
USING AN EVOLUTIONARY NEURAL NETWORK
FOR WEB INTRUSION DETECTION

I. Xydas1, G. Miaoulis1, P.-F. Bonnefoi2, D. Plemenos2, D. Ghazanfarpour2
1 Technological Educational Institution of Athens, 28 Ag. Spiridonos Str., 12210 Athens, Greece

(yxydas@teiath.gr, gmiaoul@teiath.gr}
2 University of Limoges, XLIM Laboratory, CNRS, UMR 6172

83, rue d’Isle, 87000 Limoges, France
{bonnefoi@unilim.fr, plemenos@unilim.fr, ghazanfarpour@unilim.fr}

Abstract
Due to the complicated nature of detecting actual

intrusions, most current Network Intrusion Detection
Systems (NIDS) place the burden of distinguishing an
actual attack from a large set of false alarms on the
security analyst, resulting in a significant cognitive load.
Artificial Intelligence combined with Visualization will
take advantage of human perceptual abilities and
expertise to amplify cognition. In this paper we will
describe an Evolutionary Artificial Neural Network
(EANN) used as the knowledge base for the classification
of web attacks in a prototype system. The aforementioned
system is a surveillance aid for the security analyst,
offering him a user friendly visual tool to detect
anomalies in web requests by exploring 3D graphs, to
understand quickly the kind of undergoing attack by
means of colours and afford him the possibility to
navigate into the payload of the web request for further
analysis and adequate response. The EANN system is an
improvement of our original work that used a supervised
multilayer Artificial Neural Network (ANN) as the web
attacks classifier.

Keywords: Genetic algorithms, EANN, web attacks,
visual analytics.

1. Introduction

Web sites are likely to be regularly scanned and
attacked and therefore, organizations, companies and
individuals are making every effort to build and maintain
secure Web sites. The threat profile facing enterprise
organizations has undeniably shifted from network-layer
exploits to more formidable attacks against applications,
primarily Web and Web services applications. NIDS
assist security analysts by automatically identifying
potential attacks from network activity and produce alerts
describing the details of these intrusions. However,
network IDS have problems, such as false positives,
operational issues in high-speed environments and
difficulty in detecting unknown threats.

According to a recent report published by the
Common Vulnerabilities and Exposures (CVE) project

[1], flaws in Web software are among the most reported
security issues so far this year. Hackers are known to
search for an easy target. Poorly configured or poorly
written web applications are not only an easy target,
taking the attackers straight to their goal, giving them
access to data and other information, but can also be used
to spread malicious software such as viruses, worms,
Trojan horses and spyware to anyone who visits the
compromised site. “Easy to learn” scripting languages
enable anyone with an eye for graphic design to develop
and code powerful web-based applications. Unfortunately,
many developers only bother to learn the eye-catching
features of a language and not the security issues that need
to be addressed. As a result, many of the same
vulnerabilities that were problematic for developers
several years ago remain a problem today. This is perhaps
why Cross-Site Scripting (XSS) is now the most common
type of application layer attack, while buffer overflow
vulnerability, the perpetual No. 1 attack, has dropped to
fourth place. Two other web application vulnerabilities,
SQL injections and PHP remote file inclusions, are ranked
second and third today [2].

Currently, security analysts face an increasing
workload as their environments expand and attacks
become more and more frequent. They monitor network
activity using an intrusion detection system (IDS) for
evidence of actions that attempt to compromise the
integrity, confidentiality or availability of a network or
computer resource. They also continuously monitor
output from IDS and they use that output in conjunction
with other systems, network and firewall logs, to keep
abreast of system activity and potential attacks.

The number of alerts generated by most IDS can
quickly become overwhelming and thus the analyst is
overloaded with information which is difficult to monitor
and analyze. Attacks are likely to generate multiple
related alerts. Current IDS do not make it easy for
operators to logically group related alerts. This forces the
analyst to look only at aggregated summaries of alerts or
to reduce the IDS signature set in order to reduce the
number of alerts. In Snort current version, an open source
IDS available to the general public [3], there are more
than 11,500 signatures for network intrusion detection,

more than 2100 of which are web-related signatures. By
reducing the signature set the analyst knows that although
it reduces the false alarms it is also likely to increase the
number of false negatives, meaning that he will not be
able to detect actual attacks.

According to a recent survey [4], in the intrusion
detection area intelligent visualization tools are needed to
offload the monitoring tasks, so that anomalies can be
easily flagged for analysis and immediate response by the
security analyst. Information presented in a visual format
is learned and remembered better than information
presented textually or verbally. Artificial Intelligence
combined with Visualization can take advantage of
human perceptual abilities and expertise to amplify
cognition.

The lack of intelligent visualization tools for web
Intrusion Detection has led us to design and create a
prototype system. It is a surveillance aid for the web and
security analyst providing him with an intelligent visual
tool to detect anomalies in web requests by exploring 3D
graphs and understand quickly the kind of undergoing
attack by means of colours. The system looks into web
requests to detect “fingerprints” which are special
characters or chains of characters. These fingerprints are
then passed to an expert system to decide if they
constitute a malicious request or attack. The output of the
expert system is then transformed into a 3D graph for
visual interpretation. Web attacks can be either rejected
by the web server or can be successful due to security
weaknesses.

In our first version of the prototype system [5] the
expert system used for the web attack classification was a
supervised multilayer Artificial Neural Network (ANN).
Recently we replaced the ANN by a hybrid expert system,
an Evolutionary Artificial Neural Network (EANN). In
this paper we describe the aforementioned EANN, its
design, its integration into the prototype system, its
classification results, and its performance. Finally, a
comparison of the two expert systems is presented to
determine which classifier is the better of the two.

The rest of this paper is organized as follows: section
2 presents related work, section 3 presents briefly the
visualization prototype ID system and describes in details
the new development, section 4 describes the new
system’s performance evaluation and compares the two
EANN and ANN classifiers. Finally, concluding remarks
appear in section 5.

2. Related work

There is ongoing research on IDS systems especially
on anomaly detection and profile or specification-based
detection. This includes various statistical methods,
artificial neural networks and data mining methods
([6],[7],[8]).

Interesting works on the detection of web-based
attacks have been published in the last few years.
Statistical methods have been used in [9] such as the
multi-model approach for the detection of web-based

attacks. A Bayesian parameter estimation technique for
web session anomaly detection is described in [10] and
DFA (Deterministic Finite Automata) induction has been
applied in [11] to detect malicious web requests in
combination with rules for reducing variability among
requests and heuristics for filtering and grouping
anomalies.

Recent works on application-level web security cover
SQL and PHP code injections and XSS attacks. The
authors in [12] combine a static analysis and runtime
monitoring to detect and stop illegal SQL queries. In [13]
a sound, automated static analysis algorithm is developed
for the detection of injections vulnerabilities, modelling
string values as context free grammars and string
operations as language transducers. In [14] Noxes, a
client-side solution is presented, which acts as a web
proxy and uses both manual and automatically generated
rules to mitigate possible cross-site scripting attempts.
Additionally, in [15] Secubat, a web vulnerability scanner
is described, which is a generic and modular web
vulnerability scanner that, similar to a port scanner,
automatically analyzes web sites with the aim of finding
exploitable SQL injection and XSS vulnerabilities. Visual
analytics have recently been applied in network
monitoring [16] and Intrusion Detection [17].

Artificial Intelligence used for web intrusion detection
is limited to Bayesian classifiers. In [18] an IDS system is
presented based on a bayesian classifier in the same vein
as the now popular spam filtering software. This simple
classifier operates as follows: First the input is divided
into some form of unit which lends itself to being
classified as either benign or malicious, this unit of
division is denoted as a message. It is the responsibility of
the user to mark a sufficient number of messages as
malicious/benign beforehand to effect the learning of the
system. The system is thus one of directed self learning.
The message is then further subdivided into tokens. The
tokens are scored, so that the score indicates the
probability of the token being present in a malicious
message, i.e. the higher the relative frequency of the
tokens occurrence in malicious messages, relative to its
occurrence in benign messages, the more indicative the
token is of the message being malicious. The entire
message is then scored according to the weighted
probability that it is malicious/benign, given the scores of
the tokens that it consists of. A 2D tool named Bayesvis
was implemented to apply the principle of interactivity
and visualization to Bayesian intrusion detection. The tool
reads messages as text strings and splits them up into the
substrings that make the tokens. The major limitations of
this system are the following: a) the training phase of the
classifier is time-consuming as sufficient statistics for
every type of web attack are needed for the efficient work
of a Bayesian classifier. The training is also a laborious
task as the operator has to perform manually the
correction of false alarms. He/she starts by marking a few
of the benign accesses and then he re-scores, re-sorts and
repeats the process according to a predefined strategy,
until the false positive rate arrives at an acceptable level,

b) attacks against the web applications are not detected,
such as backdoor intrusions and code injection attempts
by high level applications such as SQL, Perl, Php, HTML
and Java c) new attacks cannot be detected due to the
absence of previous statistics d) only web logs, not real
time web traffic, are processed.

Our work focused on creating an ongoing surveillance
tool offering the security analyst a novel visual tool for
monitoring and diagnostic needs. We would like to offer
an online tool which is capable of dealing with real
network traffic in addition to processing stored web logs.
We used an unsupervised artificial neural network for
grouping similar attacks into classes and an Evolutionary
Artificial Neural Network for the web attack
classification. In addition, we have expanded the signature
method for ID to detect backdoor intrusions and code
execution attempts by high level applications such as
SQL, Perl, Php, HTML and Java. Attacks are classified
automatically by the expert system, false alarms are very
limited, new attacks not seen before are detected as well
and simultaneous multiple attacks from different networks
can be easily spotted on the screen from the IP source
address labels and the colouring of the different attack
classes. Additionally, the security analyst can examine in
real time the malicious code of Perl, SQL or other high
level language injections, Cross Site Scripting information
and the code on new backdoor attempts such as worms
and viruses.

In the first version of the prototype we used an
Artificial Neural Network (ANN) for classification.
ANNs represent a class of very powerful, general-purpose
tools that have been successfully applied to prediction,
classification and clustering problems. The ANN used
was a multilayer network with one hidden layer, using the
generalized delta rule with the backpropagation (BP)
algorithm for learning and the sigmoid function as
activation function. The input neurons were 30 (+1 the
bias), the hidden neurons 10 (+1 the bias) and the output
neurons 9, representing the 9 web attack classes. Initially,
for the prediction of the network output the “winner-
takes-all” method was used, that is the output with the
biggest value (rated between 0 and 1) determined the class
of the web attack. Later, a threshold was used instead of
the “winner-takes-all” mechanism. The best results were
achieved with a threshold of 0.8.

In this version of the prototype we used a hybrid
expert system for the web attacks classification. We used
an Evolutionary Artificial Neural Network (EANN),
which is an Artificial Neural Network combined with
Genetic Algorithms (GA) for weight optimization.

Finally, we must emphasize that the whole system is
developed in Linux and all system modules are written in
standard C language, offering speed and portability to any
operating system and platform, even on small portable
computers.

3. Prototype ID system with EANN classifier

3.1 Classes of web attacks

Modern web servers offer optional features which
improve convenience and functionality at the cost of
increased security tasks. These optional features are taken
into consideration in our design in addition to traditional
types of web attacks (Unicode, directory traversal, buffer
overflow, mail and CGI attacks). Different kinds of
application insertion attempts are detected such as HTML,
Javascript, SQL, Perl, Access and Php. In addition IIS
indexing vulnerabilities, IIS highlight, illegal postfixes,
IIS file insertion (.stm), IIS proxy attempts and IIS data
access vulnerabilities (msadc) are detected as well. All
.asa, .asp and Java requests are tested for URI (Uniform
Resource Identifier) legal syntax according to standards,
meaning that a corresponding query not in the form
<?key=value> is illegal. Trojan/backdoor upload requests
are detected as well. These backdoors are left by worms
such as Code Red, Sadmin/IIS and Nimda. Backdoor
attempts for apache and IIS servers are detected when
web requests ask for the corresponding password files
(.sam and .htpasswd). Finally, command execution
attempts are detected for both Windows (.exe, .bat, .sys,
.com., .ini, .sh, .dll and other) and Unix (cat, tftp, wget, ls
and other) environments.

In total 30 fingerprints were used in the model to
group all the different types of known web attacks. A
description of web attacks can be found in [19] and a
detailed description of web attack fingerprints is given in
[20].

To classify the above web attack types a self-
organizing neural network system has been used. The
system was based on the Grossberg and Carperter’s
Adaptive Resonance Theory (ART1). The ART1 neural
network created 15 clusters or classes. These 15 classes
were finally grouped manually to 9 as there was more that
one class for command execution (Windows, Unix) and
IIS type of attacks. It is interesting to notice that ART1
did not create a separate class for directory traversal and
Unicode attacks, because almost all of the web requests
containing Unicode or directory traversal (..\ or ../)
fingerprints always included another type of attack (e.g.
buffer overflow, command execution attempt, code
injections or other). So, directory traversal and Unicode
attempts are not classified as separate attack classes. For
historical reasons we included Unicode attempts into the
Miscellaneous class.

The 9 final web attack classes are the following:
1) Commands: Unix or Windows commands for code

execution attempts.
2) Insertions: Application code injections (SQL, Perl,

HTML, Javascript, Data Access).
3) Trojan Backdoor Attempts: Attacks triggered by virus

and worms (Cod Red II, Sadmin, etc.).
4) Mail: Mail attacks through port 80 (formail, sendmail

etc.).
5) Buffer overflows: Attacks corrupting the execution

stack of a web application.
6) Common Gateway Interface: Exploitation of

vulnerable CGI programs.

7) Internet Information Server: Attacks due to
vulnerabilities of IIS.

8) Cross Site Scripting (XSS) attacks.
9) Miscellaneous: Unicode, coldfusion and malicious

web request options such as PROPFIND, CONNECT,
OPTIONS, SEARCH, DEBUG, PUT and TRACE.

3.2 Prototype modules

The visualization prototype system consists of the
following modules: The data capture module, the pre-
processor module, the knowledge base module, the graph
generator module and the statistical analysis module. The
data capture module selects data either online from the
Internet traffic or offline from the web server logs. The
pre-processor module examines the web requests to detect
malicious traffic and its output is then forwarded to the
knowledge base module to predict the type of
unauthorized traffic. Then, both normal and malicious
traffic are processed by the graph generator module for
visualization. Additionally, all traffic is kept for statistical
analysis.

3.3 Data capture module

The two most popular web servers are Microsoft
Internet Information Services (IIS) and the open source
Apache web server. The IIS web server of our
Institution’s library was used in order to study the various
types of attacks and to create the knowledge data base of
the system. We captured real data with the tcpdump
utility, but using only real data we could not have a
complete set of various attacks, so we have completed the
tests with web logs data of the last three years. Web logs
covered all versions of the Microsoft IIS server, e.g V4
(Win NT 4.0), V5 (Win 2000), V6 and API (Win 2003).
A short description of each module is given below so the
reader can better understand the overall system structure
and the new development in the knowledge base module,
which will be described in detail.

3.4 Pre-processor module

The pre-processor analyses the web request and
creates a feature vector of dimension 30. Fingerprints are
detected checking their decimal or hexadecimal
representation. The presence of a specific fingerprint in
the web request is indicated in the feature vector as 1
(true) and its absence as 0 (false or unknown). An attack
may have more that one 1s fired in its vector
representation and an attack belonging to a specific attack
class has at least one binary representation. The outputs of
the pre-processor module are two files, one with the
feature vector and one with the request data. The feature
vector will be the input to the classifier and the request
data will be forwarded to the graph generator module. The
extracted data are the most significant for the online
analysis such as the source IP address, the request option
(GET, HEAD etc.) and the request payload.

For example the pre-processor for the following
malicious web request:
00:25:37 213.23.17.133 - HEAD /Rpc/..%5c..%5c..%5c
winnt/system32/cmd.exe /c+dir+c:\ 404 143 99 0
HTTP/1.0 - - - produces the following outputs:
1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
(feature vector) and
213.23.17.133 HEAD /Rpc/..%5c..%5c..%5cwinnt/
system32/cmd.exe /c+dir+c:\ (payload).

3.5 Knowledge base module

In this version of the prototype a hybrid expert system
is used for the web attacks classification. We used an
Evolutionary Artificial Neural Network (EANN), which is
neural network combined with Genetic Algorithms (GA)
for weight optimization. GA’s are algorithms for
optimization and learning, based loosely on several
features of biological evolution. GA’s do not face the
drawbacks of the backpropagation (BP) algorithm, such as
the scaling problem and the limitation of the fitness
(error) function to be differentiable or even continuous
[21]. If the problem complexity increases, due to
increased dimensionality and/or greater complexity of
data, the performance of BP falls off rapidly. GA’s do not
have the same problem with scaling as backpropagation.
One reason for this is that they generally improve the
current best candidate monotonically, by keeping the
current best individual as part of their population while
they search for better candidates. Secondly, they are not
bothered by local minima.

To find an optimal set of weights for the multilayer
feedforward neural network we represented the problem
domain as a chromosome. Initial weights are chosen
randomly within some small interval [-0.5, 0.5]. The set
of weights can be presented by a square matrix [Fig. 1] in
which a real number corresponds to the weighted link
from one neuron to another.

Figure 1. ANN’s weight connection matrix

Each row of the matrix represents a group of all the
incoming weighted links to a single neuron. This group
can be thought of as a functional building block of the
network [22] and therefore should be allowed to stay
together passing genetic material from one generation to
the next. To achieve this we associated each gene of the
chromosome not with a single weight but with a group of
weights, a row of the above matrix.

The numbers of neurons are the same as in the original
neural network (n=30, m=10, l=9 for input, hidden and
output layer respectively). So, as in total there are 409
weighted links (31*10+11*9) between neurons, the
chromosome has a dimension of 409 and a population
member has been represented as following:
M = <w0,0,w1,0…w30,0, w0,1,w1,1…w30,1 … w0,9,w1,9…w30,9 |
w0,0,w1,0…w10,0, w0,1,w1,1…w10,1 … w0,8,w1,8…w10,8 > ,
where the first part is the transposed matrix Wih[31,10] of
weights between the input and the hidden layer (matrix A
in Fig. 1, we string the rows together) and the second part
concatenated is the transposed matrix Who[11,9] of
weights between the hidden layer and the output (matrix
B in Fig. 1). Each member of the population was coded
with the structure of the chromosome and a double real
number for the fitness number.

The fitness function for evaluating the chromosome’s
performance was the sum of squared errors (SSE), used in
the training phase of the BP algorithm. The smaller the
sum, the fitter the chromosome. We used crossover and
mutation as genetic operators. The crossover and mutation
probabilities were 0.8 and 0.05 respectively. We started
with a mutation probability of 0.02, but we finally used
0.05 as it accelerated the evolution of the GA.

The used algorithm of the EANN system can be
described in a pseudo-code as following:
1) Randomly generate an initial population of

chromosomes (population size 30) with weights in the
range of [-0.5, 0.5].

2) Train the network for 1000 epochs using the BP
algorithm. Calculate the fitness function for all
individuals.

3) Select a pair of chromosomes for mating with a
probability proportional to their fitness (roulette-wheel
selection).

4) Create a pair of offspring chromosomes by applying
the genetic operators crossover (multi-point crossover)
and mutation.

5) Place the created offspring chromosomes in the new
population.

6) Repeat step 4 until the size of the new population
becomes equal to the size of the initial population and
then replace the parent chromosome population with
the new (offspring) population.

7) Go to step 2 and repeat the process until the algorithm
converges or a specified number of generations has
been reached (we used a maximum of 1000
generations).

8) Use the weights of the best member (ideal) of the last
generation for the feedforward only operation of the
ANN (classification).

For each generation we calculated the minimum
(minFit) , the average (avgFit) and the maximum fitness
(maxFit) of the population. The algorithm converged if
the minimum fitness was less than an epsilon, equal to
10-12 and the ratio minFit/avgFit was greater that 0.95. By
setting such a severe criterion all members of the final
generation became “ideal” and fit to be used for
classification in the feedforward neural network, not just
the best member of the population. Fig. 2 shows the
evolution of the genetic algorithm. It converged after 305
generations giving a minimum fitness of 6.61e-12 and 30
ideal members, a set of 30 best optimized weights for the
operation of the ANN.

Figure 2. Genetic algorithm evolution

3.6 Graph generator module

The predicted attack by the EANN is then used to
create a coloured directed graph in dot form of the well
known GraphViz [23] package, using the corresponding
DOT language. This language describes four kinds of
objects: graphs, nodes, edges and labels and has a large
number of attributes that affect the graph drawing.
The payload of a web request is cut in nodes and the
directed edges are the links between these nodes from left
to right. Therefore, a web request from an IP source
212.205.253.160 with payload GET /hact/graphics
/blackwell.gif, has as nodes the words “212.205.253.160”,
“GET”, “hact”, “graphics”, “blackwell.gif” and as
“directed edges” the links between these nodes from left
to right: 212.205.253.160 -> GET -> hact -> graphics ->
blackwell.gif. Timestamps were not added to the graph as
graphs are displayed in real time and the objective here
was to keep the display as simple as possible.

There are two graphs generated with the GraphViz
package. One graph contains real time traffic, e.g. both
normal and possible malicious traffic and the other does
not contain normal but only the possible malicious traffic.
Normal traffic is visualized in black and malicious traffic
in 9 different colours, one for each attack class, such as
red (Commands), brown (Insertions), magenta (Backdoor
attempts), green (Mail), cyan (Buffer overflows), gold

(CGI), blue (IIS), yellow (XSS) and coral
(Miscellaneous).

This visual separation was necessary because normal
traffic overloads the display and the security analyst
cannot interpret quickly the malicious attempts. When
visualizing both normal and malicious traffic the security
analyst spends more time navigating through the graph
trying to eliminate normal traffic by zooming into the
coloured part of the display, than he would if he had only
a coloured graph to contend with.

These two dot coloured graphs are then visualized
with Tulip [24], a 3D graph visualization tool, supporting
various graph algorithms and extensive features for
interactive viewing and graph manipulation.
Fig. 3 shows normal and malicious web traffic and Fig. 4
only the malicious traffic for the same events. In Fig. 3
the brown graphs on the right indicate Perl injection
attempts from IP 211.189.119.85, the red graphs indicate
multiple command execution attempts from IP
200.24.5.98, 195.102.4.156 and other sources and the
magenta graphs indicate multiple backdoor attempts
(Code Red II) from IP 217.229.196.17.

In Fig. 4 we can spot additional command execution
attempts from IP 213.23.17.133 and buffer overflow
attacks from IP 195.77.248.102 (cyan graph). The Perl
injection code can be easily read on the bottom right of
the graph.

4 Comparison of EANN and ANN classifiers

The performance of the prototype IDS system has been
evaluated in [25]. Figure 5 shows the performance of the
EANN hybrid expert system versus the original Artificial
Neural Network (ANN).

Fig 5. Comparison of EANN and ANN classifiers

The near straight line indicates the stable performance
(93.50%) of the EANN. Initial training was done with
only 1000 epochs and a SSE limit of 10-3. The other two
lines show the performance of the simple ANN using the

BP algorithm. We can distinguish the stochastic behaviour
of the ANN’s performance. Using 1000 epochs and a SSE
limit of 10-3 the ANN system performance rated between
50-87%, giving an average of 66.15% for 30 runs. Using
30,000 epochs and a SSE limit of 10-5 the ANN system
performance rated between 85-94% giving an average of
92.52% for 30 runs. In the first version of the prototype
system we used the latter combination, which had the
drawback of a slow training cycle.

Using the hybrid expert system with the GA approach
for the weight optimization and test data different from
the training set a stable neural network performance of
about 93.50% was achieved for all the 30 runs (red near
straight line in Fig. 5).

5. Conclusion

It is technologically impossible for any device to
understand application communications or analyse
application behaviour through the deep inspection of IP
packets, either individually or reassembled into their
original sequence. Network firewalls and Intrusion
Detection Systems (IDS) are useful for validating the
format of application header information to ensure
standards compliance. In addition, network-level security
devices may detect a small number of known, easily
identifiable attacks by looking for pre-programmed
patterns (i.e. attack signatures) in an HTTP stream.

Unfortunately, without any awareness of the HTML
data payload or session context, devices that rely
exclusively on the inspection of IP packets will fail to
detect the vast majority of application-layer exploits. For
example, IP packet inspection will not detect a hacker
who has maliciously modified parameters in a URL
(Universal Resource Locator) request.

Network data analysis is a very important but time
consuming task for any administrator. A significant
amount of time is devoted to sifting through text-only log
files and messages generated by networks tools in order to
secure networks. Artificial intelligence and visualization
offer a powerful means of analysis that can help the
security analyst uncover hacker trends or strategies that
are likely to be missed with other non-visual methods.

With our work we have contributed the following to
artificial intelligence and network security:
-Use of an Evolutionary Neural Network as knowledge
base for rapid classification of web attacks. The stable
performance of the EANN establishes it as a better
classifier for web intrusion than a simple neural network
-The application of automatic analysis methods before the
interactive visual representation offers an intelligent
visualization of web traffic that enables rapid perception
and detection of unauthorized traffic
-A surveillance aid for the security analyst
-A visualization prototype system ideal for educational
purposes to understand web server and web application
security.

Figure 3. Normal and malicious web traffic

Figure 4. Malicious only web traffic

This project has demonstrated that artificial
intelligence considerably reduces the time required for
data analysis and at the same time provides insights which
might otherwise be missed during textual analysis. The
web traffic surveillance could be expanded to other basic
but popular internet services, such as email or DNS.

Combining traditional or novel analytical methods
with visual presentation techniques can generate a very
robust approach to network security. Artificial
intelligence and visual analytics can be incorporated in ID
systems to produce more powerful security systems
capable of dealing with the new attack challenges and
noisy data. This is undoubtedly the future in the ID area.

6. References

[1] CVE, Common Vulnerabilities and Exposures, The

Standard for Information Security Vulnerability
Names, http://www.cve.mitre.org, 2007.

[2] M. Cobb, Software security flaws begin and end with
web application security, http://searchsecurity.
techtarget.com, 2006.

[3] Snort software, http://www.snort.org, 2007.
[4] A. Komlodi, J.R. Goodall, and W.G. Lutters, An

Information Visualization Framework for Intrusion
Detection. CHI ’04 extended abstracts on Human
factors in computing systems, ACM press, Apr.
2004, 1743-1746.

[5] I. Xydas, G. Miaoulis, P-F. Bonnefoi, D. Plemenos,
D. Ghazanfarpour, 3D Graph Visualisation of Web
Normal and Malicious Traffic, Information
Visualization IV06, July 2006, 621-629.

[6] R. Sekar, A. Gupta, J. Frullo, T. Shanbhag, A.
Tiwari, H. Yang, and S. Zhou, Specification-based
Anomaly Detection: A new Approach for Detecting
Network Intrusions, Proceedings of the 9th ACM
conference on computer and communications
security, ACM Press, Nov. 2002, 265-274.

[7] W-H. Chen, S-H. Hsu, H-P. Shen, Application of
SVM and ANN for intrusion detection, Computers
and Operations Research, Vol.32 Issue 10, Elsevier,
Oct. 2005.

[8] W. Lee, S. Stolfo, K. Mok, Adaptive Intrusion
Detection: A Data Mining Approach, Artificial
Intelligence Review, Vol.14 Issue 6, Kluwer
Academic Publishers, Dec. 2000, 533-567.

[9] C. Kruegel, G. Vigna, W. Robertson, A multi-model
approach to the detection of web-based attacks,
Computer Networks, Vol. 48 Issue 5, Elsevier, Aug.
2005, 717-738.

[10] S. Cho, S. Cha, SAD: web session anomaly detection
based on parameter estimation, Computers &
Security, Vol. 23, Issue 4, June 2004, 312-319.

[11] K.L. Ingham, A. Somayaji, J. Burge, S. Forrest,
Learning DFA representations of HTTP for
protecting web applications, Computer Networks,
Vol. 51, Issue 5, April 2007, 1239-1255.

[12] W.G.J. Halford, A. Orso, AMNESIA: Analysis and
Monitoring for Neutralizing SQL-Injection Attacks,
Proceedings of the 20th IEEE/ACM International
Conference on Automated Software Engineering ASE
’05, Nov. 2005, 174-183.

[13] G. Wassermann, Z. Su, Sound and Precise Analysis
of Web Applications for Injection Vulnerabilities,
Proceedings of the 2007 ACM SIGPLAN Conference
on Programming Language Design and
Implementation PLDI ’07, June 2007, 32-41.

[14] E. Kirda, C. Kruegel, G. Vigna, and N. Jovanovic,
Noxes: A Client-Side Solution for Mitigating Cross-
Site Scripting Attacks, Proceedings of the 2006 ACM
Symposium on Applied Computing SAC’ 06, April
2006, 330-337.

[15] S. Kals, E. Kirda, C. Kruegel, N. Jovanovic,
SecuBat: A Web Vulnerability Scanner, Proceedings
of the 15th International Conference on World Wide
Web ’06, ACM Press, May 2006, 247-256.

[16] D. A. Keim D, F. Mansmann,J. Schneidewind, T.
Schreck, “Monitoring Network traffic with Radial
Analyzer”, 2006 Symposium On Visual Analytics,
Oct 2006, 123-128.

[17] S.T. Teoh, K-L. Ma, S-F. Wu, T.J. Jankun-Kelly,
“Detecting Flaws and Intruders with Visual Data
Analysis”, Computer Graphics and Applications,
IEEE, Vol. 24, Issue 5, Sept-Oct. 2004, 27-35.

[18] S. Axelsson, Combining a Bayesian Classifier with
Visualisation: Understanding the IDS, Proceedings
of the 2004 ACM workshop on Visualization and
data mining for computer security, ACM Press, Oct.
2004, 99-108.

[19] J. Chirillo, Hack Attacks Revelead, 2nd edn (Wiley
Publishing, 2002, 485-544).

[20] Fingerprinting Port 80 Attacks, A look into web
server and web application attack signatures,
admin@cgisecurity.com, 2002.

[21] S. Haykin, Neural Networks, A Comprehensive
Foundation, 2nd edn, (Prentice Hall PTR, 1999, 156-
208).

[22] D. Montana, and L. Davis, Training feedforward
neural networks using genetic algorithms.
Proceedings of 11th International Joint Conference
Artificial Intelligence, San Mateo, CA, Morgan
Kaufmann, 1989, 762-767.

[23] GraphViz software, http://www.graphviz.org
[24] Tulip software, http://www.tulip-software.org
[25] I. Xydas, Thesis: “Network security policy

surveillance aid using intelligent visual
representation and knowledge extraction from a
network operation graph”, France, June 2007.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType true
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AdobeSansMM
 /AdobeSerifMM
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

