Εμφάνιση απλής εγγραφής

dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Πεταλάς, Π. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.date.accessioned 2015-05-11T08:00:29Z
dc.date.issued 2015-05-11
dc.identifier.uri http://hdl.handle.net/11400/10109
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.ncbi.nlm.nih.gov/pubmed/15131894 en
dc.subject Classification
dc.subject Biopsy
dc.subject Ταξινόμηση
dc.subject Βιοψία
dc.title Computer-based malignancy grading of astrocytomas employing a support vector machines classifier, the WHO grading system, and the regular staining diagnostic procedure Hematoxylin-Eosin en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.contributorName Αραπαντώνη-Δαδιώτη, Πετρούλα el
heal.contributorName Λέκκα, Ι. el
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2004
heal.bibliographicCitation Glotsos, D., Spyridonos, P., Petalas, P., Cavouras, D., Ravazoula, P., et al. (April 2004). Computer-based malignancy grading of astrocytomas employing a Support Vector Machines Classifier, the WHO grading system, and the regular staining diagnostic procedure Hematoxylin-Eosin. Analytical and Quantitative Cytology and Histology. 26(2). pp. 77-83. Journal of Reproductive Medicine: 2004. en
heal.abstract OBJECTIVE: To investigate and develop an automated technique for astrocytoma malignancy grading compatible with the clinical routine. STUDY DESIGN: One hundred forty biopsies of astrocytomas were collected from 2 hospitals. The degree of tumor malignancy was defined as low or high according to the World Health Organization grading system. From each biopsy, images were digitized and segmented to isolate nuclei from background tissue. Morphologic and textural nuclear features were quantified to encode tumor malignancy. Each case was represented by a 40-dimensional feature vector. An exhaustive search procedure in feature space was utilized to determine the best feature combination that resulted in the smallest classification error. Low and high grade tumors were discriminated using support vector machines (SVMs). To evaluate the system performance, all available data were split randomly into training and test sets. RESULTS: The best vector combination consisted of 3 textural and 2 morphologic features. Low and high grade cases were discriminated with an accuracy of 90.7% and 88.9%, respectively, using an SVM classifier with polynomial kernel of degree 2. CONCLUSION: The proposed methodology was based on standards that are common in daily clinical practice and might be used in parallel with conventional grading as a second-opinion tool to reduce subjectivity in the classification of astrocytomas. en
heal.publisher Journal of Reproductive Medicine en
heal.journalName Analytical and Quantitative Cytology and Histology en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες