Εμφάνιση απλής εγγραφής

dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Δασκαλάκης, Αντώνης el
dc.contributor.author Καγκάδης, Γεώργιος Χ. el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-12T13:38:49Z
dc.date.issued 2015-05-12
dc.identifier.uri http://hdl.handle.net/11400/10204
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.ncbi.nlm.nih.gov/pubmed/18773740 en
dc.subject Histopathology
dc.subject Image analysis
dc.subject Ιστοπαθολογία
dc.subject Ανάλυση εικόνας
dc.title Cascade pattern recognition structure for improving quantitative assessment of estrogen receptor status in breast tissue carcinomas en
heal.type journalArticle
heal.classification Medicine
heal.classification Oncology
heal.classification Ιατρική
heal.classification Ογκολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85094724
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Ογκολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh98002813
heal.contributorName Γεωργιάδης, Παντελής el
heal.contributorName Ραβαζούλα, Παναγιώτα el
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2008
heal.bibliographicCitation Kostopoulos, S., Cavouras, D., Daskalakis, A., Kagadis, G., Kalatzis, I., et al. (August 2008). Cascade pattern recognition structure for improving quantitative assessment of ER-status in breast tissue carcinomas. Analytical and Quantitative Cytology and Histology. 30(4). pp. 218-225. Journal of Reproductive Medicine: 2008. en
heal.abstract OBJECTIVE: To develop and validate a computer-based approach for the quantitative assessment of estrogen receptor (ER) status in breast tissue specimens for breast cancer management. STUDY DESIGN: Microscopy images of 32 immunohistochemically (IHC) stained specimens of breast cancer biopsies were digitized and were primarily assessed for ER status (percentage of positively stained nuclei) by a histopathologist. A pattern recognition system was designed for automatically assessing the ER status of the IHC-stained specimens. Nuclei were automatically segmented from background by a pixel-based unsupervised clustering algorithm and were characterized as positively stained or unstained by a supervised classification algorithm. This cascade structure boosted the system's classification accuracy. RESULTS: System performance in correctly characterizing the nuclei was 95.48%. When specifying each case's ER status, system performance was statistically not significantly different to the physician's assessment (p = 0.13); when ranking each case to a particular 5-scale ER-scoring system (giving the chance of response to endocrine treatment), the system's score and the physician's score were in agreement in 29 of 32 cases. CONCLUSION: The need for reliable and operator independent ER-status estimation procedures may be served by the design of efficient pattern recognition systems to be employed as support opinion tools in clinical practice. en
heal.publisher Journal of Reproductive Medicine en
heal.journalName Analytical and Quantitative Cytology and Histology en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Cascade pattern recognition ...
    Μέγεθος: 551.7Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες