Εμφάνιση απλής εγγραφής

dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Πεταλάς, Π. el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Ραβαζούλα, Παναγιώτα el
dc.date.accessioned 2015-05-11T09:21:55Z
dc.date.issued 2015-05-11
dc.identifier.uri http://hdl.handle.net/11400/10118
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://dl.acm.org/citation.cfm?id=1411786 en
dc.subject Image analysis
dc.subject Probabilistic neural networks
dc.subject Ανάλυση εικόνας
dc.subject Πιθανολογικά νευρωνικά δίκτυα
dc.title Comparative evaluation of support vector machines and probabilistic neural networks in superficial bladder cancer classification en
heal.type journalArticle
heal.classification Medicine
heal.classification Oncology
heal.classification Ιατρική
heal.classification Ογκολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85094724
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ογκολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh98002813
heal.contributorName Νικηφορίδης, Γεώργιος Χ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2006
heal.bibliographicCitation Spyridonos, P., Petalas, P., Glotsos, D., Cavouras, D., Ravazoula, P., et al. (June 2006). Comparative evaluation of support vector machines and probabilistic neural networks in superficial bladder cancer classification. Journal of Computational Methods in Sciences and Engineering. 6(5-6). pp. 283-292. IOS Press: 2006 en
heal.abstract Purpose: In this paper we address the demanding diagnostic problem of classifying tumors according to the degree of their malignancy by investigating the efficiency of Support Vector Machines (SVMs) and Probabilistic neural networks (PNN). Material and methods: 129 cases of urinary bladder carcinomas were diagnosed as high or low-risk according to the WHO grading system. Each case was represented by 36 automatically extracted nuclear features. Two different classification designs based on SVMs and PNNs were tested according to their ability in differentiating superficial urinary bladder carcinomas according to the degree of malignancy. Best feature combination for each classification scheme was obtained performing an exhaustive search in feature space and employing the leave-one-out method. Results: Both classification models (SVM and PNN) resulted in a relatively high overall accuracy of 85.3% and 83.7% respectively. Descriptors of nuclear size and chromatin cluster patterns were participated in both best feature vectors that optimized classification performance of the two classifiers. Conclusion: The good performance and consistency of the SVM and PNN models render these techniques viable alternatives in the diagnostic process of assigning urinary bladder tumors grade. en
heal.publisher IOS Press en
heal.journalName Journal of Computational Methods in Sciences and Engineering en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες