The quality of a medical image depends, among other parameters, on quantum noise. Quantum noise is affected by the fluctuations in the number of optical quanta produced within the phosphor, per absorbed X-ray (i.e. phosphor intrinsic-gain fluctuations). This effect is considered by means of a factor, called in this study intrinsic-gain noise factor, IGNF(E). In existing theoretical models of quantum noise, the corresponding factor is taken to be equal to one. In this paper, an expression that accounts for the coefficient of variation of the phosphor intrinsic gain is introduced. This expression takes into account the process of electron–hole pair conversion to optical photons and the frequency distribution function of the emitted optical photon energy. Subsequently IGNF(E) is expressed in terms of this coefficient of variation. IGNF(E) has been calculated for several phosphors and for various energies. For all medical X-ray energies studied, phosphors that exhibit a high relative fluctuation of emitted optical photon energy, IGNF(E) exceeds by 2% to over 17% the corresponding factor of the existing theoretical models of quantum noise.