dc.contributor.author | Cherkassky, Vladimir | en |
dc.contributor.author | Βασιλάς, Νικόλαος | el |
dc.date.accessioned | 2015-05-12T19:44:09Z | |
dc.date.issued | 2015-05-12 | |
dc.identifier.uri | http://hdl.handle.net/11400/10257 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=118562&abstractAccess=no&userType=inst | en |
dc.subject | δίκτυα διάδοσης | |
dc.subject | συνδυαστική ανάκτηση της βάσης δεδομένων | |
dc.subject | τοπολογία δικτύου | |
dc.subject | propagation networks | |
dc.subject | associative database retrieval | |
dc.subject | Electric network topology | |
dc.title | Performance of back propagation networks for associative database retrieval | en |
heal.type | conferenceItem | |
heal.generalDescription | σε έντυπη μορφή στο γραφείο μου | el |
heal.classification | Πληροφορική | |
heal.classification | Μηχανική υπολογιστών | |
heal.classification | Computer science | |
heal.classification | Computer engineering | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | **N/A**-Μηχανική υπολογιστών | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85029495 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85041865 | |
heal.identifier.secondary | DOI: 10.1109/IJCNN.1989.118562 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 1989-06 | |
heal.bibliographicCitation | Cherkassky, V. and Vassilas, N. (1989) Performance of back propagation networks for associative database retrieval. Proc. IEEE IJCNN. 1, pp.77- 84. Washington: IEEE | en |
heal.abstract | Back-propagation networks have been successfully used to perform a variety of input-output mapping tasks for recognition, generalization, and classification. In spite of this method's popularity, virtually nothing is known about its saturation/capacity and, in more general terms, about its performance as an associative memory. The authors address these issues using associative database retrieval as an original application domain. Experimental results show that the quality of recall and the network capacity are very significantly affected by the network topology (the number of hidden units), data representation (encoding), and the choice of learning parameters. On the basis of their results and the fact that back-propagation learning is not recursive, the authors conclude that back-propagation networks can be used mainly as read-only associative memories and represent a poor choice for read-and-write associative memories. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | false | |
heal.conferenceName | Proc. IEEE IJCNN | en |
heal.conferenceItemType | other |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: