Εμφάνιση απλής εγγραφής

dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καλατζής, Ιωάννης el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.date.accessioned 2015-05-12T13:27:02Z
dc.date.available 2015-05-12T13:27:02Z
dc.date.issued 2015-05-12
dc.identifier.uri http://hdl.handle.net/11400/10203
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.cmpbjournal.com/article/S0169-2607(08)00039-4/abstract en
dc.source http://www.sciencedirect.com/science/article/pii/S0169260708000394 en
dc.subject Astrocytomas
dc.subject Support vector machines
dc.subject Αστροκυτώματα
dc.subject Μηχανές διανυσμάτων υποστήριξης
dc.title Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme en
heal.type journalArticle
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh92001188
heal.keywordURI http://id.loc.gov/authorities/subjects/sh2008009003
heal.contributorName Αθανασιάδης, Εμμανουήλ el
heal.contributorName Ραβαζούλα, Παναγιώτα el
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.contributorName Κάβουρας, Διονύσης Α. el
heal.identifier.secondary doi:10.1016/j.cmpb.2008.01.006
heal.language en
heal.access campus
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2008
heal.bibliographicCitation Glotsos, D., Kalatzis, I., Spyridonos, P., Kostopoulos, S., Daskalakis, A., et al. (June 2008). Improving accuracy in astrocytomas grading by integrating a robust least squares mapping driven support vector machine classifier into a two level grade classification scheme. Computer Methods and Programs in Biomedicine. 90(3). pp. 251-261. Elsevier B.V: 2008. Available from: http://www.cmpbjournal.com/article/S0169-2607(08)00039-4/abstract [Accessed 17/03/2008] en
heal.abstract Grading of astrocytomas is an important task for treatment planning; however, it suffers from significantly great inter-observer variability. Computer-assisted diagnosis systems have been propose to assist towards minimizing subjectivity, however, these systems present either moderate accuracy or utilize specialized staining protocols and grading systems that are difficult to apply in daily clinical practice. The present study proposes a robust mathematical formulation by integrating state-of-art technologies (support vector machines and least squares mapping) in a cascade classification scheme for separating low from high and grade III from grade IV astrocytic tumours. Results have indicated that low from high-grade tumours can be correctly separated with a certainty as high as 97.3%, whereas grade III from grade IV tumours with 97.8%. The overall performance was 95.2%. These high rates have been a result of applying the least squares mapping technique to features prior to classification. A significant byproduct of least squares mapping is that the number of support vectors of the SVM classifiers dropped dramatically from about 80% when no mapping was used to less than 5% when mapping was used. The latter is a clear indication that the SVM classifier has a greater potential to generalize well to new data. In this way, digital image analysis systems for automated grading of astrocytomas are brought closer to clinical practice. en
heal.publisher Elsevier B.V. en
heal.journalName Computer Methods and Programs in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Improving accuracy in astrocytomas ...
    Μέγεθος: 963.7Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες