dc.contributor.author | Κωστόπουλος, Σπυρίδων | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Δασκαλάκης, Αντώνης | el |
dc.contributor.author | Καγκάδης, Γεώργιος Χ. | el |
dc.contributor.author | Καλατζής, Ιωάννης | el |
dc.date.accessioned | 2015-05-12T13:38:49Z | |
dc.date.issued | 2015-05-12 | |
dc.identifier.uri | http://hdl.handle.net/11400/10204 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.ncbi.nlm.nih.gov/pubmed/18773740 | en |
dc.subject | Histopathology | |
dc.subject | Image analysis | |
dc.subject | Ιστοπαθολογία | |
dc.subject | Ανάλυση εικόνας | |
dc.title | Cascade pattern recognition structure for improving quantitative assessment of estrogen receptor status in breast tissue carcinomas | en |
heal.type | journalArticle | |
heal.classification | Medicine | |
heal.classification | Oncology | |
heal.classification | Ιατρική | |
heal.classification | Ογκολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85094724 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Ογκολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh98002813 | |
heal.contributorName | Γεωργιάδης, Παντελής | el |
heal.contributorName | Ραβαζούλα, Παναγιώτα | el |
heal.contributorName | Νικηφορίδης, Γεώργιος Σ. | el |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2008 | |
heal.bibliographicCitation | Kostopoulos, S., Cavouras, D., Daskalakis, A., Kagadis, G., Kalatzis, I., et al. (August 2008). Cascade pattern recognition structure for improving quantitative assessment of ER-status in breast tissue carcinomas. Analytical and Quantitative Cytology and Histology. 30(4). pp. 218-225. Journal of Reproductive Medicine: 2008. | en |
heal.abstract | OBJECTIVE: To develop and validate a computer-based approach for the quantitative assessment of estrogen receptor (ER) status in breast tissue specimens for breast cancer management. STUDY DESIGN: Microscopy images of 32 immunohistochemically (IHC) stained specimens of breast cancer biopsies were digitized and were primarily assessed for ER status (percentage of positively stained nuclei) by a histopathologist. A pattern recognition system was designed for automatically assessing the ER status of the IHC-stained specimens. Nuclei were automatically segmented from background by a pixel-based unsupervised clustering algorithm and were characterized as positively stained or unstained by a supervised classification algorithm. This cascade structure boosted the system's classification accuracy. RESULTS: System performance in correctly characterizing the nuclei was 95.48%. When specifying each case's ER status, system performance was statistically not significantly different to the physician's assessment (p = 0.13); when ranking each case to a particular 5-scale ER-scoring system (giving the chance of response to endocrine treatment), the system's score and the physician's score were in agreement in 29 of 32 cases. CONCLUSION: The need for reliable and operator independent ER-status estimation procedures may be served by the design of efficient pattern recognition systems to be employed as support opinion tools in clinical practice. | en |
heal.publisher | Journal of Reproductive Medicine | en |
heal.journalName | Analytical and Quantitative Cytology and Histology | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: