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Abstract 
Due to the complicated nature of detecting actual 

intrusions, most current Network Intrusion Detection 
Systems (NIDS) place the burden of distinguishing an 
actual attack from a large set of false alarms on the 
security analyst, resulting in a significant cognitive load. 
Artificial Intelligence combined with Visualization will 
take advantage of human perceptual abilities and 
expertise to amplify cognition. In this paper we will 
describe an Evolutionary Artificial Neural Network 
(EANN) used as the knowledge base for the classification 
of web attacks in a prototype system. The aforementioned 
system is a surveillance aid for the security analyst, 
offering him a user friendly visual tool to detect 
anomalies in web requests by exploring 3D graphs, to 
understand quickly the kind of undergoing attack by 
means of colours and afford him the possibility to 
navigate into the payload of the web request for further 
analysis and adequate response. The EANN system is an 
improvement of our original work that used a supervised 
multilayer Artificial Neural Network (ANN) as the web 
attacks classifier. 
  
Keywords: Genetic algorithms, EANN, web attacks, 
visual analytics.  
 
1. Introduction 
 

Web sites are likely to be regularly scanned and 
attacked and therefore, organizations, companies and 
individuals are making every effort to build and maintain 
secure Web sites. The threat profile facing enterprise 
organizations has undeniably shifted from network-layer 
exploits to more formidable attacks against applications, 
primarily Web and Web services applications. NIDS 
assist security analysts by automatically identifying 
potential attacks from network activity and produce alerts 
describing the details of these intrusions. However, 
network IDS have problems, such as false positives, 
operational issues in high-speed environments and 
difficulty in detecting unknown threats.  

According to a recent report published by the 
Common Vulnerabilities and Exposures (CVE) project 

[1], flaws in Web software are among the most reported 
security issues so far this year. Hackers are known to 
search for an easy target. Poorly configured or poorly 
written web applications are not only an easy target, 
taking the attackers straight to their goal, giving them 
access to data and other information, but can also be used 
to spread malicious software such as viruses, worms, 
Trojan horses and spyware to anyone who visits the 
compromised site. “Easy to learn” scripting languages 
enable anyone with an eye for graphic design to develop 
and code powerful web-based applications. Unfortunately, 
many developers only bother to learn the eye-catching 
features of a language and not the security issues that need 
to be addressed. As a result, many of the same 
vulnerabilities that were problematic for developers 
several years ago remain a problem today. This is perhaps 
why Cross-Site Scripting (XSS) is now the most common 
type of application layer attack, while buffer overflow 
vulnerability, the perpetual No. 1 attack, has dropped to 
fourth place. Two other web application vulnerabilities, 
SQL injections and PHP remote file inclusions, are ranked 
second and third today [2]. 

Currently, security analysts face an increasing 
workload as their environments expand and attacks 
become more and more frequent. They monitor network 
activity using an intrusion detection system (IDS) for 
evidence of actions that attempt to compromise the 
integrity, confidentiality or availability of a network or 
computer resource. They also continuously monitor 
output from IDS and they use that output in conjunction 
with other systems, network and firewall logs, to keep 
abreast of system activity and potential attacks. 

The number of alerts generated by most IDS can 
quickly become overwhelming and thus the analyst is 
overloaded with information which is difficult to monitor 
and analyze. Attacks are likely to generate multiple 
related alerts. Current IDS do not make it easy for 
operators to logically group related alerts. This forces the 
analyst to look only at aggregated summaries of alerts or 
to reduce the IDS signature set in order to reduce the 
number of alerts. In Snort current version, an open source 
IDS available to the general public [3], there are more 
than 11,500 signatures for network intrusion detection, 



more than 2100 of which are web-related signatures. By 
reducing the signature set the analyst knows that although 
it reduces the false alarms it is also likely to increase the 
number of false negatives, meaning that he will not be 
able to detect actual attacks. 

According to a recent survey [4], in the intrusion 
detection area intelligent visualization tools are needed to 
offload the monitoring tasks, so that anomalies can be 
easily flagged for analysis and immediate response by the 
security analyst. Information presented in a visual format 
is learned and remembered better than information 
presented textually or verbally. Artificial Intelligence 
combined with Visualization can take advantage of 
human perceptual abilities and expertise to amplify 
cognition. 

The lack of intelligent visualization tools for web 
Intrusion Detection has led us to design and create a 
prototype system. It is a surveillance aid for the web and 
security analyst providing him with an intelligent visual 
tool to detect anomalies in web requests by exploring 3D 
graphs and understand quickly the kind of undergoing 
attack by means of colours. The system looks into web 
requests to detect “fingerprints” which are special 
characters or chains of characters. These fingerprints are 
then passed to an expert system to decide if they 
constitute a malicious request or attack. The output of the 
expert system is then transformed into a 3D graph for 
visual interpretation. Web attacks can be either rejected 
by the web server or can be successful due to security 
weaknesses. 

In our first version of the prototype system [5] the 
expert system used for the web attack classification was a 
supervised multilayer Artificial Neural Network (ANN). 
Recently we replaced the ANN by a hybrid expert system, 
an Evolutionary Artificial Neural Network (EANN). In 
this paper we describe the aforementioned EANN, its 
design, its integration into the prototype system, its 
classification results, and its performance. Finally, a 
comparison of the two expert systems is presented to 
determine which classifier is the better of the two. 

The rest of this paper is organized as follows: section 
2 presents related work, section 3 presents briefly the 
visualization prototype ID system and describes in details 
the new development, section 4 describes the new 
system’s performance evaluation and compares the two 
EANN and ANN classifiers. Finally, concluding remarks 
appear in section 5. 
 
2. Related work 
 

There is ongoing research on IDS systems especially 
on anomaly detection and profile or specification-based 
detection. This includes various statistical methods, 
artificial neural networks and data mining methods 
([6],[7],[8]).  

Interesting works on the detection of web-based 
attacks have been published in the last few years. 
Statistical methods have been used in [9] such as the 
multi-model approach for the detection of web-based 

attacks. A Bayesian parameter estimation technique for 
web session anomaly detection is described in [10] and 
DFA (Deterministic Finite Automata) induction has been 
applied in [11] to detect malicious web requests in 
combination with rules for reducing variability among 
requests and heuristics for filtering and grouping 
anomalies. 

Recent works on application-level web security cover 
SQL and PHP code injections and XSS attacks. The 
authors in [12] combine a static analysis and runtime 
monitoring to detect and stop illegal SQL queries. In [13] 
a sound, automated static analysis algorithm is developed 
for the detection of injections vulnerabilities, modelling 
string values as context free grammars and string 
operations as language transducers. In [14] Noxes, a 
client-side solution is presented, which acts as a web 
proxy and uses both manual and automatically generated 
rules to mitigate possible cross-site scripting attempts. 
Additionally, in [15] Secubat, a web vulnerability scanner 
is described, which is a generic and modular web 
vulnerability scanner that, similar to a port scanner, 
automatically analyzes web sites with the aim of finding 
exploitable SQL injection and XSS vulnerabilities. Visual 
analytics have recently been applied in network 
monitoring [16] and Intrusion Detection [17].  

Artificial Intelligence used for web intrusion detection 
is limited to Bayesian classifiers. In [18] an IDS system is 
presented based on a bayesian classifier in the same vein 
as the now popular spam filtering software. This simple 
classifier operates as follows: First the input is divided 
into some form of unit which lends itself to being 
classified as either benign or malicious, this unit of 
division is denoted as a message. It is the responsibility of 
the user to mark a sufficient number of messages as 
malicious/benign beforehand to effect the learning of the 
system. The system is thus one of directed self learning. 
The message is then further subdivided into tokens. The 
tokens are scored, so that the score indicates the 
probability of the token being present in a malicious 
message, i.e. the higher the relative frequency of the 
tokens occurrence in malicious messages, relative to its 
occurrence in benign messages, the more indicative the 
token is of the message being malicious. The entire 
message is then scored according to the weighted 
probability that it is malicious/benign, given the scores of 
the tokens that it consists of. A 2D tool named Bayesvis 
was implemented to apply the principle of interactivity 
and visualization to Bayesian intrusion detection. The tool 
reads messages as text strings and splits them up into the 
substrings that make the tokens. The major limitations of 
this system are the following: a) the training phase of the 
classifier is time-consuming as sufficient statistics for 
every type of web attack are needed for the efficient work 
of a Bayesian classifier. The training is also a laborious 
task as the operator has to perform manually the 
correction of false alarms. He/she starts by marking a few 
of the benign accesses and then he re-scores, re-sorts and 
repeats the process according to a predefined strategy, 
until the false positive rate arrives at an acceptable level, 



b) attacks against the web applications are not detected, 
such as backdoor intrusions and code injection attempts 
by high level applications such as SQL, Perl, Php, HTML 
and Java c) new attacks cannot be detected due to the 
absence of previous statistics d) only web logs, not real 
time web traffic, are processed. 

Our work focused on creating an ongoing surveillance 
tool offering the security analyst a novel visual tool for 
monitoring and diagnostic needs. We would like to offer 
an online tool which is capable of dealing with real 
network traffic in addition to processing stored web logs. 
We used an unsupervised artificial neural network for 
grouping similar attacks into classes and an Evolutionary 
Artificial Neural Network for the web attack 
classification. In addition, we have expanded the signature 
method for ID to detect backdoor intrusions and code 
execution attempts by high level applications such as 
SQL, Perl, Php, HTML and Java. Attacks are classified 
automatically by the expert system, false alarms are very 
limited, new attacks not seen before are detected as well 
and simultaneous multiple attacks from different networks 
can be easily spotted on the screen from the IP source 
address labels and the colouring of the different attack 
classes. Additionally, the security analyst can examine in 
real time the malicious code of Perl, SQL or other high 
level language injections, Cross Site Scripting information 
and the code on new backdoor attempts such as worms 
and viruses. 

In the first version of the prototype we used an 
Artificial Neural Network (ANN) for classification. 
ANNs represent a class of very powerful, general-purpose 
tools that have been successfully applied to prediction, 
classification and clustering problems. The ANN used 
was a multilayer network with one hidden layer, using the 
generalized delta rule with the backpropagation (BP) 
algorithm for learning and the sigmoid function as 
activation function. The input neurons were 30 (+1 the 
bias), the hidden neurons 10 (+1 the bias) and the output 
neurons 9, representing the 9 web attack classes. Initially, 
for the prediction of the network output the “winner-
takes-all” method was used, that is the output with the 
biggest value (rated between 0 and 1) determined the class 
of the web attack. Later, a threshold was used instead of 
the “winner-takes-all” mechanism. The best results were 
achieved with a threshold of 0.8. 

In this version of the prototype we used a hybrid 
expert system for the web attacks classification. We used 
an Evolutionary Artificial Neural Network (EANN), 
which is an Artificial Neural Network combined with 
Genetic Algorithms (GA) for weight optimization. 

Finally, we must emphasize that the whole system is 
developed in Linux and all system modules are written in 
standard C language, offering speed and portability to any 
operating system and platform, even on small portable 
computers. 
 
3. Prototype ID system with EANN classifier 
 
3.1  Classes of web attacks 

Modern web servers offer optional features which 
improve convenience and functionality at the cost of 
increased security tasks. These optional features are taken 
into consideration in our design in addition to traditional 
types of web attacks (Unicode, directory traversal, buffer 
overflow, mail and CGI attacks). Different kinds of 
application insertion attempts are detected such as HTML, 
Javascript, SQL, Perl, Access and Php. In addition IIS 
indexing vulnerabilities, IIS highlight, illegal postfixes, 
IIS file insertion (.stm), IIS proxy attempts and IIS data 
access vulnerabilities (msadc) are detected as well. All 
.asa, .asp and Java requests are tested for URI (Uniform 
Resource Identifier) legal syntax according to standards, 
meaning that a corresponding query not in the form 
<?key=value> is illegal.  Trojan/backdoor upload requests 
are detected as well. These backdoors are left by worms 
such as Code Red, Sadmin/IIS and Nimda. Backdoor 
attempts for apache and IIS servers are detected when 
web requests ask for the corresponding password files 
(.sam and .htpasswd). Finally, command execution 
attempts are detected for both Windows (.exe, .bat, .sys, 
.com., .ini, .sh, .dll and other) and Unix (cat, tftp, wget, ls 
and other) environments.  

In total 30 fingerprints were used in the model to 
group all the different types of known web attacks. A 
description of web attacks can be found in [19] and a 
detailed description of web attack fingerprints is given in 
[20]. 

To classify the above web attack types a self-
organizing neural network system has been used. The 
system was based on the Grossberg and Carperter’s 
Adaptive Resonance Theory (ART1). The ART1 neural 
network created 15 clusters or classes. These 15 classes 
were finally grouped manually to 9 as there was more that 
one class for command execution (Windows, Unix) and 
IIS type of attacks. It is interesting to notice that ART1 
did not create a separate class for directory traversal and 
Unicode attacks, because almost all of the web requests 
containing Unicode or directory traversal (..\ or ../) 
fingerprints always included another type of attack (e.g. 
buffer overflow, command execution attempt, code 
injections or other). So, directory traversal and Unicode 
attempts are not classified as separate attack classes. For 
historical reasons we included Unicode attempts into the 
Miscellaneous class. 

The 9 final web attack classes are the following: 
1) Commands: Unix or Windows commands for code 

execution attempts. 
2) Insertions: Application code injections (SQL, Perl, 

HTML, Javascript, Data Access). 
3) Trojan Backdoor Attempts: Attacks triggered by virus 

and worms (Cod Red II, Sadmin, etc.).  
4) Mail: Mail attacks through port 80 (formail, sendmail 

etc.). 
5) Buffer overflows: Attacks corrupting the execution 

stack of a web application. 
6) Common Gateway Interface: Exploitation of 

vulnerable CGI programs. 



7) Internet Information Server: Attacks due to 
vulnerabilities of IIS. 

8) Cross Site Scripting (XSS) attacks. 
9) Miscellaneous: Unicode, coldfusion and malicious 

web request options such as PROPFIND, CONNECT, 
OPTIONS, SEARCH, DEBUG, PUT and TRACE. 

 
3.2  Prototype modules 
 

The visualization prototype system consists of the 
following modules: The data capture module, the pre-
processor module, the knowledge base module, the graph 
generator module and the statistical analysis module. The 
data capture module selects data either online from the 
Internet traffic or offline from the web server logs. The 
pre-processor module examines the web requests to detect 
malicious traffic and its output is then forwarded to the 
knowledge base module to predict the type of 
unauthorized traffic. Then, both normal and malicious 
traffic are processed by the graph generator module for 
visualization. Additionally, all traffic is kept for statistical 
analysis.  
 
3.3  Data capture module 
 

The two most popular web servers are Microsoft 
Internet Information Services (IIS) and the open source 
Apache web server. The IIS web server of our 
Institution’s library was used in order to study the various 
types of attacks and to create the knowledge data base of 
the system. We captured real data with the tcpdump 
utility, but using only real data we could not have a 
complete set of various attacks, so we have completed the 
tests with web logs data of the last three years. Web logs 
covered all versions of the Microsoft IIS server, e.g V4 
(Win NT 4.0), V5 (Win 2000), V6 and API (Win 2003). 
A short description of each module is given below so the 
reader can better understand the overall system structure 
and the new development in the knowledge base module, 
which will be described in detail. 
 
3.4  Pre-processor module 
 

The pre-processor analyses the web request and 
creates a feature vector of dimension 30. Fingerprints are 
detected checking their decimal or hexadecimal 
representation. The presence of a specific fingerprint in 
the web request is indicated in the feature vector as 1 
(true) and its absence as 0 (false or unknown). An attack 
may have more that one 1s fired in its vector 
representation and an attack belonging to a specific attack 
class has at least one binary representation. The outputs of 
the pre-processor module are two files, one with the 
feature vector and one with the request data. The feature 
vector will be the input to the classifier and the request 
data will be forwarded to the graph generator module. The 
extracted data are the most significant for the online 
analysis such as the source IP address, the request option 
(GET, HEAD etc.) and the request payload. 

For example the pre-processor for the following 
malicious web request: 
00:25:37 213.23.17.133 - HEAD /Rpc/..%5c..%5c..%5c 
winnt/system32/cmd.exe /c+dir+c:\ 404 143 99 0 
HTTP/1.0 - - -    produces the following outputs: 
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0   
(feature vector)  and 
213.23.17.133 HEAD /Rpc/..%5c..%5c..%5cwinnt/ 
system32/cmd.exe /c+dir+c:\   (payload). 
 
3.5  Knowledge base module 
 

In this version of the prototype a hybrid expert system 
is used for the web attacks classification. We used an 
Evolutionary Artificial Neural Network (EANN), which is 
neural network combined with Genetic Algorithms (GA) 
for weight optimization. GA’s are algorithms for 
optimization and learning, based loosely on several 
features of biological evolution. GA’s do not face the 
drawbacks of the backpropagation (BP) algorithm, such as 
the scaling problem and the limitation of the fitness 
(error) function to be differentiable or even continuous 
[21]. If the problem complexity increases, due to 
increased dimensionality and/or greater complexity of 
data, the performance of BP falls off rapidly. GA’s do not 
have the same problem with scaling as backpropagation. 
One reason for this is that they generally improve the 
current best candidate monotonically, by keeping the 
current best individual as part of their population while 
they search for better candidates. Secondly, they are not 
bothered by local minima.  

To find an optimal set of weights for the multilayer 
feedforward neural network we represented the problem 
domain as a chromosome. Initial weights are chosen 
randomly within some small interval [-0.5, 0.5]. The set 
of weights can be presented by a square matrix [Fig. 1] in 
which a real number corresponds to the weighted link 
from one neuron to another.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  ANN’s weight connection matrix 



Each row of the matrix represents a group of all the 
incoming weighted links to a single neuron. This group 
can be thought of as a functional building block of the 
network [22] and therefore should be allowed to stay 
together passing genetic material from one generation to 
the next. To achieve this we associated each gene of the 
chromosome not with a single weight but with a group of 
weights, a row of the above matrix. 

The numbers of neurons are the same as in the original 
neural network (n=30, m=10, l=9 for input, hidden and 
output layer respectively). So, as in total there are 409 
weighted links (31*10+11*9) between neurons, the 
chromosome has a dimension of 409 and a population 
member has been represented as following: 
M = <w0,0,w1,0…w30,0, w0,1,w1,1…w30,1 … w0,9,w1,9…w30,9 | 
w0,0,w1,0…w10,0, w0,1,w1,1…w10,1  … w0,8,w1,8…w10,8 > , 
where the first part is the transposed matrix Wih[31,10] of 
weights between the input and the hidden layer (matrix A 
in Fig. 1, we string the rows together) and the second part 
concatenated is the transposed matrix Who[11,9] of 
weights between the hidden layer and the output (matrix 
B in Fig. 1). Each member of the population was coded 
with the structure of the chromosome and a double real 
number for the fitness number.  

The fitness function for evaluating the chromosome’s 
performance was the sum of squared errors (SSE), used in 
the training phase of the BP algorithm. The smaller the 
sum, the fitter the chromosome. We used crossover and 
mutation as genetic operators. The crossover and mutation 
probabilities were 0.8 and 0.05 respectively. We started 
with a mutation probability of 0.02, but we finally used 
0.05 as it accelerated the evolution of the GA. 

The used algorithm of the EANN system can be 
described in a pseudo-code as following: 
1) Randomly generate an initial population of 

chromosomes (population size 30) with weights in the 
range of [-0.5, 0.5]. 

2) Train the network for 1000 epochs using the BP 
algorithm. Calculate the fitness function for all 
individuals. 

3) Select a pair of chromosomes for mating with a 
probability proportional to their fitness (roulette-wheel 
selection). 

4) Create a pair of offspring chromosomes by applying 
the genetic operators crossover (multi-point crossover) 
and mutation. 

5) Place the created offspring chromosomes in the new 
population. 

6) Repeat step 4 until the size of the new population 
becomes equal to the size of the initial population and 
then replace the parent chromosome population with 
the new (offspring) population. 

7) Go to step 2 and repeat the process until the algorithm 
converges or a specified number of generations has 
been reached (we used a maximum of 1000 
generations). 

8) Use the weights of the best member (ideal) of the last 
generation for the feedforward only operation of the 
ANN (classification). 

For each generation we calculated the minimum 
(minFit) , the average (avgFit) and the maximum fitness 
(maxFit) of the population. The algorithm converged if 
the minimum fitness was less than an epsilon, equal to  
10-12 and the ratio minFit/avgFit was greater that 0.95. By 
setting such a severe criterion all members of the final 
generation became “ideal” and fit to be used for 
classification in the feedforward neural network, not just 
the best member of the population. Fig. 2 shows the 
evolution of the genetic algorithm. It converged after 305 
generations giving a minimum fitness of 6.61e-12 and 30 
ideal members, a set of 30 best optimized weights for the 
operation of the ANN. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.  Genetic algorithm evolution 

 
3.6  Graph generator module 
 

The predicted attack by the EANN is then used to 
create a coloured directed graph in dot form of the well 
known GraphViz [23] package, using the corresponding 
DOT language. This language describes four kinds of 
objects: graphs, nodes, edges and labels and has a large 
number of attributes that affect the graph drawing. 
The payload of a web request is cut in nodes and the 
directed edges are the links between these nodes from left 
to right. Therefore, a web request from an IP source 
212.205.253.160 with payload GET /hact/graphics 
/blackwell.gif, has as nodes the words “212.205.253.160”, 
“GET”, “hact”, “graphics”,  “blackwell.gif” and as 
“directed edges” the links between these nodes from left 
to right: 212.205.253.160 -> GET -> hact -> graphics -> 
blackwell.gif. Timestamps were not added to the graph as 
graphs are displayed in real time and the objective here 
was to keep the display as simple as possible. 

There are two graphs generated with the GraphViz 
package. One graph contains real time traffic, e.g. both 
normal and possible malicious traffic and the other does 
not contain normal but only the possible malicious traffic. 
Normal traffic is visualized in black and malicious traffic 
in 9 different colours, one for each attack class, such as 
red (Commands), brown (Insertions), magenta (Backdoor 
attempts), green (Mail), cyan (Buffer overflows), gold 



(CGI), blue (IIS), yellow (XSS) and coral 
(Miscellaneous).  

This visual separation was necessary because normal 
traffic overloads the display and the security analyst 
cannot interpret quickly the malicious attempts. When 
visualizing both normal and malicious traffic the security 
analyst spends more time navigating through the graph 
trying to eliminate normal traffic by zooming into the 
coloured part of the display, than he would if he had only 
a coloured graph to contend with.  

These two dot coloured graphs are then visualized 
with Tulip [24], a 3D graph visualization tool, supporting 
various graph algorithms and extensive features for 
interactive viewing and graph manipulation.  
Fig. 3 shows normal and malicious web traffic and Fig. 4 
only the malicious traffic for the same events. In Fig. 3 
the brown graphs on the right indicate Perl injection 
attempts from IP 211.189.119.85, the red graphs indicate 
multiple command execution attempts from IP 
200.24.5.98, 195.102.4.156 and other sources and the 
magenta graphs indicate multiple backdoor attempts 
(Code Red II) from IP 217.229.196.17. 

In Fig. 4 we can spot additional command execution 
attempts from IP 213.23.17.133 and buffer overflow 
attacks from IP 195.77.248.102 (cyan graph). The Perl 
injection code can be easily read on the bottom right of 
the graph. 
 
 
4  Comparison of EANN and ANN classifiers 
 
The performance of the prototype IDS system has been 
evaluated in [25]. Figure 5 shows the performance of the 
EANN hybrid expert system versus the original Artificial 
Neural Network (ANN).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig 5. Comparison of EANN and ANN classifiers 

The near straight line indicates the stable performance 
(93.50%) of the EANN. Initial training was done with 
only 1000 epochs and a SSE limit of 10-3. The other two 
lines show the performance of the simple ANN using the 

BP algorithm. We can distinguish the stochastic behaviour 
of the ANN’s performance. Using 1000 epochs and a SSE 
limit of 10-3 the ANN system performance rated between 
50-87%, giving an average of 66.15% for 30 runs. Using 
30,000 epochs and a SSE limit of 10-5 the ANN system 
performance rated between 85-94% giving an average of 
92.52% for 30 runs. In the first version of the prototype 
system we used the latter combination, which had the 
drawback of a slow training cycle.  

Using the hybrid expert system with the GA approach 
for the weight optimization and test data different from 
the training set a stable neural network performance of 
about 93.50% was achieved for all the 30 runs (red near 
straight line in Fig. 5). 
 
5. Conclusion 
 

It is technologically impossible for any device to 
understand application communications or analyse 
application behaviour through the deep inspection of IP 
packets, either individually or reassembled into their 
original sequence. Network firewalls and Intrusion 
Detection Systems (IDS) are useful for validating the 
format of application header information to ensure 
standards compliance. In addition, network-level security 
devices may detect a small number of known, easily 
identifiable attacks by looking for pre-programmed 
patterns (i.e. attack signatures) in an HTTP stream. 

Unfortunately, without any awareness of the HTML 
data payload or session context, devices that rely 
exclusively on the inspection of IP packets will fail to 
detect the vast majority of application-layer exploits. For 
example, IP packet inspection will not detect a hacker 
who has maliciously modified parameters in a URL 
(Universal Resource Locator) request.  

Network data analysis is a very important but time 
consuming task for any administrator. A significant 
amount of time is devoted to sifting through text-only log 
files and messages generated by networks tools in order to 
secure networks. Artificial intelligence and visualization 
offer a powerful means of analysis that can help the 
security analyst uncover hacker trends or strategies that 
are likely to be missed with other non-visual methods.  

With our work we have contributed the following to 
artificial intelligence and network security: 
-Use of an Evolutionary Neural Network as knowledge 
base for rapid classification of web attacks. The stable 
performance of the EANN establishes it as a better 
classifier for web intrusion than a simple neural network  
-The application of automatic analysis methods before the 
interactive visual representation offers an intelligent 
visualization of web traffic that enables rapid perception 
and detection of unauthorized traffic 
-A surveillance aid for the security analyst 
-A visualization prototype system ideal for educational 
purposes to understand web server and web application 
security. 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.  Normal and malicious web traffic 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4.  Malicious only web traffic

 



This project has demonstrated that artificial 
intelligence considerably reduces the time required for 
data analysis and at the same time provides insights which 
might otherwise be missed during textual analysis. The 
web traffic surveillance could be expanded to other basic 
but popular internet services, such as email or DNS.  

Combining traditional or novel analytical methods 
with visual presentation techniques can generate a very 
robust approach to network security. Artificial 
intelligence and visual analytics can be incorporated in ID 
systems to produce more powerful security systems 
capable of dealing with the new attack challenges and 
noisy data. This is undoubtedly the future in the ID area. 
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