dc.contributor.author | Cherkassky, Vladimir | en |
dc.contributor.author | Βασιλάς, Νικόλαος | el |
dc.contributor.author | Fassett, K. | en |
dc.date.accessioned | 2015-05-10T21:53:36Z | |
dc.date.issued | 2015-05-11 | |
dc.identifier.uri | http://hdl.handle.net/11400/10102 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.computer.org/csdl/trans/tc/1991/12/t1429-abs.html | en |
dc.subject | Γραμμική Άλγεβρα | |
dc.subject | Νευρωνικές συνειρμικές μνήμες | |
dc.subject | Απόδοση θορύβου | |
dc.subject | Νευρωνικοί ταξινομητές | |
dc.subject | Linear algebra | |
dc.subject | Neural Associative Memories | |
dc.subject | Noise Performance | |
dc.subject | Neural Classifiers | |
dc.title | Linear algebra approach to neural associative memories and noise performance of neural classifiers | en |
heal.type | journalArticle | |
heal.classification | Πληροφορική | |
heal.classification | Μηχανική υπολογιστών | |
heal.classification | Computer science | |
heal.classification | Computer engineering | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | **N/A**-Μηχανική υπολογιστών | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85029495 | |
heal.keywordURI | http://skos.um.es/unesco6/120110 | |
heal.identifier.secondary | DOI: 10.1109/12.106229 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 1991-12 | |
heal.bibliographicCitation | Cherkassky, V., Vassilas, N. and Fassett, K. (1991) Linear algebra approach to neural associative memories and noise performance of neural classifiers. IEEE Transactions on Computers. [Online] 40 (12), pp.1429-1435. Available from: http://www.computer.org [Accessed 10/05/2015] | en |
heal.abstract | The authors present an analytic evaluation of saturation and noise performance for a large class of associative memories based on matrix operations. The importance of using standard linear algebra techniques for evaluating noise performance of associative memories is emphasized. The authors present a detailed comparative analysis of the correlation matrix memory and the generalized inverse memory construction rules for auto-associative memory and neural classifiers. Analytic results for the noise performance of neural classifiers that can store several prototypes in one class are presented. The analysis indicates that for neural classifiers the simple correlation matrix memory provides better noise performance than the more complex generalized inverse memory. | en |
heal.journalName | IEEE Transactions on Computers | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | false |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: