This paper presents the development and evaluation of a smart flow measurement system based on an integrated thermal flow sensor that implements a heater and two pairs of thermopiles, symmetrically situated on both sides of the heater. A specially designed interface circuit monitors and controls sensor operation, allowing three different operational modes: constant voltage (CV), constant power (CP) and constant temperature (CT). It also simultaneously monitors the heater resistance and the thermopile signal. Communication with a PC is implemented through a USB connection, and a developed Java program controls the system and data representation and storage. Transfer rates in the order of 20 000 sps are achieved, which allow detailed flow monitoring. For system evaluation, flow measurements were performed in both the calorimetric and hot-wire principles with the three different modes of operation and the corresponding results are presented comparatively. Flow velocity was determined by different sensor signals (heater resistance and power, thermopile signal) and the related sensitivities were extracted. Furthermore, it was verified that the system could detect the flow direction as well as the transition point from laminar to turbulent region.