Εμφάνιση απλής εγγραφής

dc.contributor.author Αθανασιάδης, Εμμανουήλ Ι. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Σπυρίδωνος, Παναγιώτα Π. el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-13T11:24:26Z
dc.date.issued 2015-05-13
dc.identifier.uri http://hdl.handle.net/11400/10286
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=5156198&url=http%3A%2F%2Fieeexplore.ieee.org%2Fxpls%2Fabs_all.jsp%3Farnumber%3D5156198 en
dc.subject Bioinformatics
dc.subject Molecular biophysics
dc.subject Βιοπληροφορική
dc.subject Μοριακή βιοφυσική
dc.title Complementary DNA microarray image processing based on the fuzzy gaussian mixture model en
heal.type journalArticle
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh00003585
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.identifier.secondary DOI: 10.1109/TITB.2008.907984
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2009
heal.bibliographicCitation Athanasiadis, E., Cavouras, D., Spyridonos, P., Glotsos, D., Kalatzis, I., et al. (July 2009). Complementary DNA microarray image processing based on the fuzzy gaussian mixture model. IEEE Transaction on Information Technology in Biomedicine. 13(4). pp. 419-425. IEEE: 2009. en
heal.abstract The objective of this paper was to investigate the segmentation ability of the fuzzy Gaussian mixture model (FGMM) clustering algorithm, applied on complementary DNA (cDNA) images. Following a standard established procedure, a simulated microarray image of 1600 cells, each containing one spot, was produced. For further evaluation of the algorithm, three real microarray images were also used, each containing 6400 spots. For the task of locating spot borders and surrounding background (BG) in each cell, an automatic gridding process was developed and applied on microarray images. The FGMM and the Gaussian mixture model (GMM) algorithms were applied to each cell with the purpose of discriminating foreground (FG) from BG. The segmentation abilities of both algorithms were evaluated by means of the segmentation matching factor, coefficient of determination, and concordance correlation, in respect to the actual classes (FG-BG pixels) of the simulated spots. Pairwise correlation and mean absolute error of the real images among replicates were also calculated. The FGMM was found to perform better and with equal processing time, as compared to the GMM, rendering the FGMM algorithm an efficient alternative for segmenting cDNA microarray images. en
heal.publisher IEEE en
heal.journalName IEEE Transaction on Information Technology in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Complementary DNA microarray ...
    Μέγεθος: 240.3Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες