Εμφάνιση απλής εγγραφής

dc.contributor.author Αθανασιάδης, Εμμανουήλ Ι. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Γεωργιάδης, Παντελής el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-13T11:35:05Z
dc.date.issued 2015-05-13
dc.identifier.uri http://hdl.handle.net/11400/10287
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source Segmentation of complementary DNA microarray images by wavelet-based markov random field model en
dc.subject Algorithms
dc.subject Wavelets (Mathematics)
dc.subject Αλγόριθμοι
dc.subject Κυμάτιο
dc.title Segmentation of complementary DNA microarray images by wavelet-based markov random field model en
heal.type journalArticle
heal.generalDescription art. no. 5268205 en
heal.classification Medicine
heal.classification Biomedical engineering
heal.classification Ιατρική
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://id.loc.gov/authorities/subjects/sh00006614
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Ιατρική
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh91006163
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.identifier.secondary DOI: 10.1109/TITB.2009.2032332
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2009
heal.bibliographicCitation Athanasiadis, E., Cavouras, D., Glotsos, D., Georgiadis, P., Kalatzis, I., et al. (September 2009). Segmentation of complementary DNA microarray images by wavelet-based markov random field model. IEEE Transactions on Information Technology in Biomedicine. 13(6). pp. 1068-1074. IEEE: 2009 en
heal.abstract A wavelet-based modification of the Markov random field (WMRF) model is proposed for segmenting complementary DNA (cDNA) microarray images. For evaluation purposes, five simulated and a set of five real microarray images were used. The one-level stationary wavelet transform (SWT) of each microarray image was used to form two images, a denoised image, using hard thresholding filter, and a magnitude image, from the amplitudes of the horizontal and vertical components of SWT. Elements from these two images were suitably combined to form the WMRF model for segmenting spots from their background. The WMRF was compared against the conventional MRF and the Fuzzy C means (FCM) algorithms on simulated and real microarray images and their performances were evaluated by means of the segmentation matching factor (SMF) and the coefficient of determination (r 2). Additionally, the WMRF was compared against the SPOT and SCANALYZE, and performances were evaluated by the mean absolute error (MAE) and the coefficient of variation (CV). The WMRF performed more accurately than the MRF and FCM (SMF: 92.66, 92.15, and 89.22, r 2 : 0.92, 0.90, and 0.84, respectively) and achieved higher reproducibility than the MRF, SPOT, and SCANALYZE (MAE: 497, 1215, 1180, and 503, CV: 0.88, 1.15, 0.93, and 0.90, respectively). en
heal.publisher IEEE en
heal.journalName IEEE Transactions on Information Technology in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability true


Αρχεία σε αυτό το τεκμήριο

  • Όνομα: Segmentation of complementary ...
    Μέγεθος: 419.1Kb
    Μορφότυπο: PDF

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες