Εμφάνιση απλής εγγραφής

dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.contributor.author Αραπαντώνη-Δαδιώτη, Πετρούλα el
dc.date.accessioned 2015-05-11T08:37:18Z
dc.date.issued 2015-05-11
dc.identifier.uri http://hdl.handle.net/11400/10113
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.ncbi.nlm.nih.gov/pubmed/16403707 en
dc.subject Brain tumour
dc.subject Biopsy
dc.subject Εγκεφαλικός όγκος
dc.subject Βιοψία
dc.title An image-analysis system based on support vector machines for automatic grade diagnosis of brain-tumour astrocytomas in clinical routine en
heal.type journalArticle
heal.classification Medicine
heal.classification Oncology
heal.classification Ιατρική
heal.classification Ογκολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85094724
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ογκολογία
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2005
heal.bibliographicCitation Glotsos, D., Spyridonos, P., Cavouras, D., Ravazoula, P., Dadioti, P., et al. (September 2005). An image analysis system based on support vector machines for automatic grade diagnosis of brain tumour astrocytomas in clinical routine. Medical Informatics & The Internet in Medicine. 3093). pp. 179-193. Taylor & Francis: 2005. en
heal.abstract An image-analysis system based on the concept of Support Vector Machines (SVM) was developed to assist in grade diagnosis of brain tumour astrocytomas in clinical routine. One hundred and forty biopsies of astrocytomas were characterized according to the WHO system as grade II, III and IV. Images from biopsies were digitized, and cell nuclei regions were automatically detected by encoding texture variations in a set of wavelet, autocorrelation and parzen estimated descriptors and using an unsupervised SVM clustering methodology. Based on morphological and textural nuclear features, a decision-tree classification scheme distinguished between different grades of tumours employing an SVM classifier. The system was validated for clinical material collected from two different hospitals. On average, the SVM clustering algorithm correctly identified and accurately delineated 95% of all nuclei. Low-grade tumours were distinguished from high-grade tumours with an accuracy of 90.2% and grade III from grade IV with an accuracy of 88.3% The system was tested in a new clinical data set, and the classification rates were 87.5 and 83.8%, respectively. Segmentation and classification results are very encouraging, considering that the method was developed based on every-day clinical standards. The proposed methodology might be used in parallel with conventional grading to support the regular diagnostic procedure and reduce subjectivity in astrocytomas grading. en
heal.publisher Taylor & Francis en
heal.journalName Medical Informatics & The Internet in Medicine en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες