dc.contributor.author | Γκλώτσος, Δημήτριος | el |
dc.contributor.author | Tohka, Jussi | en |
dc.contributor.author | Ραβαζούλα, Παναγιώτα | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Νικηφορίδης, Γεώργιος Χ. | el |
dc.date.accessioned | 2015-05-11T08:56:39Z | |
dc.date.issued | 2015-05-11 | |
dc.identifier.uri | http://hdl.handle.net/11400/10115 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.worldscientific.com/doi/abs/10.1142/S0129065705000013 | en |
dc.subject | Probabilistic neural network | |
dc.subject | Microscopy | |
dc.subject | Πιθανοτικό νευρωνικό δίκτυο | |
dc.subject | Μικροσκοπία | |
dc.title | Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.keywordURI | http://skos.um.es/unesco6/230112 | |
heal.identifier.secondary | DOI: 10.1142/S0129065705000013 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2005 | |
heal.bibliographicCitation | Glotsos, D., Tohka, J., Ravazoula, P., Cavouras, D. and Nikiforidis, G. (February & April 2005). Automated diagnosis of brain tumours astrocytomas using probabilistic neural network clustering and support vector machines. International Journal of Neural Systems. 15(01n02). pp. 1-11. World Scientific Publishing: 2005. | en |
heal.abstract | A computer-aided diagnosis system was developed for assisting brain astrocytomas malignancy grading. Microscopy images from 140 astrocytic biopsies were digitized and cell nuclei were automatically segmented using a Probabilistic Neural Network pixel-based clustering algorithm. A decision tree classification scheme was constructed to discriminate low, intermediate and high-grade tumours by analyzing nuclear features extracted from segmented nuclei with a Support Vector Machine classifier. Nuclei were segmented with an average accuracy of 86.5%. Low, intermediate, and high-grade tumours were identified with 95%, 88.3%, and 91% accuracies respectively. The proposed algorithm could be used as a second opinion tool for the histopathologists. | en |
heal.publisher | World Scientific Publishing | en |
heal.journalName | International Journal of Neural Systems | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | false |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: