Εμφάνιση απλής εγγραφής

dc.contributor.author Αθανασιάδης, Εμμανουήλ Ι. el
dc.contributor.author Κάβουρας, Διονύσης Α. el
dc.contributor.author Κωστόπουλος, Σπυρίδων el
dc.contributor.author Γκλώτσος, Δημήτριος el
dc.contributor.author Καλατζής, Ιωάννης el
dc.date.accessioned 2015-05-14T09:54:34Z
dc.date.issued 2015-05-14
dc.identifier.uri http://hdl.handle.net/11400/10353
dc.rights Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες *
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/3.0/us/ *
dc.source http://www.cmpbjournal.com/article/S0169-2607(11)00072-1/abstract en
dc.source http://www.sciencedirect.com/science/article/pii/S0169260711000721 en
dc.subject Image segmentation
dc.subject Wavelets (Mathematics)
dc.subject Κατάτμηση εικόνας
dc.subject Κυμάτιο
dc.title A wavelet - based markov random field segmentation model in segmenting microarray experiments en
heal.type journalArticle
heal.classification Technology
heal.classification Biomedical engineering
heal.classification Τεχνολογία
heal.classification Βιοϊατρική τεχνολογία
heal.classificationURI http://zbw.eu/stw/descriptor/10470-6
heal.classificationURI http://id.loc.gov/authorities/subjects/sh85014237
heal.classificationURI **N/A**-Τεχνολογία
heal.classificationURI **N/A**-Βιοϊατρική τεχνολογία
heal.keywordURI http://id.loc.gov/authorities/subjects/sh91006163
heal.contributorName Νικηφορίδης, Γεώργιος Σ. el
heal.identifier.secondary DOI: http://dx.doi.org/10.1016/j.cmpb.2011.03.007
heal.dateAvailable 10000-01-01
heal.language en
heal.access forever
heal.recordProvider Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. el
heal.publicationDate 2011
heal.bibliographicCitation Athanasiadis, E., Cavouras, D., Kostopoulos, S., Glotsos, D., Kalatzis, I., et al. (December 2011). A wavelet - based markov random field segmentation model in segmenting microarray experiments. Computer Methods and Programs in Biomedicine. 104(3). pp. 307-315. Elsevier Ireland Ltd: 2011. en
heal.abstract In the present study, an adaptation of the Markov Random Field (MRF) segmentation model, by means of the stationary wavelet transform (SWT), applied to complementary DNA (cDNA) microarray images is proposed (WMRF). A 3-level decomposition scheme of the initial microarray image was performed, followed by a soft thresholding filtering technique. With the inverse process, a Denoised image was created. In addition, by using the Amplitudes of the filtered wavelet Horizontal and Vertical images at each level, three different Magnitudes were formed. These images were combined with the Denoised one to create the proposed SMRF segmentation model. For numerical evaluation of the segmentation accuracy, the segmentation matching factor (SMF), the Coefficient of Determination (r2), and the concordance correlation (pc) were calculated on the simulated images. In addition, the SMRF performance was contrasted to the Fuzzy C Means (FCM), Gaussian Mixture Models (GMM), Fuzzy GMM (FGMM), and the conventional MRF techniques. Indirect accuracy performances were also tested on the experimental images by means of the Mean Absolute Error (MAE) and the Coefficient of Variation (CV). In the latter case, SPOT and SCANALYZE software results were also tested. In the former case, SMRF attained the best SMF, r2, and pc (92.66%, 0.923, and 0.88, respectively) scores, whereas, in the latter case scored MAE and CV, 497 and 0.88, respectively. The results and support the performance superiority of the SMRF algorithm in segmenting cDNA images. en
heal.publisher Elsevier Ireland Ltd en
heal.journalName Computer Methods and Programs in Biomedicine en
heal.journalType peer-reviewed
heal.fullTextAvailability false


Αρχεία σε αυτό το τεκμήριο

Αρχεία Μέγεθος Μορφότυπο Προβολή

Δεν υπάρχουν αρχεία που σχετίζονται με αυτό το τεκμήριο.

Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο:

Εμφάνιση απλής εγγραφής

Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες Εκτός από όπου ορίζεται κάτι διαφορετικό, αυτή η άδεια περιγράφεται ως Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες