dc.contributor.author | Cherkassky, Vladimir | en |
dc.contributor.author | Βασιλάς, Νικόλαος | el |
dc.contributor.author | Brodt, G. | en |
dc.date.accessioned | 2015-05-12T20:36:56Z | |
dc.date.issued | 2015-05-12 | |
dc.identifier.uri | http://hdl.handle.net/11400/10262 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=130323&abstractAccess=no&userType=inst | en |
dc.subject | βάσεις δεδομένων | |
dc.subject | Ανάκτηση δεδομένων | |
dc.subject | μνήμη | |
dc.subject | Συμβατική και συνειρμική | |
dc.subject | Έλεγχος ορθογραφίας | |
dc.subject | Databases | |
dc.subject | Information retrieval | |
dc.subject | memory | |
dc.subject | Conventional and associative | |
dc.title | Conventional and associative memory-based spelling checkers | en |
heal.type | conferenceItem | |
heal.generalDescription | σε έντυπη μορφή στο γραφείο μου | el |
heal.classification | Τεχνολογία | |
heal.classification | Πληροφορική | |
heal.classification | Technology | |
heal.classification | Computer science | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Πληροφορική | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85133147 | |
heal.classificationURI | http://skos.um.es/unescothes/C00750 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh86007767 | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh85066148 | |
heal.identifier.secondary | DOI: 10.1109/TAI.1990.130323 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τεχνολογικό Εκπαιδευτικό Ίδρυμα Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Πληροφορικής Τ.Ε. | el |
heal.publicationDate | 1990-11-06 | |
heal.bibliographicCitation | Cherkassky, V., Vassilas, N. and Brodt, G. (1990) Conventional and associative memory-based spelling checkers. Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence. pp.138-144. Herndon: IEEE | en |
heal.abstract | Conventional and emerging neural approaches to fault-tolerant data retrieval when the input keyword and/or database itself may contain noise (errors) are reviewed. Spelling checking is used as a primary example to illustrate various approaches and to contrast the difference between conventional (algorithmic) techniques and research methods based on neural associative memories. Recent research on associative spelling checkers is summarized and some original results are presented. It is concluded that most neural models do not provide a viable solution for robust data retrieval due to saturation and scaling problems. However, a combination of conventional and neural approaches is shown to have excellent error correction rates and low computational costs; hence, it can be a good choice for robust data retrieval in large databases. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | false | |
heal.conferenceName | Proceedings of the 2nd International IEEE Conference on Tools for Artificial Intelligence | en |
heal.conferenceItemType | full paper |
Αρχεία | Μέγεθος | Μορφότυπο | Προβολή |
---|---|---|---|
Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο. |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: