dc.contributor.author | Δασκαλάκης, Αντώνης | el |
dc.contributor.author | Κάβουρας, Διονύσης Α. | el |
dc.contributor.author | Μπουγιούκος, Παναγιώτης | el |
dc.contributor.author | Κωστόπουλος, Σπυρίδων | el |
dc.contributor.author | Γεωργιάδης, Παντελής | el |
dc.date.accessioned | 2015-05-14T14:41:39Z | |
dc.date.issued | 2015-05-14 | |
dc.identifier.uri | http://hdl.handle.net/11400/10371 | |
dc.rights | Αναφορά Δημιουργού-Μη Εμπορική Χρήση-Όχι Παράγωγα Έργα 3.0 Ηνωμένες Πολιτείες | * |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/us/ | * |
dc.source | http://www.ncbi.nlm.nih.gov/pubmed/18002165 | en |
dc.source | http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=4352499 | en |
dc.subject | Gene | |
dc.subject | Microarray images | |
dc.subject | Γονίδιο | |
dc.subject | Εικόνες μικροσυστοιχιών | |
dc.title | Genes expression level quantification using a spot-based algorithmic pipeline | en |
heal.type | conferenceItem | |
heal.generalDescription | Proceedings | en |
heal.classification | Medicine | |
heal.classification | Biomedical engineering | |
heal.classification | Ιατρική | |
heal.classification | Βιοϊατρική τεχνολογία | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh00006614 | |
heal.classificationURI | http://id.loc.gov/authorities/subjects/sh85014237 | |
heal.classificationURI | **N/A**-Ιατρική | |
heal.classificationURI | **N/A**-Βιοϊατρική τεχνολογία | |
heal.contributorName | Καλατζής, Ιωάννης | el |
heal.contributorName | Καγκάδης, Γεώργιος Χ. | el |
heal.contributorName | Νικηφορίδης, Γεώργιος Σ. | el |
heal.identifier.secondary | DOI: 10.1109/IEMBS.2007.4352499 | |
heal.dateAvailable | 10000-01-01 | |
heal.language | en | |
heal.access | forever | |
heal.recordProvider | Τ.Ε.Ι. Αθήνας. Σχολή Τεχνολογικών Εφαρμογών. Τμήμα Μηχανικών Βιοϊατρικής Τεχνολογίας Τ.Ε. | el |
heal.publicationDate | 2007 | |
heal.bibliographicCitation | Daskalakis, A., Cavouras, D., Bougioukos, P., Kostopoulos, S., Georgiadis, P., et al. (2007). Genes expression level quantification using a spot-based algorithmic pipeline. Proceedings of the 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. pp. 1148–1151. France, Lyon, 23th-26th August, 2007. IEEE: 2007. | en |
heal.abstract | An efficient spot-based (SB) algorithmic pipeline of clustering, enhancement, and segmentation techniques was developed to quantify gene expression levels in microarray images. The SB-pipeline employed i/a griding procedure to locate spot-regions, ii/a clustering algorithm (enhanced fuzzy c- means or EnFCM) to roughly segment spots from background and estimate background noise and spot's center, iii/an adaptive histogram modification technique to accentuate spot's boundaries, and iv/a segmentation algorithm (Seeded Region Growing or SRG), to extract microarray spots' intensities. Extracted intensities were comparatively evaluated in term of Mean Absolute Error (MAE) against the MAGIC TOOL's SRG employing a dataset of 7 replicated microarray images (6400 spots each). MAE box-plots mean values were 0.254 and 0.630 for the SB-pipeline and the MAGIC TOOL respectively. Total processing times for the dataset evaluated (7 images) were 2100 seconds and 3410 seconds for the SB-pipeline and MAGIC TOOL respectively. | en |
heal.publisher | IEEE | en |
heal.fullTextAvailability | true | |
heal.conferenceName | Annual International Conference of the IEEE Engineering in Medicine and Biology Society | en |
heal.conferenceItemType | full paper |
Οι παρακάτω άδειες σχετίζονται με αυτό το τεκμήριο: