
@t
þ ðv � rÞT ¼ 1

PrRae

� �1
2

r2T þ Rai

ðPrRa3
e Þ

1
2
; ð3Þ

r2U ¼ r � ðv � B0Þ; ð4Þ
J ¼ �rUþ v � B0; ð5Þ



Fig. 2. Distributions of streamfunction (top) and isotherms (bottom) for Rae = 103 and Ha = 0: Rai = 0 (left), Rai = 103 (middle), Rai = 104(right).

Fig. 3. Time-variation of the axial and radial velocities (left) and 3D distribution of the azimuthal velocity at t = 200 (right) for Rae = 104, Rai = 0, Ha = 0.
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Fig. 4. Azimuthally and time averaged fields of (top left to bottom right) isotherms, streamlines, turbulent kinetic energy and Reynolds stresses u0hu0h , u0ru0r and u0zu0z for
Rae = 104, Rai = 0, Ha = 0.
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where, k is the unit vector in the z � direction, U the electric poten-
tial and J the electric current. It must be noted that the low mag-
netic Reynolds number approximation was adopted [7] because,
for the present natural convection flow, the magnetic field induced
by the fluid motion is assumed to be very small in comparison to
the external magnetic field and, thus, the magnetic induction equa-
tions need not be solved.
Fig. 5. Radial distribution of the azimuthally and time averaged temperature (left
The dimensionless parameters characterizing the present flow
are: the external Rayleigh number, Rae = gbDTR3/ma, corresponding
to the magnitude of the temperature difference between the exter-
nal and internal cylinders, the internal Rayleigh number, Rai =
gbQR5/mka, representing the intensity of the volumetric heat gener-
ation, and the Hartmann number, Ha ¼ B0R

ffiffiffiffi
r
qm

q
, expressing the

magnitude of the magnetic field, where, m the kinematic viscosity
) and axial velocity (right) at z = 2.5 for Ha = 0, Rae = 105, S = 0, 1, 10 and 100.
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of the fluid, k its thermal conductivity coefficient, a its thermal
difussivity coefficient and r its electrical conductivity. Depending
on the combination of these parameters, the flow may become
laminar, transitional or turbulent. Also, because the action of the
horizontal magnetic field results in non-axisymmetric velocity
and temperature fields, three-dimensional computations are
needed.

No-slip conditions were assumed on all walls (ur = uh = uz = 0 for
z = 0,3 and r = 0.2,1.2), and constant temperatures at the inner
(Ti = 0) and outer (To = 1) cylindrical walls. Finally, adiabatic condi-
tions were considered at the bottom and top walls (@T/@z = 0 for
z = 0,3) and all walls were considered electrically insulated: oU /
@n = 0.

The heat transfer characteristics were assessed via the Nusselt
number along the inner and outer cylinders calculated from the
expressions:

Nui;oðh; zÞ ¼ lnðRi=RoÞðr@T=@rÞr¼Ri ;Ro
ð6Þ

and the azimuthally-averaged Nusselts numbers calculated from:

Nui;o ¼
1

2p

Z 2p

0
Nui;oðh; zÞdh; ð7Þ

while the average (i.e. averaged axially and azimuthally) Nusselt
numbers at the inner and outer walls were calculated, as:

Nui;o;tot ¼
1

2pL

Z 2p

0

Z L

0
Nui;oðh; zÞdzdh: ð8Þ
Fig. 6. Azimuthally and time averaged fields of (top left to bottom right) isotherms,
streamlines, turbulent kinetic energy and Reynolds stresses u0hu0h , u0ru0r and u0zu0z for
Ha = 0 and Rae = 104: Rai = 104 (top six plots), Rai = 105 (bottom six plots).
3. Numerical details

The governing Eqs. (1)–(5) of the present MHD natural convec-
tion were discretized using a staggered non-uniform mesh and sec-
ond-order accurate finite-difference schemes. The resulting system
of algebraic equations was solved with a fractional step method
where a semi-implicit scheme was used for time integration [8].
The diffusion terms were advanced in time with a Crank-Nicolson
method, while the non-linear terms, the buoyancy and Lorentz
force terms with a third-order Runge–Kutta method. For a fully re-
solved direct numerical simulation, the specific features of the
present flow and heat transfer problem must be considered. In par-
ticular, the increase of Ha results in thinner sidewall and Hartmann
layers, while the increase of Rae produces thinner boundary layers
and smaller Kolmogorov and Batchelor scales. The mesh size for
the present direct numerical simulations was selected such that
all the flow scales, both in the boundary layers and the bulk flow,
could be properly resolved. An estimate for the flow scales was ob-
tained by the analysis proposed by Grötzbach [9] where the appro-
priate Kolmogorov scale g is a function of Nu number for fluids
with Pr < 1. Furthermore, for an estimate of the resulting Nu num-
ber of each flow case an exponential function of Rae and Ha was
used according to Aurnou and Olson [10]. In the cases where strong
magnetic fields were employed, special care was taken for the res-
olution of the thinner Hartmann layers, as described by Kakarant-
zas et al. [2].

Based on the above conditions and depending on the external
Rayleigh number Rae, the selected computational grids were
ðr; h; z : 49� 49� 97Þ for Rae 6 104 and ðr; h; z : 65� 65� 128Þ for
Rae > 104. The adequacy of the grid was assessed by performing
grid independence tests of some indicative cases. For example, rep-
resentative results of the Nusselt number, a quantity most sensi-
tive to the grid, are given in Table 1 for some grids tested. In
addition, the present numerical model has been tested successfully
by Kakarantzas et al. [2,11] against the numerical results of Sarris
et al. [12] and Karcher et al. [13].
4. Results and discussion

Direct numerical simulations were performed for three external
Rayleigh numbers (Rae = 103,104,105), six internal Rayleigh num-
bers (Rai = 0,103,104,105,106,107) and four Hartmann numbers
(Ha = 0,25,50,100). Depending on the magnitude of the Hartmann
number and the ratio of the internal-to-external Rayleigh numbers,



Fig. 7. Time-variation of axial velocity at (r:0.7, h: 0, z: 0.41) for Rae = 104, Rai = 0 and Ha = 25,50 (left) and of azimuthal velocity at (r: 0.7, h: 180, z: 1.5) for Rae = 104, Rai = 105,
Ha = 25 (right).

Fig. 8. 3D distribution of axial velocity (left) and temperature (right) for Ha = 100, Rae = 104: Rai = 0 (top), Rai = 105 (bottom).
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the flow may become laminar, transitional or turbulent. More spe-
cifically, in the absence of the magnetic field (Ha = 0), turbulent
flow develops for Rae P 104 for the low Prandtl number
(Pr = 0.0321) fluid considered here. As Ha increases, transition oc-
curs and, for Ha > 50, the disturbances disappear in all cases with
the flow becoming laminar.

4.1. Hydrodynamic cases (Ha = 0)

In Fig. 2 the main features of the laminar hydrodynamic flow
(Ha = 0) are presented in terms of streamlines and isotherms for
Rae = 103 and Rai = 0, 103 and 104. In all these cases the flow is azi-
muthally symmetric. From the isotherms, it is obvious that when
no heat generation is considered, the fluid ascends near the hotter
external wall and it descends near the internal wall which is
colder. This flow current is depicted by the single flow pattern of
the streamfunction plot. The increase of Rai alters the flow pattern
as the volumetric heating affects the temperature of the fluid and,
consequently, its motion. More specifically for Rai = 103, an ex-
tended region of hot fluid is formed near the external wall, where
its temperature increases due to the volumetric heating and be-
comes almost equal to the temperature of the external cylindrical
wall. Although the temperature field is modified, the single flow
pattern still remains. However, as Rai increases, the region of the



Fig. 9. 3D distribution of axial Lorentz force for Ha = 50, Rae = 104: Rai = 0 (left), Rai = 105 (right).

Fig. 10. Time-variation of the average Nusselt number on the internal (left) and external (right) walls for Ha = 0, Rai = 0, Rae = 103, 104, 105.

Fig. 11. Time-variation of the average Nusselt number on the internal (left) and the external (right) walls for Ha = 0, Rae = 104, Rai = 105, 106.
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hot fluid moves toward the middle of the annular gap. The local
fluid temperature increases further and finally it exceeds that of
the external wall. Consequently, the hot ascending fluid at the cen-
tral part of the domain divides the single flow pattern into a pair of
counter-rotating patterns. The fluid descends along the outer and
the inner cylindrical walls which are now both at lower tempera-
tures than the bulk fluid. This feature of the volumetric heating
has also been observed in other cases of confined natural convec-
tion flows, for example [1,14].
As Rae increases the flow becomes turbulent in the absence of
magnetic field. Fig. 3 shows the temporal variation of the radial
and axial velocities at the monitor location
ðr : 0:7; h : 180; z : 1:5Þ and a snapshot at time t = 200 of the 3D
instantaneous distribution of the azimuthal velocity component
for Rae = 104 and Rai = 0. As it can be observed, the resulting fluid
motion is fully disturbed and chaotic and the flow is turbulent.

In Fig. 4 the azimuthally and time averaged distributions of
some important turbulent quantities are also presented. From left



Fig. 12. Time-variation of the average Nusselt on the internal (left) and external (right) walls for Ha = 0, Rae = Rai = 103, 104 and 105.

Fig. 13. Time-variation of average Nusselt on the internal (left) and external (right) cylindrical walls for Rae = 104, Rai = 0, Ha = 25, 50 and 100.
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to right, these quantities are the isotherms, the streamlines, the
turbulent kinetic energy and the Reynolds stresses u0hu0h, u0ru0r and
u0zu0z. It is observed that the Reynolds stress u0hu0h and u0zu0z contribute
locally the most to turbulence while two highly unstable regions
are seen. The first is located near the middle of the annular gap
and the second in the corner formed by the internal cylinder with
the bottom wall.

When volumetric heating is active, the temperature in the bulk
fluid increases resulting to significant changes in the flow pattern.
These changes depend on the ratio of the internal-to-external Ray-
leigh numbers, S = Rai/Rae, as it was also observed for the square
cavity reported in Ref. [1]. Similarly to the laminar flow case of
Fig. 3, in the present turbulent flow cases and for S = 1, the volu-
metric heating creates a second region (very close to the external
wall) where the temperature increases and becomes almost equal
to that of the external wall. As S increases further this hot fluid re-
gion moves towards the middle of the annular gap and the local
fluid temperature increases further. As a result, the temperature
at the external wall is no longer the maximum in the domain. Fur-
thermore, the increased temperatures result in the development of
steeper temperature gradients close to the cylindrical walls which
increase the turbulent fluid motion. The above are confirmed in
Fig. 5 where the radial distribution of the azimuthally and time
averaged temperature and axial velocity at z = 2.5 are presented
for Ha = 0, Rae = 105 and S = 0,1,10 and 100.

Concerning the turbulent characteristics of the flow, Fig. 6
shows the azimuthally and time averaged distribution of the iso-
therms, the streamlines, the turbulent kinetic energy and the Rey-
nolds stresses u0hu0h, u0ru0r and u0zu0z for Rae = 104, S = 1 and 10. The
isotherms and the streamlines confirm the impact of the volumet-
ric heating on the flow pattern, as it is clearly shown by the move-
ment of the temperature maximum, and by the creation of two
strong convection currents for S = 10. In addition, the distribution
of the turbulent kinetic energy for S = 1 indicates that two highly
unstable regions are formed as in the case without internal heating
presented, for example, in Fig. 4. The first region appears close to
the internal cylinder and the second in the corner of the internal
cylinder and the bottom wall. For S = 10 the most unstable area
is near the internal cylinder, at its mid height. It may also be con-
cluded that for Rai = 104 (i.e. S = 1), all three Reynolds stresses, u0iu

0
i,

contribute almost equally to turbulence, while for Rai = 105 (or
S = 10) the contribution of u0zu0z is clearly larger.

4.2. Magnetohydrodynamic cases (Ha > 0)

The presence of the magnetic field retards the fluid and progres-
sively causes a transition to laminar flow, while for high enough
Hartmann numbers the flow becomes clearly laminar. This is con-
firmed in Fig. 7 which shows the time-variation of the axial veloc-
ity at position ðr : 0:7; h : 0; z : 0:41Þ for Rae = 104, Rai = 0, Ha = 25,
50, and of the azimuthal velocity at ðr : 0:7; h : 180; z : 1:5Þ for
Rae = 104, Rai = 105, Ha = 25. An oscillatory behaviour of uh is ob-
served in the case of Rai = 105. Furthermore, the magnetic field
causes the loss of flow axisymmetry and the formation of wakes
near the cylindrical walls that are parallel to its direction. This is
due to the fact that Hartmann and side (Roberts) layers are devel-
oping near the walls normal and parallel to it, respectively. The
flow is retarded more in both layers but inside the Hartmann layers
the reduction is larger than in the side layers, see Kakarantzas et al.
[2] and Todd et al. [15].
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It is known that the thicknesses of the Hartmann and Roberts
layers are, in general, proportional to Ha�1 and Ha�2, respectively
(see Ref. [16] for details). However, in the special case of cylindrical
domains with a horizontal magnetic field, the thickness of the
Hartmann layer depends on the azimuthal angle h and it is of the
order (Hacosh)�1, see [17–19], while wider Roberts layers are
formed [20]. Consequently, wakes are created and the flow looses
its axisymmetry. This is shown in Fig. 8 where the three-dimen-
sional distributions of the axial velocity and temperature of the
fluid are depicted at Ha = 100 for Rae = 104 and S = 0, 10.

The impact of the Hartmann and Roberts layers on the flow is
expressed via the Lorentz force which is always resisting the fluid
motion and it is stronger in regions of higher velocities. This is
shown in Fig. 9 where for Rae = 104 and Ha = 50 the distribution
of the axial component of the Lorentz force is presented for S = 0
and 10. It is observed that the values of the Lorentz force are higher
in the directions h = 90o and 270o (i.e. inside the Roberts layers)
where the fluid velocities are also higher.

4.3. Heat transfer

The important problem of heat transfer from the cylindrical
walls is studied here via the distribution of the Nusselt number
Fig. 14. Local Nusselt number at the inner (left) and outer (right) walls for
for a range of flow parameters. The present results confirm the
known fact that for the hydrodynamic case and without heat
sources, when the external Rayleigh number increases, the average
Nusselt number also increases. This is confirmed by the results of
Fig. 10 where the time-variation of the average Nusselt number
on the internal and the external cylindrical walls for the hydrody-
namic cases (Ha = 0) and without volumetric heating (S = 0), and
for Rae = 103,104 and 105 is presented.

When volumetric heating is present and for S > 1, the increase of
the internal Rayleigh number results in the increase of heat trans-
fer. This is observed in Fig. 11 where the time-variation of the aver-
age Nusselt number on the internal and the external cylinders is
shown for Ha = 0, Rae = 104 and Rai = 105, 106 (i.e. S = 10,100). It
is found that the Nusselt number and, thus, the heat transfer rates
are significantly higher at the outer (hotter) wall. Here it must be
noted that the observed negative values of the external Nusselt
number are due to the movement of the temperature maximum
from the outer wall to the bulk fluid. In such cases, the outer wall
absorbs the heat transfer from the bulk higher temperature fluid
and that is why the values of the Nusselt number are becoming
negative. Analogous results can also be found in [3,14].

In the case of S = 1, it appears that the heat transfer mechanism
is different. More specifically, the average Nusselt number
Ha = 100, Rae = 104: Rai = 0 (top), Rai = 104 (middle), Rai = 105 (bottom).
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decreases on the external cylindrical wall because the volumetric
heat sources create a second region (very close to the external
wall) where the fluid temperature is almost equal to that of the
wall. This was demonstrated in Fig. 6 where the time and azimuth-
ally averaged temperature distribution for the hydrodynamic case
(Ha = 0) and Rae = Rai = 104 was presented. As a consequence, the
temperature gradients at the outer wall become smoother, result-
ing to heat transfer reduction. This is shown in Fig. 12 where the
time-variation of the average Nusselt number on the inner and
outer walls is presented for the hydrodynamic case and for Rae =
Rai = 103, 104 and 105 (i.e. S = 1). It must be noted that similar
results have been presented by Acharya and Goldstein [14] for
the natural convection in the volumetrically heated square cavity.

When the magnetic field is imposed, significant effects on the
heat transfer mechanism are observed. The fluid is retarded due
to the action of the Lorentz force and, thus, convective heat transfer
decreases in most cases. More specifically, in the absence of volu-
metric heating a decrease of the Nusselt number occurs on both
walls and, for large values of the Hartmann number heat transfer
occurs mainly by conduction. This is demonstrated in Fig. 13 where
the time-variation of the average Nusselt number on the inner and
outer cylindrical walls is presented for the cases Rai = 0, Rae = 104

and Ha = 25, 50 and 100. In addition, the fact that the increase of
the magnetic field results to more intense motion of the fluid near
the 90o and 270o planes (due to the formation of wider Roberts lay-
ers) leads to an analogous heat transfer behavior. More specifically,
the Nusselt number is higher near the cylindrical walls parallel to
the direction of the magnetic field where the fluid velocities are
higher. This is confirmed in Fig. 14 where the local Nusselt number
on the inner and the outer cylindrical walls is presented for
Ha = 100, Rae = 104 and for Rai = 0, 104 and 105 (i.e. without or with
internal heating).
5. Conclusions

The combined effect of a horizontal magnetic field and volumet-
ric heating on the natural convection flow and heat transfer of a
low Prandtl number fluid in a vertical annulus was studied. Direct
numerical simulations were performed for the range of external
Rayleigh numbers, Rae = 103 to 105, internal Rayleigh numbers,
Rai = 0 to 107, and for Hartmann numbers, Ha = 0 to 100. For the
low Prandtl number (Pr = 0.0321) fluid considered here, the flow
in the pure hydrodynamic case is turbulent for Rae P 104. As the
magnetic field increases the flow becomes less turbulent and, for
large enough Hartmann numbers (Ha P 75), it becomes laminar.
The magnetic field causes loss of axisymmetry due to the develop-
ment of Hartmann and Roberts layers near the walls normal and
parallel to it, respectively. The flow is damped more in both layers
but inside the Hartmann layers the reduction is larger than in the
Roberts layers.

The volumetric heating increases the local temperature of the
fluid resulting in significant changes of the flow pattern, depending
on the ratio of the internal-to-external Rayleigh numbers, S = Rai/
Rae. More specifically, for the case of S = 1, a second region (very
close to the external wall) develops where the temperature be-
comes almost equal to the maximum value at the external wall.
For higher values of S, this region moves towards the middle of
the annular gap and the local fluid temperature increases to values
exceeding that at the external wall. This leads to the creation of
two convection currents because the fluid ascends near the core re-
gion of higher temperature and descends close to the walls that are
now colder.
Heat transfer increases with increasing external Rayleigh num-
ber, resulting to an increase of the average Nusselt number on the
walls. An almost similar behaviour is observed when the internal
Rayleigh number is increased. However, for the cases when Rae

and Rai are of the same magnitude, the average Nusselt number
decreases on the external wall. The presence of the magnetic field
results in reduction of convection heat transfer in most cases. This
reduction is lower in the 90o and 270o directions, where the
Roberts layers form, than at 0o and 180o where the Hartmann
layers develop.
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