dc.contributor.author | Μπουγιούκος, Παναγιώτης | el |
dc.contributor.author | Γκλώτσος, Δημήτριος | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Δασκαλάκης, Αντώνης | el |
dc.contributor.author | Καλατζής, Ιωάννης | el |
dc.date.accessioned | 2015-05-14T11:43:16Z | |
dc.date.available | 2015-05-14T11:43:16Z | |
dc.date.issued | 2015-05-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/10360 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.cmpbjournal.com/article/S0169-2607(09)00293-4/abstract | en |
dc.source | http://www.sciencedirect.com/science/article/pii/S0169260709002934 | en |
dc.subject | Probabilistic neural network | |
dc.subject | Support vector machines | |
dc.subject | Πιθανολογικό νευρωνικό δίκτυο | |
dc.subject | Μηχανές διανυσμάτων υποστήριξης | |
dc.title | An intensity-region driven multi-classifier scheme for improving the classification accuracy of proteomic MS-spectra | en |
heal.type | journalArticle | |
heal.classification | Technology | |
heal.classification | Biomedical engineering | |
heal.classification | Τεχνολογία | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://zbw.eu/stw/descriptor/10470-6 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Τεχνολογία | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.keywordURI | http://id.loc.gov/authorities/subjects/sh2008009003 | |
heal.contributorName | Κωστόπουλος, Σπυρίδων | el |
heal.contributorName | Νικηφορίδης, Γεώργιος Σ. | el |
heal.contributorName | Μπεζεριάνος, Αναστάσιος | el |
heal.identifier.secondary | DOI: http://dx.doi.org/10.1016/j.cmpb.2009.11.003 | |
heal.language | en | |
heal.access | campus | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2010 | |
heal.bibliographicCitation | Bougioukos, P., Glotsos, D., Cavouras, D., Daskalakis, A., Kalatzis, I., et al. (August 2010). An intensity-region driven multi-classifier scheme for improving the classification accuracy of proteomic MS-spectra. Computer Methods and Programs in Biomedicine. 99(2). pp. 147–153. Elsevier Ireland Ltd: 2010. Available from: http://www.sciencedirect.com/science/article/pii/S0169260709002934 [Accessed 09/12/2009] | en |
heal.abstract | In this study, a pattern recognition system is presented for improving the classification accuracy of MS-spectra by means of gathering information from different MS-spectra intensity regions using a majority vote ensemble combination. The method starts by automatically breaking down all MS-spectra into common intensity regions. Subsequently, the most informative features (m/z values), which might constitute potential significant biomarkers, are extracted from each common intensity region over all the MS-spectra and, finally, normal from ovarian cancer MS-spectra are discriminated using a multi-classifier scheme, with members the Support Vector Machine, the Probabilistic Neural Network and the k-Nearest Neighbour classifiers. Clinical material was obtained from the publicly available ovarian proteomic dataset (8-7-02). To ensure robust and reliable estimates, the proposed pattern recognition system was evaluated using an external cross-validation process. The average overall performance of the system in discriminating normal from cancer ovarian MS-spectra was 97.18% with 98.52% mean sensitivity and 94.84% mean specificity values. | en |
heal.publisher | Elsevier Ireland Ltd | en |
heal.journalName | Computer Methods and Programs in Biomedicine | en |
heal.journalType | peer-reviewed | |
heal.fullTextAvailability | true |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: